1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
|
/*
Copyright (c) 2005-2025 Intel Corporation
Copyright (c) 2025 UXL Foundation Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_concurrent_hash_map_H
#define __TBB_concurrent_hash_map_H
#include "detail/_namespace_injection.h"
#include "detail/_utils.h"
#include "detail/_assert.h"
#include "detail/_allocator_traits.h"
#include "detail/_containers_helpers.h"
#include "detail/_template_helpers.h"
#include "detail/_hash_compare.h"
#include "detail/_range_common.h"
#include "tbb_allocator.h"
#include "spin_rw_mutex.h"
#include <atomic>
#include <initializer_list>
#include <tuple>
#include <iterator>
#include <utility> // Need std::pair
#include <cstring> // Need std::memset
namespace tbb {
namespace detail {
namespace d2 {
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS && __TBB_CPP20_CONCEPTS_PRESENT
template <typename Mutex>
concept ch_map_rw_scoped_lockable = rw_scoped_lockable<Mutex> &&
requires(const typename Mutex::scoped_lock& sl) {
{ sl.is_writer() } -> std::convertible_to<bool>;
};
#endif
template <typename MutexType>
struct hash_map_node_base : no_copy {
using mutex_type = MutexType;
// Scoped lock type for mutex
using scoped_type = typename MutexType::scoped_lock;
// Next node in chain
hash_map_node_base* next;
mutex_type mutex;
};
// Incompleteness flag value
static void* const rehash_req_flag = reinterpret_cast<void*>(std::size_t(3));
// Rehashed empty bucket flag
static void* const empty_rehashed_flag = reinterpret_cast<void*>(std::size_t(0));
template <typename MutexType>
bool rehash_required( hash_map_node_base<MutexType>* node_ptr ) {
return reinterpret_cast<void*>(node_ptr) == rehash_req_flag;
}
#if TBB_USE_ASSERT
template <typename MutexType>
bool empty_rehashed( hash_map_node_base<MutexType>* node_ptr ) {
return reinterpret_cast<void*>(node_ptr) == empty_rehashed_flag;
}
#endif
// base class of concurrent_hash_map
template <typename Allocator, typename MutexType>
class hash_map_base {
public:
using size_type = std::size_t;
using hashcode_type = std::size_t;
using segment_index_type = std::size_t;
using node_base = hash_map_node_base<MutexType>;
struct bucket : no_copy {
using mutex_type = MutexType;
using scoped_type = typename mutex_type::scoped_lock;
bucket() : node_list(nullptr) {}
bucket( node_base* ptr ) : node_list(ptr) {}
mutex_type mutex;
std::atomic<node_base*> node_list;
};
using allocator_type = Allocator;
using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
using bucket_allocator_type = typename allocator_traits_type::template rebind_alloc<bucket>;
using bucket_allocator_traits = tbb::detail::allocator_traits<bucket_allocator_type>;
// Count of segments in the first block
static constexpr size_type embedded_block = 1;
// Count of segments in the first block
static constexpr size_type embedded_buckets = 1 << embedded_block;
// Count of segments in the first block
static constexpr size_type first_block = 8; //including embedded_block. perfect with bucket size 16, so the allocations are power of 4096
// Size of a pointer / table size
static constexpr size_type pointers_per_table = sizeof(segment_index_type) * 8; // one segment per bit
using segment_ptr_type = bucket*;
using atomic_segment_type = std::atomic<segment_ptr_type>;
using segments_table_type = atomic_segment_type[pointers_per_table];
hash_map_base( const allocator_type& alloc ) : my_allocator(alloc), my_mask(embedded_buckets - 1), my_size(0) {
for (size_type i = 0; i != embedded_buckets; ++i) {
my_embedded_segment[i].node_list.store(nullptr, std::memory_order_relaxed);
}
for (size_type segment_index = 0; segment_index < pointers_per_table; ++segment_index) {
auto argument = segment_index < embedded_block ? my_embedded_segment + segment_base(segment_index) : nullptr;
my_table[segment_index].store(argument, std::memory_order_relaxed);
}
__TBB_ASSERT( embedded_block <= first_block, "The first block number must include embedded blocks");
}
// segment index of given index in the array
static segment_index_type segment_index_of( size_type index ) {
return segment_index_type(tbb::detail::log2( index|1 ));
}
// the first array index of given segment
static segment_index_type segment_base( segment_index_type k ) {
return (segment_index_type(1) << k & ~segment_index_type(1));
}
