File: polyover.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (737 lines) | stat: -rw-r--r-- 27,072 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
/*
    Copyright (c) 2005-2021 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

// Polygon overlay
//
#include <cstdlib>
#include <cstring>
#include <cassert>

#include <iostream>
#include <algorithm>

#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/blocked_range.h"
#include "oneapi/tbb/parallel_for.h"
#include "oneapi/tbb/spin_mutex.h"
#include "oneapi/tbb/global_control.h"

#include "common/utility/get_default_num_threads.hpp"

#include "polyover.hpp"
#include "polymain.hpp"
#include "pover_video.hpp"

/*!
* @brief intersects a polygon with a map, adding any results to output map
*
* @param[out] resultMap output map (must be allocated)
* @param[in] polygon to be intersected
* @param[in] map intersected against
* @param[in] lock to use when adding output polygons to result map
*
*/
void OverlayOnePolygonWithMap(Polygon_map_t *resultMap,
                              RPolygon *myPoly,
                              Polygon_map_t *map2,
                              oneapi::tbb::spin_mutex *rMutex) {
    int r1, g1, b1, r2, g2, b2;
    int myr = 0;
    int myg = 0;
    int myb = 0;
    int p1Area = myPoly->area();
    for (unsigned int j = 1; (j < map2->size()) && (p1Area > 0); j++) {
        RPolygon *p2 = &((*map2)[j]);
        RPolygon *pnew;
        int newxMin, newxMax, newyMin, newyMax;
        myPoly->getColor(&r1, &g1, &b1);
        if (PolygonsOverlap(myPoly, p2, newxMin, newyMin, newxMax, newyMax)) {
            p2->getColor(&r2, &g2, &b2);
            myr = r1 + r2;
            myg = g1 + g2;
            myb = b1 + b2;
            p1Area -= (newxMax - newxMin + 1) * (newyMax - newyMin + 1);
            if (rMutex) {
                oneapi::tbb::spin_mutex::scoped_lock lock(*rMutex);
                resultMap->push_back(RPolygon(newxMin, newyMin, newxMax, newyMax, myr, myg, myb));
            }
            else {
                resultMap->push_back(RPolygon(newxMin, newyMin, newxMax, newyMax, myr, myg, myb));
            }
        }
    }
}

/*!
* @brief Serial version of polygon overlay
* @param[out] output map
* @param[in]  first map (map that individual polygons are taken from)
* @param[in]  second map (map passed to OverlayOnePolygonWithMap)
*/
void SerialOverlayMaps(Polygon_map_t **resultMap, Polygon_map_t *map1, Polygon_map_t *map2) {
    std::cout << "SerialOverlayMaps called"
              << "\n";
    *resultMap = new Polygon_map_t;

    RPolygon *p0 = &((*map1)[0]);
    int mapxSize, mapySize, ignore1, ignore2;
    p0->get(&ignore1, &ignore2, &mapxSize, &mapySize);
    (*resultMap)->reserve(mapxSize * mapySize); // can't be any bigger than this
    // push the map size as the first polygon,
    (*resultMap)->push_back(RPolygon(0, 0, mapxSize, mapySize));
    for (unsigned int i = 1; i < map1->size(); i++) {
        RPolygon *p1 = &((*map1)[i]);
        OverlayOnePolygonWithMap(*resultMap, p1, map2, nullptr);
    }
}

/*!
* @class ApplyOverlay
* @brief Simple version of parallel overlay (make parallel on polygons in map1)
*/
class ApplyOverlay {
    Polygon_map_t *m_map1, *m_map2, *m_resultMap;
    oneapi::tbb::spin_mutex *m_rMutex;

public:
    /*!
    * @brief functor to apply
    * @param[in] r range of polygons to intersect from map1
    */
    void operator()(const oneapi::tbb::blocked_range<int> &r) const {
        PRINT_DEBUG("From " << r.begin() << " to " << r.end());
        for (int i = r.begin(); i != r.end(); i++) {
            RPolygon *myPoly = &((*m_map1)[i]);
            OverlayOnePolygonWithMap(m_resultMap, myPoly, m_map2, m_rMutex);
        }
    }
    ApplyOverlay(Polygon_map_t *resultMap,
                 Polygon_map_t *map1,
                 Polygon_map_t *map2,
                 oneapi::tbb::spin_mutex *rmutex)
            : m_resultMap(resultMap),
              m_map1(map1),
              m_map2(map2),
              m_rMutex(rmutex) {}
};

