1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//
// Self-organizing map in TBB flow::graph
//
// we will do a color map (the simple example.)
//
// serial algorithm
//
// initialize map with vectors (could be random, gradient, or something else)
// for some number of iterations
// update radius r, weight of change L
// for each example V
// find the best matching unit
// for each part of map within radius of BMU W
// update vector: W(t+1) = W(t) + w(dist)*L*(V - W(t))
#include "oneapi/tbb/task_group.h"
#include "som.hpp"
std::ostream &operator<<(std::ostream &out, const SOM_element &s) {
out << "(";
for (int i = 0; i < (int)s.w.size(); ++i) {
out << s.w[i];
if (i < (int)s.w.size() - 1) {
out << ",";
}
}
out << ")";
return out;
}
void remark_SOM_element(const SOM_element &s) {
printf("(");
for (int i = 0; i < (int)s.w.size(); ++i) {
printf("%g", s.w[i]);
if (i < (int)s.w.size() - 1) {
printf(",");
}
}
printf(")");
}
std::ostream &operator<<(std::ostream &out, const search_result_type &s) {
out << "<";
out << std::get<RADIUS>(s);
out << ", " << std::get<XV>(s);
out << ", ";
out << std::get<YV>(s);
out << ">";
return out;
}
void remark_search_result_type(const search_result_type &s) {
printf("<%g,%d,%d>", std::get<RADIUS>(s), std::get<XV>(s), std::get<YV>(s));
}
double randval(double lowlimit, double highlimit) {
return double(rand()) / double(RAND_MAX) * (highlimit - lowlimit) + lowlimit;
}
void find_data_ranges(teaching_vector_type &teaching,
SOM_element &max_range,
SOM_element &min_range) {
if (teaching.size() == 0)
return;
max_range = min_range = teaching[0];
for (int i = 1; i < (int)teaching.size(); ++i) {
max_range.elementwise_max(teaching[i]);
min_range.elementwise_min(teaching[i]);
}
}
void add_fraction_of_difference(SOM_element &to, SOM_element const &from, double frac) {
for (int i = 0; i < (int)from.size(); ++i) {
to[i] += frac * (from[i] - to[i]);
}
}
double distance_squared(SOM_element x, SOM_element y) {
double rval = 0.0;
for (int i = 0; i < (int)x.size(); ++i) {
double diff = x[i] - y[i];
rval += diff * diff;
}
return rval;
}
void SOMap::initialize(InitializeType it, SOM_element &max_range, SOM_element &min_range) {
for (int x = 0; x < xMax; ++x) {
for (int y = 0; y < yMax; ++y) {
for (int i = 0; i < (int)max_range.size(); ++i) {
if (it == InitializeRandom) {
my_map[x][y][i] = (randval(min_range[i], max_range[i]));
}
else if (it == InitializeGradient) {
my_map[x][y][i] =
((double)(x + y) / (xMax + yMax) * (max_range[i] - min_range[i]) +
min_range[i]);
}
}
}
}
}
// subsquare [low,high)
double SOMap::BMU_range(const SOM_element &s, int &xval, int &yval, subsquare_type &r) {
double min_distance_squared = DBL_MAX;
int min_x = -1;
int min_y = -1;
for (int x = r.rows().begin(); x != r.rows().end(); ++x) {
for (int y = r.cols().begin(); y != r.cols().end(); ++y) {
double dist = distance_squared(s, my_map[x][y]);
if (dist < min_distance_squared) {
min_distance_squared = dist;
min_x = x;
min_y = y;
}
if (cancel_test && oneapi::tbb::is_current_task_group_canceling()) {
xval = r.rows().begin();
yval = r.cols().begin();
return DBL_MAX;
}
}
}
xval = min_x;
yval = min_y;
return sqrt(min_distance_squared);
}
void SOMap::epoch_update_range(SOM_element const &s,
int epoch,
int min_x,
int min_y,
double radius,
double learning_rate,
oneapi::tbb::blocked_range<int> &r) {
int min_xiter = (int)((double)min_x - radius);
if (min_xiter < 0)
min_xiter = 0;
int max_xiter = (int)((double)min_x + radius);
if (max_xiter > (int)my_map.size() - 1)
max_xiter = (int)my_map.size() - 1;
for (int xx = r.begin(); xx <= r.end(); ++xx) {
double xrsq = (xx - min_x) * (xx - min_x);
double ysq = radius * radius - xrsq; // max extent of y influence
double yd;
if (ysq > 0) {
yd = sqrt(ysq);
int lb = (int)(min_y - yd);
int ub = (int)(min_y + yd);
for (int yy = lb; yy < ub; ++yy) {
if (yy >= 0 && yy < (int)my_map[xx].size()) {
// [xx, yy] is in the range of the update.
double my_rsq = xrsq + (yy - min_y) * (yy - min_y); // distance from BMU squared
double theta = exp(-(radius * radius) / (2.0 * my_rsq));
add_fraction_of_difference(my_map[xx][yy], s, theta * learning_rate);
}
}
}
}
}
void SOMap::teach(teaching_vector_type &in) {
for (int i = 0; i < nPasses; ++i) {
int j = (int)(randval(0, (double)in.size())); // this won't be reproducible.
if (j == in.size())
--j;
int min_x = -1;
int min_y = -1;
subsquare_type br2(0, (int)my_map.size(), 1, 0, (int)my_map[0].size(), 1);
(void)BMU_range(in[j], min_x, min_y, br2); // just need min_x, min_y
// radius of interest
double radius = max_radius * exp(-(double)i * radius_decay_rate);
// update circle is min_xiter to max_xiter inclusive.
double learning_rate = max_learning_rate * exp(-(double)i * learning_decay_rate);
epoch_update(in[j], i, min_x, min_y, radius, learning_rate);
}
}
void SOMap::debug_output() {
printf("SOMap:\n");
for (int i = 0; i < (int)(this->my_map.size()); ++i) {
for (int j = 0; j < (int)(this->my_map[i].size()); ++j) {
printf("map[%d, %d] == ", i, j);
remark_SOM_element(this->my_map[i][j]);
printf("\n");
}
}
}
#define RED 0
#define GREEN 1
#define BLUE 2
void readInputData() {
my_teaching.push_back(SOM_element());
my_teaching.push_back(SOM_element());
my_teaching.push_back(SOM_element());
my_teaching.push_back(SOM_element());
my_teaching.push_back(SOM_element());
my_teaching[0][RED] = 1.0;
my_teaching[0][GREEN] = 0.0;
my_teaching[0][BLUE] = 0.0;
my_teaching[1][RED] = 0.0;
my_teaching[1][GREEN] = 1.0;
my_teaching[1][BLUE] = 0.0;
my_teaching[2][RED] = 0.0;
my_teaching[2][GREEN] = 0.0;
my_teaching[2][BLUE] = 1.0;
my_teaching[3][RED] = 0.3;
my_teaching[3][GREEN] = 0.3;
my_teaching[3][BLUE] = 0.0;
my_teaching[4][RED] = 0.5;
my_teaching[4][GREEN] = 0.5;
my_teaching[4][BLUE] = 0.9;
}
|