// segment size except for k == 0
static size_type segment_size( segment_index_type k ) {
return size_type(1) << k; // fake value for k==0
}
// true if ptr is valid pointer
static bool is_valid( void* ptr ) {
return reinterpret_cast<uintptr_t>(ptr) > uintptr_t(63);
}
template <typename... Args>
void init_buckets_impl( segment_ptr_type ptr, size_type sz, const Args&... args ) {
for (size_type i = 0; i < sz; ++i) {
bucket_allocator_traits::construct(my_allocator, ptr + i, args...);
}
}
// Initialize buckets
void init_buckets( segment_ptr_type ptr, size_type sz, bool is_initial ) {
if (is_initial) {
init_buckets_impl(ptr, sz);
} else {
init_buckets_impl(ptr, sz, reinterpret_cast<node_base*>(rehash_req_flag));
}
}
// Add node n to bucket b
static void add_to_bucket( bucket* b, node_base* n ) {
__TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), nullptr);
n->next = b->node_list.load(std::memory_order_relaxed);
b->node_list.store(n, std::memory_order_relaxed); // its under lock and flag is set
}
const bucket_allocator_type& get_allocator() const {
return my_allocator;
}
bucket_allocator_type& get_allocator() {
return my_allocator;
}
// Enable segment
void enable_segment( segment_index_type k, bool is_initial = false ) {
__TBB_ASSERT( k, "Zero segment must be embedded" );
size_type sz;
__TBB_ASSERT( !is_valid(my_table[k].load(std::memory_order_relaxed)), "Wrong concurrent assignment");
if (k >= first_block) {
sz = segment_size(k);
segment_ptr_type ptr = nullptr;
try_call( [&] {
ptr = bucket_allocator_traits::allocate(my_allocator, sz);
} ).on_exception( [&] {
my_table[k].store(nullptr, std::memory_order_relaxed);
});
__TBB_ASSERT(ptr, nullptr);
init_buckets(ptr, sz, is_initial);
my_table[k].store(ptr, std::memory_order_release);
sz <<= 1;// double it to get entire capacity of the container
} else { // the first block
__TBB_ASSERT( k == embedded_block, "Wrong segment index" );
sz = segment_size(first_block);
segment_ptr_type ptr = nullptr;
try_call( [&] {
ptr = bucket_allocator_traits::allocate(my_allocator, sz - embedded_buckets);
} ).on_exception( [&] {
my_table[k].store(nullptr, std::memory_order_relaxed);
});
__TBB_ASSERT(ptr, nullptr);
init_buckets(ptr, sz - embedded_buckets, is_initial);
ptr -= segment_base(embedded_block);
for(segment_index_type i = embedded_block; i < first_block; i++) // calc the offsets
my_table[i].store(ptr + segment_base(i), std::memory_order_release);
}
my_mask.store(sz-1, std::memory_order_release);
}
void delete_segment( segment_index_type s ) {
segment_ptr_type buckets_ptr = my_table[s].load(std::memory_order_relaxed);
size_type sz = segment_size( s ? s : 1 );
size_type deallocate_size = 0;
if (s >= first_block) { // the first segment or the next
deallocate_size = sz;
} else if (s == embedded_block && embedded_block != first_block) {
deallocate_size = segment_size(first_block) - embedded_buckets;
}
for (size_type i = 0; i < deallocate_size; ++i) {
bucket_allocator_traits::destroy(my_allocator, buckets_ptr + i);
}
if (deallocate_size != 0) {
bucket_allocator_traits::deallocate(my_allocator, buckets_ptr, deallocate_size);
}
if (s >= embedded_block) my_table[s].store(nullptr, std::memory_order_relaxed);
}
// Get bucket by (masked) hashcode
bucket *get_bucket( hashcode_type h ) const noexcept {
segment_index_type s = segment_index_of( h );
h -= segment_base(s);
segment_ptr_type seg = my_table[s].load(std::memory_order_acquire);
__TBB_ASSERT( is_valid(seg), "hashcode must be cut by valid mask for allocated segments" );
return &seg[h];
}
// detail serial rehashing helper
void mark_rehashed_levels( hashcode_type h ) noexcept {
segment_index_type s = segment_index_of( h );
while (segment_ptr_type seg = my_table[++s].load(std::memory_order_relaxed))
if (rehash_required(seg[h].node_list.load(std::memory_order_relaxed))) {
seg[h].node_list.store(reinterpret_cast<node_base*>(empty_rehashed_flag), std::memory_order_relaxed);
mark_rehashed_levels( h + ((hashcode_type)1<<s) ); // optimized segment_base(s)
}
}
// Check for mask race
// Splitting into two functions should help inlining
inline bool check_mask_race( const hashcode_type h, hashcode_type &m ) const {
hashcode_type m_now, m_old = m;
m_now = my_mask.load(std::memory_order_acquire);
if (m_old != m_now) {
return check_rehashing_collision(h, m_old, m = m_now);
}
return false;
}