/*!
* @brief apply the parallel algorithm
* @param[out] result_map generated map
* @param[in] polymap1 first map to be applied (algorithm is parallel on this map)
* @param[in] polymap2 second map.
*/
void NaiveParallelOverlay(Polygon_map_t *&result_map,
                          Polygon_map_t &polymap1,
                          Polygon_map_t &polymap2) {
    // -----------------------------------
    bool automatic_threadcount = false;

    if (gThreadsLow == THREADS_UNSET || gThreadsLow == utility::get_default_num_threads()) {
        gThreadsLow = gThreadsHigh = utility::get_default_num_threads();
        automatic_threadcount = true;
    }
    result_map = new Polygon_map_t;

    RPolygon *p0 = &(polymap1[0]);
    int mapxSize, mapySize, ignore1, ignore2;
    p0->get(&ignore1, &ignore2, &mapxSize, &mapySize);
    result_map->reserve(mapxSize * mapySize); // can't be any bigger than this
    // push the map size as the first polygon,
    oneapi::tbb::spin_mutex *resultMutex = new oneapi::tbb::spin_mutex();
    int grain_size = gGrainSize;

    for (int nthreads = gThreadsLow; nthreads <= gThreadsHigh; nthreads++) {
        oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
                                      nthreads);
        if (gIsGraphicalVersion) {
            RPolygon *xp =
                new RPolygon(0, 0, gMapXSize - 1, gMapYSize - 1, 0, 0, 0); // Clear the output space
            delete xp;
        }
        // put size polygon in result map
        result_map->push_back(RPolygon(0, 0, mapxSize, mapySize));

        oneapi::tbb::tick_count t0 = oneapi::tbb::tick_count::now();
        oneapi::tbb::parallel_for(
            oneapi::tbb::blocked_range<int>(1, (int)(polymap1.size()), grain_size),
            ApplyOverlay(result_map, &polymap1, &polymap2, resultMutex));
        oneapi::tbb::tick_count t1 = oneapi::tbb::tick_count::now();

        double naiveParallelTime = (t1 - t0).seconds() * 1000;
        std::cout << "Naive parallel with spin lock and ";
        if (automatic_threadcount)
            std::cout << "automatic";
        else
            std::cout << nthreads;
        std::cout << ((nthreads == 1) ? " thread" : " threads");
        std::cout << " took " << naiveParallelTime << " msec : speedup over serial "
                  << (gSerialTime / naiveParallelTime) << "\n";
        if (gCsvFile.is_open()) {
            gCsvFile << "," << naiveParallelTime;
        }
#if _DEBUG
        CheckPolygonMap(result_map);
        ComparePolygonMaps(result_map, gResultMap);
#endif
        result_map->clear();
    }
    delete resultMutex;
    if (gCsvFile.is_open()) {
        gCsvFile << "\n";
    }
    // -----------------------------------
}

template <typename T>
void split_at(Flagged_map_t &in_map,
              Flagged_map_t &left_out,
              Flagged_map_t &right_out,
              const T median) {
    left_out.reserve(in_map.size());
    right_out.reserve(in_map.size());
    for (Flagged_map_t::iterator i = in_map.begin(); i != in_map.end(); ++i) {
        RPolygon *p = i->p();
        if (p->xmax() < median) {
            // in left map
            left_out.push_back(*i);
        }
        else if (p->xmin() >= median) {
            right_out.push_back(*i);
            // in right map
        }
        else {
            // in both maps.
            left_out.push_back(*i);
            right_out.push_back(RPolygon_flagged(p, true));
        }
    }
}

