1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//
// Self-organizing map in TBB flow::graph
//
// This is an example of the use of cancellation in a graph. After a point in searching for
// the best match for an example, two examples are looked for simultaneously. When the
// earlier example is found and the update radius is determined, the affected searches
// for the subsequent example are cancelled, and after the update they are restarted.
// As the update radius shrinks fewer searches are cancelled, and by the last iterations
// virtually all the work done for the speculating example is useful.
//
// first, a simple implementation with only one example vector
// at a time.
//
// we will do a color map (the simple example.)
//
// graph algorithm
//
// for some number of iterations
// update radius r, weight of change L
// for each example V
// use graph to find BMU
// for each part of map within radius of BMU W
// update vector: W(t+1) = W(t) + w(dist)*L*(V - W(t))
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX
#include <algorithm>
#define _MAIN_C_ 1
#include "som.hpp"
#include "oneapi/tbb/flow_graph.h"
#include "oneapi/tbb/blocked_range2d.h"
#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/task_arena.h"
#include "oneapi/tbb/global_control.h"
#include "common/utility/utility.hpp"
#include "common/utility/get_default_num_threads.hpp"
#define RED 0
#define GREEN 1
#define BLUE 2
static int xranges = 1;
static int yranges = 1;
static int xsize = -1;
static int ysize = -1;
static int global_i = 0;
static int speculation_start;
#if EXTRA_DEBUG
std::vector<int> cancel_count;
std::vector<int> extra_count;
std::vector<int> missing_count;
std::vector<int> canceled_before;
#endif
std::vector<int> function_node_execs;
static int xRangeMax = 3;
static int yRangeMax = 3;
static bool dont_speculate = false;
static search_result_type last_update;
class BMU_search_body {
SOMap &my_map;
subsquare_type my_square;
int &fn_tally;
public:
BMU_search_body(SOMap &_m, subsquare_type &_sq, int &fnt)
: my_map(_m),
my_square(_sq),
fn_tally(fnt) {}
BMU_search_body(const BMU_search_body &other)
: my_map(other.my_map),
my_square(other.my_square),
fn_tally(other.fn_tally) {}
search_result_type operator()(const SOM_element s) {
int my_x;
int my_y;
double min_dist = my_map.BMU_range(s, my_x, my_y, my_square);
++fn_tally; // count how many times this function_node executed
return search_result_type(min_dist, my_x, my_y);
}
};
typedef oneapi::tbb::flow::function_node<SOM_element, search_result_type> search_node;
typedef oneapi::tbb::flow::broadcast_node<SOM_element> b_node;
typedef std::vector<search_node *> search_node_vector_type;
typedef std::vector<search_node_vector_type> search_node_array_type;
typedef std::vector<oneapi::tbb::flow::graph *> graph_vector_type;
typedef std::vector<graph_vector_type> graph_array_type;
#define SPECULATION_CNT 2
oneapi::tbb::flow::graph *g[SPECULATION_CNT]; // main graph; there should only be one per epoch
b_node *send_to[SPECULATION_CNT]; // broadcast node to send exemplar to all function_nodes
oneapi::tbb::flow::queue_node<search_result_type>
*q[SPECULATION_CNT]; // queue for function nodes to put their results in
// each function_node should have its own graph
search_node_array_type *s_array[SPECULATION_CNT]; // 2d array of function nodes
graph_array_type *g_array[SPECULATION_CNT]; // 2d array of graphs
// All graphs must locate in the same arena.
oneapi::tbb::flow::graph *construct_graph(oneapi::tbb::task_arena &ta) {
oneapi::tbb::flow::graph *result;
ta.execute([&result] {
result = new oneapi::tbb::flow::graph();
});
return result;
}
// build a set of SPECULATION_CNT graphs, each of which consists of a broadcast_node,
// xranges x yranges function_nodes, and one queue_node for output.