// Process mask race, check for rehashing collision
bool check_rehashing_collision( const hashcode_type h, hashcode_type m_old, hashcode_type m ) const {
__TBB_ASSERT(m_old != m, nullptr); // TODO?: m arg could be optimized out by passing h = h&m
if( (h & m_old) != (h & m) ) { // mask changed for this hashcode, rare event
// condition above proves that 'h' has some other bits set beside 'm_old'
// find next applicable mask after m_old //TODO: look at bsl instruction
for( ++m_old; !(h & m_old); m_old <<= 1 ) // at maximum few rounds depending on the first block size
;
m_old = (m_old<<1) - 1; // get full mask from a bit
__TBB_ASSERT((m_old&(m_old+1))==0 && m_old <= m, nullptr);
// check whether it is rehashing/ed
if (!rehash_required(get_bucket(h & m_old)->node_list.load(std::memory_order_acquire))) {
return true;
}
}
return false;
}
// Insert a node and check for load factor. @return segment index to enable.
segment_index_type insert_new_node( bucket *b, node_base *n, hashcode_type mask ) {
size_type sz = ++my_size; // prefix form is to enforce allocation after the first item inserted
add_to_bucket( b, n );
// check load factor
if( sz >= mask ) { // TODO: add custom load_factor
segment_index_type new_seg = tbb::detail::log2( mask+1 ); //optimized segment_index_of
__TBB_ASSERT( is_valid(my_table[new_seg-1].load(std::memory_order_relaxed)), "new allocations must not publish new mask until segment has allocated");
static const segment_ptr_type is_allocating = segment_ptr_type(2);
segment_ptr_type disabled = nullptr;
if (!(my_table[new_seg].load(std::memory_order_acquire))
&& my_table[new_seg].compare_exchange_strong(disabled, is_allocating))
return new_seg; // The value must be processed
}
return 0;
}
// Prepare enough segments for number of buckets
void reserve(size_type buckets) {
if( !buckets-- ) return;
bool is_initial = !my_size.load(std::memory_order_relaxed);
for (size_type m = my_mask.load(std::memory_order_relaxed); buckets > m;
m = my_mask.load(std::memory_order_relaxed))
{
enable_segment( segment_index_of( m+1 ), is_initial );
}
}
// Swap hash_map_bases
void internal_swap_content(hash_map_base &table) {
using std::swap;
swap_atomics_relaxed(my_mask, table.my_mask);
swap_atomics_relaxed(my_size, table.my_size);
for(size_type i = 0; i < embedded_buckets; i++) {
auto temp = my_embedded_segment[i].node_list.load(std::memory_order_relaxed);
my_embedded_segment[i].node_list.store(table.my_embedded_segment[i].node_list.load(std::memory_order_relaxed),
std::memory_order_relaxed);
table.my_embedded_segment[i].node_list.store(temp, std::memory_order_relaxed);
}
for(size_type i = embedded_block; i < pointers_per_table; i++) {
auto temp = my_table[i].load(std::memory_order_relaxed);
my_table[i].store(table.my_table[i].load(std::memory_order_relaxed),
std::memory_order_relaxed);
table.my_table[i].store(temp, std::memory_order_relaxed);
}
}
void internal_move(hash_map_base&& other) {
my_mask.store(other.my_mask.load(std::memory_order_relaxed), std::memory_order_relaxed);
other.my_mask.store(embedded_buckets - 1, std::memory_order_relaxed);
my_size.store(other.my_size.load(std::memory_order_relaxed), std::memory_order_relaxed);
other.my_size.store(0, std::memory_order_relaxed);
for (size_type i = 0; i < embedded_buckets; ++i) {
my_embedded_segment[i].node_list.store(other.my_embedded_segment[i].node_list, std::memory_order_relaxed);
other.my_embedded_segment[i].node_list.store(nullptr, std::memory_order_relaxed);
}
for (size_type i = embedded_block; i < pointers_per_table; ++i) {
my_table[i].store(other.my_table[i].load(std::memory_order_relaxed),
std::memory_order_relaxed);
other.my_table[i].store(nullptr, std::memory_order_relaxed);
}
}
protected:
bucket_allocator_type my_allocator;
// Hash mask = sum of allocated segment sizes - 1
std::atomic<hashcode_type> my_mask;
// Size of container in stored items
std::atomic<size_type> my_size; // It must be in separate cache line from my_mask due to performance effects
// Zero segment
bucket my_embedded_segment[embedded_buckets];
// Segment pointers table. Also prevents false sharing between my_mask and my_size
segments_table_type my_table;
};
template <typename Iterator>
class hash_map_range;
// Meets requirements of a forward iterator for STL
// Value is either the T or const T type of the container.