// range that splits the maps as well as the range.  the flagged_map_t are
// vectors of pointers, and each range owns its maps (has to free them on destruction.)
template <typename T>
class blocked_range_with_maps {
    typedef oneapi::tbb::blocked_range<T> my_range_type;

private:
    my_range_type my_range;
    Flagged_map_t my_map1;
    Flagged_map_t my_map2;

public:
    blocked_range_with_maps(T begin,
                            T end,
                            typename my_range_type::size_type my_grainsize,
                            Polygon_map_t *p1,
                            Polygon_map_t *p2)
            : my_range(begin, end, my_grainsize) {
        my_map1.reserve(p1->size());
        my_map2.reserve(p2->size());
        for (int i = 1; i < p1->size(); ++i) {
            my_map1.push_back(RPolygon_flagged(&((*p1)[i]), false));
        }
        for (int i = 1; i < p2->size(); ++i) {
            my_map2.push_back(RPolygon_flagged(&(p2->at(i)), false));
        }
    }

    // copy-constructor required for deep copy of flagged maps.  One copy is done at the start of the
    // parallel for.
    blocked_range_with_maps(const blocked_range_with_maps &other)
            : my_range(other.my_range),
              my_map1(other.my_map1),
              my_map2(other.my_map2) {}
    bool empty() const {
        return my_range.empty();
    }
    bool is_divisible() const {
        return my_range.is_divisible();
    }

#if _DEBUG
    void check_my_map() {
        assert(my_range.begin() <= my_range.end());
        for (Flagged_map_t::iterator i = my_map1.begin(); i != my_map1.end(); ++i) {
            RPolygon *rp = i->p();
            assert(rp->xmax() >= my_range.begin());
            assert(rp->xmin() < my_range.end());
        }
        for (Flagged_map_t::iterator i = my_map2.begin(); i != my_map2.end(); ++i) {
            RPolygon *rp = i->p();
            assert(rp->xmax() >= my_range.begin());
            assert(rp->xmin() < my_range.end());
        }
    }

    void dump_map(Flagged_map_t &mapx) {
        std::cout << " ** MAP **\n";
        for (Flagged_map_t::iterator i = mapx.begin(); i != mapx.end(); ++i) {
            std::cout << *(i->p());
            if (i->isDuplicate()) {
                std::cout << " -- is_duplicate";
            }
            std::cout << "\n";
        }
        std::cout << "\n";
    }
#endif

    blocked_range_with_maps(blocked_range_with_maps &lhs_r, oneapi::tbb::split)
            : my_range(my_range_type(lhs_r.my_range, oneapi::tbb::split())) {
        // lhs_r.my_range makes my_range from [median, high) and rhs_r.my_range from [low, median)
        Flagged_map_t original_map1 = lhs_r.my_map1;
        Flagged_map_t original_map2 = lhs_r.my_map2;
        lhs_r.my_map1.clear();
        lhs_r.my_map2.clear();
        split_at(original_map1, lhs_r.my_map1, my_map1, my_range.begin());
        split_at(original_map2, lhs_r.my_map2, my_map2, my_range.begin());
#if _DEBUG
        this->check_my_map();
        lhs_r.check_my_map();
#endif
    }

    const my_range_type &range() const {
        return my_range;
    }
    Flagged_map_t &map1() {
        return my_map1;
    }
    Flagged_map_t &map2() {
        return my_map2;
    }
};

/*!
* @class ApplySplitOverlay
* @brief parallel by columnar strip
*/
class ApplySplitOverlay {
    Polygon_map_t *m_map1, *m_map2, *m_resultMap;
    oneapi::tbb::spin_mutex *m_rMutex;

public:
    /*!
    * @brief functor for columnar parallel version
    * @param[in] r range of map to be operated on
    */
    void operator()(/*const*/ blocked_range_with_maps<int> &r) const {
#ifdef _DEBUG
        // if we are debugging, serialize the method.  That way we can
        // see what is happening in each strip without the interleaving
        // confusing things.
        oneapi::tbb::spin_mutex::scoped_lock lock(*m_rMutex);
        std::cout << std::unitbuf << "From " << r.range().begin() << " to " << r.range().end() - 1
                  << "\n";
#endif
        // get yMapSize
        int r1, g1, b1, r2, g2, b2;
        int myr = -1;
        int myg = -1;
        int myb = -1;
        int i1, i2, i3, yMapSize;
        (*m_map1)[0].get(&i1, &i2, &i3, &yMapSize);