// once speculation starts, if i % SPECULATION_CNT is the current graph, (i+1) % SPECULATION_CNT
// is the first speculation, and so on.
void build_BMU_graph(SOMap &map1, oneapi::tbb::task_arena &ta) {
// build current graph
xsize = ((int)map1.size() + xranges - 1) / xranges;
ysize = ((int)map1[0].size() + yranges - 1) / yranges;
function_node_execs.clear();
function_node_execs.reserve(xranges * yranges + 1);
for (int i = 0; i < xranges * yranges + 1; ++i)
function_node_execs.push_back(0);
for (int scnt = 0; scnt < SPECULATION_CNT; ++scnt) {
g[scnt] = construct_graph(ta);
send_to[scnt] = new b_node(*(g[scnt])); // broadcast node to the function_nodes
q[scnt] = new oneapi::tbb::flow::queue_node<search_result_type>(*(g[scnt])); // output queue
// create the function_nodes, tie to the graph
s_array[scnt] = new search_node_array_type;
s_array[scnt]->reserve(xranges);
g_array[scnt] = new graph_array_type;
g_array[scnt]->reserve(xranges);
for (int i = 0; i < (int)map1.size(); i += xsize) {
int xindex = i / xsize;
s_array[scnt]->push_back(search_node_vector_type());
#if EXTRA_DEBUG
if (s_array[scnt]->size() != xindex + 1) {
printf("Error; s_array[%d]->size() == %d, xindex== %d\n",
scnt,
(int)(s_array[scnt]->size()),
xindex);
}
#endif
(*s_array[scnt])[xindex].reserve(yranges);
g_array[scnt]->push_back(graph_vector_type());
(*g_array[scnt])[xindex].reserve(yranges);
for (int j = 0; j < (int)map1[0].size(); j += ysize) {
int offset = (i / xsize) * yranges + (j / ysize);
int xmax = (i + xsize) > (int)map1.size() ? (int)map1.size() : i + xsize;
int ymax = (j + ysize) > (int)map1[0].size() ? (int)map1[0].size() : j + ysize;
subsquare_type sst(i, xmax, 1, j, ymax, 1);
BMU_search_body bb(map1, sst, function_node_execs[offset]);
oneapi::tbb::flow::graph *g_local = construct_graph(ta);
search_node *s =
new search_node(*g_local, oneapi::tbb::flow::serial, bb); // copies Body
(*g_array[scnt])[xindex].push_back(g_local);
(*s_array[scnt])[xindex].push_back(s);
oneapi::tbb::flow::make_edge(*(send_to[scnt]),
*s); // broadcast_node -> function_node
oneapi::tbb::flow::make_edge(*s, *(q[scnt])); // function_node -> queue_node
}
}
}
}
// Wait for the 2D array of flow::graphs.
void wait_for_all_graphs(int cIndex) { // cIndex ranges over [0 .. SPECULATION_CNT - 1]
for (int x = 0; x < xranges; ++x) {
for (int y = 0; y < yranges; ++y) {
(*g_array[cIndex])[x][y]->wait_for_all();
}
}
}
void destroy_BMU_graph() {
for (int scnt = 0; scnt < SPECULATION_CNT; ++scnt) {
for (int i = 0; i < (int)(*s_array[scnt]).size(); ++i) {
for (int j = 0; j < (int)(*s_array[scnt])[i].size(); ++j) {
delete (*s_array[scnt])[i][j];
delete (*g_array[scnt])[i][j];
}
}
(*s_array[scnt]).clear();
delete s_array[scnt];
(*g_array[scnt]).clear();
delete g_array[scnt];
delete q[scnt];
delete send_to[scnt];
delete g[scnt];
}
}
void find_subrange_overlap(int const &xval,
int const &yval,
double const &radius,
int &xlow,
int &xhigh,
int &ylow,
int &yhigh) {
xlow = int((xval - radius) / xsize);
xhigh = int((xval + radius) / xsize);
ylow = int((yval - radius) / ysize);
yhigh = int((yval + radius) / ysize);
// circle may fall partly outside map
if (xlow < 0)
xlow = 0;
if (xhigh >= xranges)
xhigh = xranges - 1;
if (ylow < 0)
ylow = 0;
if (yhigh >= yranges)
yhigh = yranges - 1;