template <typename Container, typename Value>
class hash_map_iterator {
using map_type = Container;
using node = typename Container::node;
using map_base = typename Container::base_type;
using node_base = typename map_base::node_base;
using bucket = typename map_base::bucket;
public:
using value_type = Value;
using size_type = typename Container::size_type;
using difference_type = typename Container::difference_type;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = std::forward_iterator_tag;
// Construct undefined iterator
hash_map_iterator(): my_map(), my_index(), my_bucket(), my_node() {}
hash_map_iterator( const hash_map_iterator<Container, typename Container::value_type>& other ) :
my_map(other.my_map),
my_index(other.my_index),
my_bucket(other.my_bucket),
my_node(other.my_node)
{}
hash_map_iterator& operator=( const hash_map_iterator<Container, typename Container::value_type>& other ) {
my_map = other.my_map;
my_index = other.my_index;
my_bucket = other.my_bucket;
my_node = other.my_node;
return *this;
}
Value& operator*() const {
__TBB_ASSERT( map_base::is_valid(my_node), "iterator uninitialized or at end of container?" );
return my_node->value();
}
Value* operator->() const {return &operator*();}
hash_map_iterator& operator++() {
my_node = static_cast<node*>( my_node->next );
if( !my_node ) advance_to_next_bucket();
return *this;
}
// Post increment
hash_map_iterator operator++(int) {
hash_map_iterator old(*this);
operator++();
return old;
}
private:
template <typename C, typename T, typename U>
friend bool operator==( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template <typename C, typename T, typename U>
friend bool operator!=( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template <typename C, typename T, typename U>
friend ptrdiff_t operator-( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );
template <typename C, typename U>
friend class hash_map_iterator;
template <typename I>
friend class hash_map_range;
void advance_to_next_bucket() { // TODO?: refactor to iterator_base class
size_t k = my_index+1;
__TBB_ASSERT( my_bucket, "advancing an invalid iterator?");
while (k <= my_map->my_mask.load(std::memory_order_relaxed)) {
// Following test uses 2's-complement wizardry
if( k&(k-2) ) // not the beginning of a segment
++my_bucket;
else my_bucket = my_map->get_bucket( k );
node_base *n = my_bucket->node_list.load(std::memory_order_relaxed);
if( map_base::is_valid(n) ) {
my_node = static_cast<node*>(n);
my_index = k;
return;
}
++k;
}
my_bucket = nullptr; my_node = nullptr; my_index = k; // the end
}
template <typename Key, typename T, typename HashCompare, typename A
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
, typename M
>
__TBB_requires(tbb::detail::hash_compare<HashCompare, Key> &&
ch_map_rw_scoped_lockable<M>)
#else
>
__TBB_requires(tbb::detail::hash_compare<HashCompare, Key>)
#endif
friend class concurrent_hash_map;
hash_map_iterator( const Container &map, std::size_t index, const bucket *b, node_base *n ) :
my_map(&map), my_index(index), my_bucket(b), my_node(nullptr)
{
// Cannot directly initialize to n, because it could be an invalid node pointer (e.g., when
// setting a midpoint for a 1-element range). If it is, try one from a subsequent bucket.
if( map_base::is_valid(n) )
my_node = static_cast<node*>(n);
else if( b )
advance_to_next_bucket();
}
// concurrent_hash_map over which we are iterating.