        Flagged_map_t &fmap1 = r.map1();
        Flagged_map_t &fmap2 = r.map2();

        // When intersecting polygons from fmap1 and fmap2, if BOTH are flagged
        // as duplicate, don't add the result to the output map.  We can still
        // intersect them, because we are keeping track of how much of the polygon
        // is left over from intersecting, and quitting when the polygon is
        // used up.

        for (unsigned int i = 0; i < fmap1.size(); i++) {
            RPolygon *p1 = fmap1[i].p();
            bool is_dup = fmap1[i].isDuplicate();
            int parea = p1->area();
            p1->getColor(&r1, &g1, &b1);
            for (unsigned int j = 0; (j < fmap2.size()) && (parea > 0); j++) {
                int xl, yl, xh, yh;
                RPolygon *p2 = fmap2[j].p();
                if (PolygonsOverlap(p1, p2, xl, yl, xh, yh)) {
                    if (!(is_dup && fmap2[j].isDuplicate())) {
                        p2->getColor(&r2, &g2, &b2);
                        myr = r1 + r2;
                        myg = g1 + g2;
                        myb = b1 + b2;
#ifdef _DEBUG
#else
                        oneapi::tbb::spin_mutex::scoped_lock lock(*m_rMutex);
#endif
                        (*m_resultMap).push_back(RPolygon(xl, yl, xh, yh, myr, myg, myb));
                    }
                    parea -= (xh - xl + 1) * (yh - yl + 1);
                }
            }
        }
    }

    ApplySplitOverlay(Polygon_map_t *resultMap,
                      Polygon_map_t *map1,
                      Polygon_map_t *map2,
                      oneapi::tbb::spin_mutex *rmutex)
            : m_resultMap(resultMap),
              m_map1(map1),
              m_map2(map2),
              m_rMutex(rmutex) {}
};

/*!
* @brief intersects two maps strip-wise
*
* @param[out] resultMap output map (must be allocated)
* @param[in] polymap1 map to be intersected
* @param[in] polymap2 map to be intersected
*/
void SplitParallelOverlay(Polygon_map_t **result_map,
                          Polygon_map_t *polymap1,
                          Polygon_map_t *polymap2) {
    int nthreads;
    bool automatic_threadcount = false;
    double domainSplitParallelTime;
    oneapi::tbb::tick_count t0, t1;
    oneapi::tbb::spin_mutex *resultMutex;
    if (gThreadsLow == THREADS_UNSET || gThreadsLow == utility::get_default_num_threads()) {
        gThreadsLow = gThreadsHigh = utility::get_default_num_threads();
        automatic_threadcount = true;
    }
    *result_map = new Polygon_map_t;

    RPolygon *p0 = &((*polymap1)[0]);
    int mapxSize, mapySize, ignore1, ignore2;
    p0->get(&ignore1, &ignore2, &mapxSize, &mapySize);
    (*result_map)->reserve(mapxSize * mapySize); // can't be any bigger than this
    resultMutex = new oneapi::tbb::spin_mutex();