#if EXTRA_DEBUG
if (xlow >= xranges)
printf(" Error *** xlow == %d\n", xlow);
if (xhigh < 0)
printf("Error *** xhigh == %d\n", xhigh);
if (ylow >= yranges)
printf("Error *** ylow == %d\n", ylow);
if (yhigh < 0)
printf("Error *** yhigh == %d\n", yhigh);
#endif
}
bool overlap(int &xval, int &yval, search_result_type &sr) {
int xlow, xhigh, ylow, yhigh;
find_subrange_overlap(
std::get<XV>(sr), std::get<YV>(sr), std::get<RADIUS>(sr), xlow, xhigh, ylow, yhigh);
return xval >= xlow && xval <= xhigh && yval >= ylow && yval <= yhigh;
}
void cancel_submaps(int &xval, int &yval, double &radius, int indx) {
int xlow;
int xhigh;
int ylow;
int yhigh;
find_subrange_overlap(xval, yval, radius, xlow, xhigh, ylow, yhigh);
for (int x = xlow; x <= xhigh; ++x) {
for (int y = ylow; y <= yhigh; ++y) {
(*g_array[indx])[x][y]->cancel();
}
}
#if EXTRA_DEBUG
++cancel_count[(xhigh - xlow + 1) * (yhigh - ylow + 1)];
#endif
}
void restart_submaps(int &xval, int &yval, double &radius, int indx, SOM_element &vector) {
int xlow;
int xhigh;
int ylow;
int yhigh;
find_subrange_overlap(xval, yval, radius, xlow, xhigh, ylow, yhigh);
for (int x = xlow; x <= xhigh; ++x) {
for (int y = ylow; y <= yhigh; ++y) {
// have to reset the graph
(*g_array[indx])[x][y]->reset();
// and re-submit the exemplar for search.
(*s_array[indx])[x][y]->try_put(vector);
}
}
}
search_result_type graph_BMU(int indx) { // indx ranges over [0 .. SPECULATION_CNT -1]
wait_for_all_graphs(indx); // wait for the array of subgraphs
(g[indx])->wait_for_all();
std::vector<search_result_type> all_srs(xRangeMax * yRangeMax,
search_result_type(DBL_MAX, -1, -1));
#if EXTRA_DEBUG
int extra_computations = 0;
#endif
search_result_type sr;
search_result_type min_sr;
std::get<RADIUS>(min_sr) = DBL_MAX;
int result_count = 0;
while ((q[indx])->try_get(sr)) {
++result_count;
// figure which submap this came from
int x = std::get<XV>(sr) / xsize;
int y = std::get<YV>(sr) / ysize;
#if EXTRA_DEBUG
if (x < 0 || x >= xranges)
printf(" ### x value out of range (%d)\n", x);
if (y < 0 || y >= yranges)
printf(" ### y value out of range (%d)\n", y);
#endif
int offset = x * yranges + y; // linearized subscript
#if EXTRA_DEBUG
if (std::get<RADIUS>(all_srs[offset]) !=
DBL_MAX) { // we've already got a result from this subsquare
++extra_computations;
}
else if (std::get<XV>(all_srs[offset]) != -1) {
if (extra_debug)
printf("More than one cancellation of [%d,%d] iteration %d\n", x, y, global_i);
}
#endif
all_srs[offset] = sr;
if (std::get<RADIUS>(sr) < std::get<RADIUS>(min_sr))
min_sr = sr;
else if (std::get<RADIUS>(sr) == std::get<RADIUS>(min_sr)) {
if (std::get<XV>(sr) < std::get<XV>(min_sr)) {
min_sr = sr;
}
else if ((std::get<XV>(sr) == std::get<XV>(min_sr) &&
std::get<YV>(sr) < std::get<YV>(min_sr))) {
min_sr = sr;
}
}
}
#if EXTRA_DEBUG
if (result_count != xranges * yranges + extra_computations) {
// we are missing at least one of the expected results. Tally the missing values
for (int i = 0; i < xranges * yranges; ++i) {
if (std::get<RADIUS>(all_srs[i]) == DBL_MAX) {
// i == x*yranges + y
int xval = i / yranges;
int yval = i % yranges;
bool received_cancel_result = std::get<XV>(all_srs[i]) != -1;
if (overlap(xval, yval, last_update)) {
// we have previously canceled this subsquare.