const Container *my_map;
// Index in hash table for current item
size_t my_index;
// Pointer to bucket
const bucket* my_bucket;
// Pointer to node that has current item
node* my_node;
};
template <typename Container, typename T, typename U>
bool operator==( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
return i.my_node == j.my_node && i.my_map == j.my_map;
}
template <typename Container, typename T, typename U>
bool operator!=( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
return i.my_node != j.my_node || i.my_map != j.my_map;
}
// Range class used with concurrent_hash_map
template <typename Iterator>
class hash_map_range {
using map_type = typename Iterator::map_type;
public:
// Type for size of a range
using size_type = std::size_t;
using value_type = typename Iterator::value_type;
using reference = typename Iterator::reference;
using difference_type = typename Iterator::difference_type;
using iterator = Iterator;
// True if range is empty.
bool empty() const { return my_begin == my_end; }
// True if range can be partitioned into two subranges.
bool is_divisible() const {
return my_midpoint != my_end;
}
// Split range.
hash_map_range( hash_map_range& r, split ) :
my_end(r.my_end),
my_grainsize(r.my_grainsize)
{
r.my_end = my_begin = r.my_midpoint;
__TBB_ASSERT( !empty(), "Splitting despite the range is not divisible" );
__TBB_ASSERT( !r.empty(), "Splitting despite the range is not divisible" );
set_midpoint();
r.set_midpoint();
}
// Init range with container and grainsize specified
hash_map_range( const map_type &map, size_type grainsize_ = 1 ) :
my_begin( Iterator( map, 0, map.my_embedded_segment, map.my_embedded_segment->node_list.load(std::memory_order_relaxed) ) ),
my_end( Iterator( map, map.my_mask.load(std::memory_order_relaxed) + 1, nullptr, nullptr ) ),
my_grainsize( grainsize_ )
{
__TBB_ASSERT( grainsize_>0, "grainsize must be positive" );
set_midpoint();
}
Iterator begin() const { return my_begin; }
Iterator end() const { return my_end; }
// The grain size for this range.
size_type grainsize() const { return my_grainsize; }
private:
Iterator my_begin;
Iterator my_end;
mutable Iterator my_midpoint;
size_t my_grainsize;
// Set my_midpoint to point approximately half way between my_begin and my_end.
void set_midpoint() const;
template <typename U> friend class hash_map_range;
};
template <typename Iterator>
void hash_map_range<Iterator>::set_midpoint() const {
// Split by groups of nodes
size_t m = my_end.my_index-my_begin.my_index;
if( m > my_grainsize ) {
m = my_begin.my_index + m/2u;
auto b = my_begin.my_map->get_bucket(m);
my_midpoint = Iterator(*my_begin.my_map,m,b,b->node_list.load(std::memory_order_relaxed));
} else {
my_midpoint = my_end;
}
__TBB_ASSERT( my_begin.my_index <= my_midpoint.my_index,
"my_begin is after my_midpoint" );
__TBB_ASSERT( my_midpoint.my_index <= my_end.my_index,
"my_midpoint is after my_end" );
__TBB_ASSERT( my_begin != my_midpoint || my_begin == my_end,
"[my_begin, my_midpoint) range should not be empty" );
}
template <typename Key, typename T,
typename HashCompare = d1::tbb_hash_compare<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
, typename MutexType = spin_rw_mutex
>
__TBB_requires(tbb::detail::hash_compare<HashCompare, Key> &&
ch_map_rw_scoped_lockable<MutexType>)
#else
>
__TBB_requires(tbb::detail::hash_compare<HashCompare, Key>)
#endif
class concurrent_hash_map
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
: protected hash_map_base<Allocator, MutexType>
#else
: protected hash_map_base<Allocator, spin_rw_mutex>
#endif
{
template <typename Container, typename Value>
friend class hash_map_iterator;
template <typename I>
friend class hash_map_range;
using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
using base_type = hash_map_base<Allocator, MutexType>;
#else
using base_type = hash_map_base<Allocator, spin_rw_mutex>;
#endif
public:
using key_type = Key;
using mapped_type = T;
// type_identity is needed to disable implicit deduction guides for std::initializer_list constructors
// and copy/move constructor with explicit allocator argument
using allocator_type = tbb::detail::type_identity_t<Allocator>;
using hash_compare_type = tbb::detail::type_identity_t<HashCompare>;
using value_type = std::pair<const Key, T>;
using size_type = typename base_type::size_type;