    int grain_size;
#ifdef _DEBUG
    grain_size = gMapXSize / 4;
#else
    grain_size = gGrainSize;
#endif
    for (nthreads = gThreadsLow; nthreads <= gThreadsHigh; nthreads++) {
        oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
                                      nthreads);
        if (gIsGraphicalVersion) {
            RPolygon *xp =
                new RPolygon(0, 0, gMapXSize - 1, gMapYSize - 1, 0, 0, 0); // Clear the output space
            delete xp;
        }
        // push the map size as the first polygon,
        (*result_map)->push_back(RPolygon(0, 0, mapxSize, mapySize));
        t0 = oneapi::tbb::tick_count::now();
        oneapi::tbb::parallel_for(
            blocked_range_with_maps<int>(0, (int)(mapxSize + 1), grain_size, polymap1, polymap2),
            ApplySplitOverlay((*result_map), polymap1, polymap2, resultMutex));
        t1 = oneapi::tbb::tick_count::now();
        domainSplitParallelTime = (t1 - t0).seconds() * 1000;
        std::cout << "Splitting parallel with spin lock and ";
        if (automatic_threadcount)
            std::cout << "automatic";
        else
            std::cout << nthreads;
        std::cout << ((nthreads == 1) ? " thread" : " threads");
        std::cout << " took " << domainSplitParallelTime << " msec : speedup over serial "
                  << (gSerialTime / domainSplitParallelTime) << "\n";
        if (gCsvFile.is_open()) {
            gCsvFile << "," << domainSplitParallelTime;
        }
#if _DEBUG
        CheckPolygonMap(*result_map);
        ComparePolygonMaps(*result_map, gResultMap);
#endif
        (*result_map)->clear();
    }
    delete resultMutex;
    if (gCsvFile.is_open()) {
        gCsvFile << "\n";
    }
}

class ApplySplitOverlayCV {
    Polygon_map_t *m_map1, *m_map2;
    concurrent_Polygon_map_t *m_resultMap;

public:
    /*!
    * @brief functor for columnar parallel version
    * @param[in] r range of map to be operated on
    */
    void operator()(blocked_range_with_maps<int> &r) const {
        // get yMapSize
        int r1, g1, b1, r2, g2, b2;
        int myr = -1;
        int myg = -1;
        int myb = -1;
        int i1, i2, i3, yMapSize;
        (*m_map1)[0].get(&i1, &i2, &i3, &yMapSize);

        Flagged_map_t &fmap1 = r.map1();
        Flagged_map_t &fmap2 = r.map2();

        // When intersecting polygons from fmap1 and fmap2, if BOTH are flagged
        // as duplicate, don't add the result to the output map.  We can still
        // intersect them, because we are keeping track of how much of the polygon
        // is left over from intersecting, and quitting when the polygon is
        // used up.

        for (unsigned int i = 0; i < fmap1.size(); i++) {
            RPolygon *p1 = fmap1[i].p();
            bool is_dup = fmap1[i].isDuplicate();
            int parea = p1->area();
            p1->getColor(&r1, &g1, &b1);
            for (unsigned int j = 0; (j < fmap2.size()) && (parea > 0); j++) {
                int xl, yl, xh, yh;
                RPolygon *p2 = fmap2[j].p();
                if (PolygonsOverlap(p1, p2, xl, yl, xh, yh)) {
                    if (!(is_dup && fmap2[j].isDuplicate())) {
                        p2->getColor(&r2, &g2, &b2);
                        myr = r1 + r2;
                        myg = g1 + g2;
                        myb = b1 + b2;
                        (*m_resultMap).push_back(RPolygon(xl, yl, xh, yh, myr, myg, myb));
                    }
                    parea -= (xh - xl + 1) * (yh - yl + 1);
                }
            }
        }
    }

    ApplySplitOverlayCV(concurrent_Polygon_map_t *resultMap,
                        Polygon_map_t *map1,
                        Polygon_map_t *map2)
            : m_resultMap(resultMap),
              m_map1(map1),
              m_map2(map2) {}
};

/*!
* @brief intersects two maps strip-wise, accumulating into a concurrent_vector
*
* @param[out] resultMap output map (must be allocated)
* @param[in] polymap1 map to be intersected
* @param[in] polymap2 map to be intersected
*/
void SplitParallelOverlayCV(concurrent_Polygon_map_t **result_map,
                            Polygon_map_t *polymap1,
                            Polygon_map_t *polymap2) {
    int nthreads;
    bool automatic_threadcount = false;
    double domainSplitParallelTime;
    oneapi::tbb::tick_count t0, t1;
    if (gThreadsLow == THREADS_UNSET || gThreadsLow == utility::get_default_num_threads()) {
        gThreadsLow = gThreadsHigh = utility::get_default_num_threads();
        automatic_threadcount = true;
    }
    *result_map = new concurrent_Polygon_map_t;