printf("No result for [%d,%d] which was canceled(%s)\n",
xval,
yval,
received_cancel_result ? "T" : "F");
++canceled_before[i];
}
else {
printf("No result for [%d,%d] which was not canceled(%s)\n",
xval,
yval,
received_cancel_result ? "T" : "F");
}
++missing_count[i];
}
}
}
if (extra_computations)
++extra_count[extra_computations];
#endif
return min_sr;
// end of one epoch
}
void graph_teach(SOMap &map1, teaching_vector_type &in, oneapi::tbb::task_arena &ta) {
build_BMU_graph(map1, ta);
#if EXTRA_DEBUG
cancel_count.clear();
extra_count.clear();
missing_count.clear();
canceled_before.clear();
cancel_count.reserve(xRangeMax * yRangeMax + 1);
extra_count.reserve(xRangeMax * yRangeMax + 1);
missing_count.reserve(xRangeMax * yRangeMax + 1);
canceled_before.reserve(xRangeMax * yRangeMax + 1);
for (int i = 0; i < xRangeMax * yRangeMax + 1; ++i) {
cancel_count.push_back(0);
extra_count.push_back(0);
missing_count.push_back(0);
canceled_before.push_back(0);
}
#endif
// normally the training would pick random exemplars to teach the SOM. We need
// the process to be reproducible, so we will pick the exemplars in order, [0, in.size())
int next_j = 0;
for (int epoch = 0; epoch < nPasses; ++epoch) {
global_i = epoch;
bool canceled_submaps = false;
int j = next_j; // try to make reproducible
next_j = (epoch + 1) % in.size();
search_result_type min_sr;
if (epoch < speculation_start) {
(send_to[epoch % SPECULATION_CNT])->try_put(in[j]);
}
else if (epoch == speculation_start) {
(send_to[epoch % SPECULATION_CNT])->try_put(in[j]);
if (epoch < nPasses - 1) {
(send_to[(epoch + 1) % SPECULATION_CNT])->try_put(in[next_j]);
}
}
else if (epoch < nPasses - 1) {
(send_to[(epoch + 1) % SPECULATION_CNT])->try_put(in[next_j]);
}
min_sr = graph_BMU(epoch % SPECULATION_CNT); //calls wait_for_all()
double min_distance = std::get<0>(min_sr);
double radius = max_radius * exp(-(double)epoch * radius_decay_rate);
double learning_rate = max_learning_rate * exp(-(double)epoch * learning_decay_rate);
if (epoch >= speculation_start && epoch < (nPasses - 1)) {
// have to cancel the affected submaps
cancel_submaps(
std::get<XV>(min_sr), std::get<YV>(min_sr), radius, (epoch + 1) % SPECULATION_CNT);
canceled_submaps = true;
}
map1.epoch_update(
in[j], epoch, std::get<1>(min_sr), std::get<2>(min_sr), radius, learning_rate);
++global_i;
if (canceled_submaps) {
// do I have to wait for all the non-canceled speculative graph to complete first?
// yes, in case a canceled task was already executing.
wait_for_all_graphs((epoch + 1) % SPECULATION_CNT); // wait for the array of subgraphs
restart_submaps(std::get<1>(min_sr),
std::get<2>(min_sr),
radius,
(epoch + 1) % SPECULATION_CNT,
in[next_j]);
}
last_update = min_sr;
std::get<RADIUS>(last_update) = radius; // not smallest value, but range of effect
}
destroy_BMU_graph();
}
static const double serial_time_adjust = 1.25;
static double radius_fraction = 3.0;
int main(int argc, char *argv[]) {
int l_speculation_start;
utility::thread_number_range threads(
utility::get_default_num_threads,
utility::
get_default_num_threads() // run only the default number of threads if none specified
);
utility::parse_cli_arguments(
argc,
argv,
utility::cli_argument_pack()
//"-h" option for for displaying help is present implicitly
.positional_arg(
threads,
"n-of-threads",
"number of threads to use; a range of the form low[:high], where low and optional high are non-negative integers or 'auto' for the TBB default.")