using difference_type = std::ptrdiff_t;
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
using mutex_type = MutexType;
#endif
using pointer = typename allocator_traits_type::pointer;
using const_pointer = typename allocator_traits_type::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = hash_map_iterator<concurrent_hash_map, value_type>;
using const_iterator = hash_map_iterator<concurrent_hash_map, const value_type>;
using range_type = hash_map_range<iterator>;
using const_range_type = hash_map_range<const_iterator>;
protected:
static_assert(std::is_same<value_type, typename Allocator::value_type>::value,
"value_type of the container must be the same as its allocator's");
friend class const_accessor;
class node;
using segment_index_type = typename base_type::segment_index_type;
using segment_ptr_type = typename base_type::segment_ptr_type;
using node_base = typename base_type::node_base;
using bucket = typename base_type::bucket;
using hashcode_type = typename base_type::hashcode_type;
using bucket_allocator_type = typename base_type::bucket_allocator_type;
using node_allocator_type = typename base_type::allocator_traits_type::template rebind_alloc<node>;
using node_allocator_traits = tbb::detail::allocator_traits<node_allocator_type>;
hash_compare_type my_hash_compare;
class node : public node_base {
public:
node() {}
~node() {}
pointer storage() { return &my_value; }
value_type& value() { return *storage(); }
private:
union {
value_type my_value;
};
};
void delete_node( node_base *n ) {
node_allocator_type node_allocator(this->get_allocator());
node_allocator_traits::destroy(node_allocator, static_cast<node*>(n)->storage());
node_allocator_traits::destroy(node_allocator, static_cast<node*>(n));
node_allocator_traits::deallocate(node_allocator, static_cast<node*>(n), 1);
}
template <typename... Args>
static node* create_node(bucket_allocator_type& allocator, Args&&... args) {
node_allocator_type node_allocator(allocator);
node* node_ptr = node_allocator_traits::allocate(node_allocator, 1);
auto guard = make_raii_guard([&] {
node_allocator_traits::destroy(node_allocator, node_ptr);
node_allocator_traits::deallocate(node_allocator, node_ptr, 1);
});
node_allocator_traits::construct(node_allocator, node_ptr);
node_allocator_traits::construct(node_allocator, node_ptr->storage(), std::forward<Args>(args)...);
guard.dismiss();
return node_ptr;
}
static node* allocate_node_copy_construct(bucket_allocator_type& allocator, const Key &key, const T * t){
return create_node(allocator, key, *t);
}
static node* allocate_node_move_construct(bucket_allocator_type& allocator, const Key &key, const T * t){
return create_node(allocator, key, std::move(*const_cast<T*>(t)));
}
template <typename K = Key>
static node* allocate_node_default_construct(bucket_allocator_type& allocator, const K &key, const T * ){
// Emplace construct an empty T object inside the pair
return create_node(allocator, std::piecewise_construct,
std::forward_as_tuple(key), std::forward_as_tuple());
}
static node* do_not_allocate_node(bucket_allocator_type& , const Key &, const T * ){
__TBB_ASSERT(false,"this dummy function should not be called");
return nullptr;
}
template <typename K>
node *search_bucket( const K &key, bucket *b ) const {
node *n = static_cast<node*>( b->node_list.load(std::memory_order_relaxed) );
while (this->is_valid(n) && !my_hash_compare.equal(key, n->value().first))
n = static_cast<node*>( n->next );
__TBB_ASSERT(!rehash_required(n), "Search can be executed only for rehashed bucket");
return n;
}
// bucket accessor is to find, rehash, acquire a lock, and access a bucket
class bucket_accessor : public bucket::scoped_type {
bucket *my_b;
public:
bucket_accessor( concurrent_hash_map *base, const hashcode_type h, bool writer = false ) { acquire( base, h, writer ); }
// find a bucket by masked hashcode, optionally rehash, and acquire the lock
inline void acquire( concurrent_hash_map *base, const hashcode_type h, bool writer = false ) {
my_b = base->get_bucket( h );
// TODO: actually, notification is unnecessary here, just hiding double-check
if (rehash_required(my_b->node_list.load(std::memory_order_acquire))
&& bucket::scoped_type::try_acquire( my_b->mutex, /*write=*/true ) )
{