    RPolygon *p0 = &((*polymap1)[0]);
    int mapxSize, mapySize, ignore1, ignore2;
    p0->get(&ignore1, &ignore2, &mapxSize, &mapySize);
    // (*result_map)->reserve(mapxSize*mapySize); // can't be any bigger than this

    int grain_size;
#ifdef _DEBUG
    grain_size = gMapXSize / 4;
#else
    grain_size = gGrainSize;
#endif
    for (nthreads = gThreadsLow; nthreads <= gThreadsHigh; nthreads++) {
        oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
                                      nthreads);
        if (gIsGraphicalVersion) {
            RPolygon *xp =
                new RPolygon(0, 0, gMapXSize - 1, gMapYSize - 1, 0, 0, 0); // Clear the output space
            delete xp;
        }
        // push the map size as the first polygon,
        (*result_map)->push_back(RPolygon(0, 0, mapxSize, mapySize));
        t0 = oneapi::tbb::tick_count::now();
        oneapi::tbb::parallel_for(
            blocked_range_with_maps<int>(0, (int)(mapxSize + 1), grain_size, polymap1, polymap2),
            ApplySplitOverlayCV((*result_map), polymap1, polymap2));
        t1 = oneapi::tbb::tick_count::now();
        domainSplitParallelTime = (t1 - t0).seconds() * 1000;
        std::cout << "Splitting parallel with concurrent_vector and ";
        if (automatic_threadcount)
            std::cout << "automatic";
        else
            std::cout << nthreads;
        std::cout << ((nthreads == 1) ? " thread" : " threads");
        std::cout << " took " << domainSplitParallelTime << " msec : speedup over serial "
                  << (gSerialTime / domainSplitParallelTime) << "\n";
        if (gCsvFile.is_open()) {
            gCsvFile << "," << domainSplitParallelTime;
        }
#if _DEBUG
        {
            Polygon_map_t s_result_map;
            for (concurrent_Polygon_map_t::const_iterator i = (*result_map)->begin();
                 i != (*result_map)->end();
                 ++i) {
                s_result_map.push_back(*i);
            }
            CheckPolygonMap(&s_result_map);
            ComparePolygonMaps(&s_result_map, gResultMap);
        }
#endif
        (*result_map)->clear();
    }

    if (gCsvFile.is_open()) {
        gCsvFile << "\n";
    }
}

// ------------------------------------------------------

class ApplySplitOverlayETS {
    Polygon_map_t *m_map1, *m_map2;
    ETS_Polygon_map_t *m_resultMap;

public:
    /*!
    * @brief functor for columnar parallel version
    * @param[in] r range of map to be operated on
    */
    void operator()(blocked_range_with_maps<int> &r) const {
        // get yMapSize
        int r1, g1, b1, r2, g2, b2;
        int myr = -1;
        int myg = -1;
        int myb = -1;
        int i1, i2, i3, yMapSize;
        (*m_map1)[0].get(&i1, &i2, &i3, &yMapSize);

        Flagged_map_t &fmap1 = r.map1();
        Flagged_map_t &fmap2 = r.map2();

        // When intersecting polygons from fmap1 and fmap2, if BOTH are flagged
        // as duplicate, don't add the result to the output map.  We can still
        // intersect them, because we are keeping track of how much of the polygon
        // is left over from intersecting, and quitting when the polygon is
        // used up.

        for (unsigned int i = 0; i < fmap1.size(); i++) {
            RPolygon *p1 = fmap1[i].p();
            bool is_dup = fmap1[i].isDuplicate();
            int parea = p1->area();
            p1->getColor(&r1, &g1, &b1);
            for (unsigned int j = 0; (j < fmap2.size()) && (parea > 0); j++) {
                int xl, yl, xh, yh;
                RPolygon *p2 = fmap2[j].p();
                if (PolygonsOverlap(p1, p2, xl, yl, xh, yh)) {
                    if (!(is_dup && fmap2[j].isDuplicate())) {
                        p2->getColor(&r2, &g2, &b2);
                        myr = r1 + r2;
                        myg = g1 + g2;
                        myb = b1 + b2;
                        (*m_resultMap).local().push_back(RPolygon(xl, yl, xh, yh, myr, myg, myb));
                    }
                    parea -= (xh - xl + 1) * (yh - yl + 1);
                }
            }
        }
    }