// .positional_arg(InputFileName,"input-file","input file name")
// .positional_arg(OutputFileName,"output-file","output file name")
.positional_arg(
radius_fraction, "radius-fraction", "size of radius at which to start speculating")
.positional_arg(
nPasses, "number-of-epochs", "number of examples used in learning phase")
.arg(cancel_test, "cancel-test", "test for cancel signal while finding BMU")
.arg(extra_debug, "debug", "additional output")
.arg(dont_speculate, "nospeculate", "don't speculate in SOM map teaching"));
readInputData();
max_radius = (xMax < yMax) ? yMax / 2 : xMax / 2;
// need this value for the 1x1 timing below
radius_decay_rate = -(log(1.0 / (double)max_radius) / (double)nPasses);
find_data_ranges(my_teaching, max_range, min_range);
if (extra_debug) {
printf("Data range: ");
remark_SOM_element(min_range);
printf(" to ");
remark_SOM_element(max_range);
printf("\n");
}
// find how much time is taken for the single function_node case.
// adjust nPasses so the 1x1 time is somewhere around serial_time_adjust seconds.
// make sure the example test runs for at least 0.5 second.
for (;;) {
// Restrict max concurrency level via task_arena interface
oneapi::tbb::task_arena ta(1);
SOMap map1(xMax, yMax);
speculation_start = nPasses + 1; // Don't speculate
xranges = 1;
yranges = 1;
map1.initialize(InitializeGradient, max_range, min_range);
oneapi::tbb::tick_count t0 = oneapi::tbb::tick_count::now();
graph_teach(map1, my_teaching, ta);
oneapi::tbb::tick_count t1 = oneapi::tbb::tick_count::now();
double nSeconds = (t1 - t0).seconds();
if (nSeconds < 0.5) {
xMax *= 2;
yMax *= 2;
continue;
}
double size_adjust = sqrt(serial_time_adjust / nSeconds);
xMax = (int)((double)xMax * size_adjust);
yMax = (int)((double)yMax * size_adjust);
max_radius = (xMax < yMax) ? yMax / 2 : xMax / 2;
radius_decay_rate = log((double)max_radius) / (double)nPasses;
if (extra_debug) {
printf("original 1x1 case ran in %g seconds\n", nSeconds);
printf(" Size of table == %d x %d\n", xMax, yMax);
printf(" radius_decay_rate == %g\n", radius_decay_rate);
}
break;
}
// the "max_radius" starts at 1/2*radius_fraction the table size. To start the speculation when the radius is
// 1 / n * the table size, the constant in the log below should be n / 2. so 2 == 1/4, 3 == 1/6th,
// et c.
if (dont_speculate) {
l_speculation_start = nPasses + 1;
if (extra_debug)
printf("speculation will not be done\n");
}
else {
if (radius_fraction < 1.0) {
if (extra_debug)
printf("Warning: radius_fraction should be >= 1. Setting to 1.\n");
radius_fraction = 1.0;
}
l_speculation_start = (int)((double)nPasses * log(radius_fraction) / log((double)nPasses));
if (extra_debug)
printf("We will start speculation at iteration %d\n", l_speculation_start);
}
double single_time; // for speedup calculations
#if EXTRA_DEBUG
// storage for the single-subrange answers, for comparing maps
std::vector<double> single_dist;
single_dist.reserve(my_teaching.size());
std::vector<int> single_xval;
single_xval.reserve(my_teaching.size());
std::vector<int> single_yval;
single_yval.reserve(my_teaching.size());
#endif
//TODO: Investigate how to not require mandatory concurrency
for (int p = std::max(threads.first, 2); p <= std::max(threads.last, 2); ++p) {
// Restrict max concurrency level via task_arena interface
oneapi::tbb::global_control limit(oneapi::tbb::global_control::max_allowed_parallelism, p);
oneapi::tbb::task_arena ta(p);
if (extra_debug)
printf(" -------------- Running with %d threads. ------------\n", p);
// run the SOM build for a series of subranges
for (xranges = 1; xranges <= xRangeMax; ++xranges) {
for (yranges = xranges; yranges <= yRangeMax; ++yranges) {
if (xranges == 1 && yranges == 1) {
// don't pointlessly speculate if we're only running one subrange.