    ApplySplitOverlayETS(ETS_Polygon_map_t *resultMap, Polygon_map_t *map1, Polygon_map_t *map2)
            : m_resultMap(resultMap),
              m_map1(map1),
              m_map2(map2) {}
};

/*!
* @brief intersects two maps strip-wise, accumulating into an ets variable
*
* @param[out] resultMap output map (must be allocated)
* @param[in] polymap1 map to be intersected
* @param[in] polymap2 map to be intersected
*/
void SplitParallelOverlayETS(ETS_Polygon_map_t **result_map,
                             Polygon_map_t *polymap1,
                             Polygon_map_t *polymap2) {
    int nthreads;
    bool automatic_threadcount = false;
    double domainSplitParallelTime;
    oneapi::tbb::tick_count t0, t1;
    if (gThreadsLow == THREADS_UNSET || gThreadsLow == utility::get_default_num_threads()) {
        gThreadsLow = gThreadsHigh = utility::get_default_num_threads();
        automatic_threadcount = true;
    }
    *result_map = new ETS_Polygon_map_t;

    RPolygon *p0 = &((*polymap1)[0]);
    int mapxSize, mapySize, ignore1, ignore2;
    p0->get(&ignore1, &ignore2, &mapxSize, &mapySize);
    // (*result_map)->reserve(mapxSize*mapySize); // can't be any bigger than this

    int grain_size;
#ifdef _DEBUG
    grain_size = gMapXSize / 4;
#else
    grain_size = gGrainSize;
#endif
    for (nthreads = gThreadsLow; nthreads <= gThreadsHigh; nthreads++) {
        oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism,
                                      nthreads);
        if (gIsGraphicalVersion) {
            RPolygon *xp =
                new RPolygon(0, 0, gMapXSize - 1, gMapYSize - 1, 0, 0, 0); // Clear the output space
            delete xp;
        }
        // push the map size as the first polygon,
        // This polygon needs to be first, so we can push it at the start of a combine.
        // (*result_map)->local.push_back(RPolygon(0,0,mapxSize, mapySize));
        t0 = oneapi::tbb::tick_count::now();
        oneapi::tbb::parallel_for(
            blocked_range_with_maps<int>(0, (int)(mapxSize + 1), grain_size, polymap1, polymap2),
            ApplySplitOverlayETS((*result_map), polymap1, polymap2));
        t1 = oneapi::tbb::tick_count::now();
        domainSplitParallelTime = (t1 - t0).seconds() * 1000;
        std::cout << "Splitting parallel with ETS and ";
        if (automatic_threadcount)
            std::cout << "automatic";
        else
            std::cout << nthreads;
        std::cout << ((nthreads == 1) ? " thread" : " threads");
        std::cout << " took " << domainSplitParallelTime << " msec : speedup over serial "
                  << (gSerialTime / domainSplitParallelTime) << "\n";
        if (gCsvFile.is_open()) {
            gCsvFile << "," << domainSplitParallelTime;
        }
#if _DEBUG
        {
            Polygon_map_t s_result_map;
            oneapi::tbb::flattened2d<ETS_Polygon_map_t> psv = flatten2d(**result_map);
            s_result_map.push_back(RPolygon(0, 0, mapxSize, mapySize));
            for (oneapi::tbb::flattened2d<ETS_Polygon_map_t>::const_iterator ci = psv.begin();
                 ci != psv.end();
                 ++ci) {
                s_result_map.push_back(*ci);
            }
            CheckPolygonMap(&s_result_map);
            ComparePolygonMaps(&s_result_map, gResultMap);
        }
#endif
        (*result_map)->clear();
    }

    if (gCsvFile.is_open()) {
        gCsvFile << "\n";
    }
}