speculation_start = nPasses + 1;
}
else {
speculation_start = l_speculation_start;
}
SOMap map1(xMax, yMax);
map1.initialize(InitializeGradient, max_range, min_range);
if (extra_debug)
printf("Start learning for [%d,%d] ----------- \n", xranges, yranges);
oneapi::tbb::tick_count t0 = oneapi::tbb::tick_count::now();
graph_teach(map1, my_teaching, ta);
oneapi::tbb::tick_count t1 = oneapi::tbb::tick_count::now();
if (extra_debug)
printf("Done learning for [%d,%d], which took %g seconds ",
xranges,
yranges,
(t1 - t0).seconds());
if (xranges == 1 && yranges == 1)
single_time = (t1 - t0).seconds();
if (extra_debug)
printf(": speedup == %g\n", single_time / (t1 - t0).seconds());
#if EXTRA_DEBUG
if (extra_debug) {
// number of times cancel was called, indexed by number of subranges canceled
for (int i = 0; i < cancel_count.size(); ++i) {
// only write output if we have a non-zero value.
if (cancel_count[i] > 0) {
int totalcnt = 0;
printf(" cancellations: ");
for (int j = 0; j < cancel_count.size(); ++j) {
if (cancel_count[j]) {
printf(" %d [%d]", j, cancel_count[j]);
totalcnt += cancel_count[j];
}
}
totalcnt += speculation_start;
printf(" for a total of %d\n", totalcnt);
break; // from for
}
}
// number of extra results (these occur when the subrange task starts before
// cancel is received.)
for (int i = 0; i < extra_count.size(); ++i) {
if (extra_count[i] > 0) {
int totalcnt = 0;
printf("extra computations: ");
for (int j = 0; j < extra_count.size(); ++j) {
if (extra_count[j]) {
printf(" %d[%d]", j, extra_count[j]);
totalcnt += extra_count[j];
}
}
totalcnt += speculation_start;
printf(" for a total of %d\n", totalcnt);
break; // from for
}
}
// here we count the number of times we looked for a particular subrange when fetching
// the queue_node output and didn't find anything. This may occur when a function_node
// is "stuck" and doesn't process some number of exemplars. function_node_execs is
// a count of the number of times the corresponding function_node was executed (in
// case the problem is dropped output in the queue_node.)
for (int i = 0; i < missing_count.size(); ++i) {
if (missing_count[i]) {
int xval = i / yranges;
int yval = i % yranges;
printf(" f_node[%d,%d] missed %d values", xval, yval, missing_count[i]);
if (canceled_before[i]) {
printf(" canceled_before == %d", canceled_before[i]);
}
printf(", fn_tally == %d\n", function_node_execs[i]);
}
}
}
// check that output matches the 1x1 case
for (int i = 0; i < my_teaching.size(); ++i) {
int xdist;
int ydist;
double my_dist = map1.BMU(my_teaching[i], xdist, ydist);
if (xranges == 1 && yranges == 1) {
single_dist.push_back(my_dist);
single_xval.push_back(xdist);
single_yval.push_back(ydist);
}
else {
if (single_dist[i] != my_dist || single_xval[i] != xdist ||
single_yval[i] != ydist)
printf(
"Error in output: expecting <%g, %d, %d>, but got <%g, %d, %d>\n",
single_dist[i],
single_xval[i],
single_yval[i],
my_dist,
xdist,
ydist);
}
}
#endif
} // yranges
} // xranges
} // #threads p
printf("done\n");
return 0;
}
|