if (rehash_required(my_b->node_list.load(std::memory_order_relaxed))) base->rehash_bucket(my_b, h); // recursive rehashing
}
else bucket::scoped_type::acquire( my_b->mutex, writer );
__TBB_ASSERT(!rehash_required(my_b->node_list.load(std::memory_order_relaxed)), nullptr);
}
// get bucket pointer
bucket *operator() () { return my_b; }
};
// TODO refactor to hash_base
void rehash_bucket( bucket *b_new, const hashcode_type hash ) {
__TBB_ASSERT( hash > 1, "The lowermost buckets can't be rehashed" );
b_new->node_list.store(reinterpret_cast<node_base*>(empty_rehashed_flag), std::memory_order_release); // mark rehashed
hashcode_type mask = (hashcode_type(1) << tbb::detail::log2(hash)) - 1; // get parent mask from the topmost bit
bucket_accessor b_old( this, hash & mask );
mask = (mask<<1) | 1; // get full mask for new bucket
__TBB_ASSERT( (mask&(mask+1))==0 && (hash & mask) == hash, nullptr );
restart:
node_base* prev = nullptr;
node_base* curr = b_old()->node_list.load(std::memory_order_acquire);
while (this->is_valid(curr)) {
hashcode_type curr_node_hash = my_hash_compare.hash(static_cast<node*>(curr)->value().first);
if ((curr_node_hash & mask) == hash) {
if (!b_old.is_writer()) {
if (!b_old.upgrade_to_writer()) {
goto restart; // node ptr can be invalid due to concurrent erase
}
}
node_base* next = curr->next;
// exclude from b_old
if (prev == nullptr) {
b_old()->node_list.store(curr->next, std::memory_order_relaxed);
} else {
prev->next = curr->next;
}
this->add_to_bucket(b_new, curr);
curr = next;
} else {
prev = curr;
curr = curr->next;
}
}
}
template <typename U>
using hash_compare_is_transparent = dependent_bool<comp_is_transparent<hash_compare_type>, U>;
public:
class accessor;
// Combines data access, locking, and garbage collection.
class const_accessor : private node::scoped_type /*which derived from no_copy*/ {
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
friend class concurrent_hash_map<Key,T,HashCompare,Allocator,MutexType>;
#else
friend class concurrent_hash_map<Key,T,HashCompare,Allocator>;
#endif
friend class accessor;
public:
// Type of value
using value_type = const typename concurrent_hash_map::value_type;
// True if result is empty.
bool empty() const { return !my_node; }
// Set to null
void release() {
if( my_node ) {
node::scoped_type::release();
my_node = nullptr;
}
}
// Return reference to associated value in hash table.
const_reference operator*() const {
__TBB_ASSERT( my_node, "attempt to dereference empty accessor" );
return my_node->value();
}
// Return pointer to associated value in hash table.
const_pointer operator->() const {
return &operator*();
}
// Create empty result
const_accessor() : my_node(nullptr), my_hash() {}
// Destroy result after releasing the underlying reference.
~const_accessor() {
my_node = nullptr; // scoped lock's release() is called in its destructor
}
protected:
bool is_writer() { return node::scoped_type::is_writer(); }
node *my_node;
hashcode_type my_hash;
};
// Allows write access to elements and combines data access, locking, and garbage collection.
class accessor: public const_accessor {
public:
// Type of value
using value_type = typename concurrent_hash_map::value_type;
// Return reference to associated value in hash table.
reference operator*() const {
__TBB_ASSERT( this->my_node, "attempt to dereference empty accessor" );
return this->my_node->value();
}
// Return pointer to associated value in hash table.
pointer operator->() const {
return &operator*();
}
};
explicit concurrent_hash_map( const hash_compare_type& compare, const allocator_type& a = allocator_type() )
: base_type(a)
, my_hash_compare(compare)
{}
concurrent_hash_map() : concurrent_hash_map(hash_compare_type()) {}
explicit concurrent_hash_map( const allocator_type& a )
: concurrent_hash_map(hash_compare_type(), a)
{}
// Construct empty table with n preallocated buckets. This number serves also as initial concurrency level.
concurrent_hash_map( size_type n, const allocator_type &a = allocator_type() )
: concurrent_hash_map(a)
{
this->reserve(n);
}
concurrent_hash_map( size_type n, const hash_compare_type& compare, const allocator_type& a = allocator_type() )
: concurrent_hash_map(compare, a)
{
this->reserve(n);
}
// Copy constructor
concurrent_hash_map( const concurrent_hash_map &table )
: concurrent_hash_map(node_allocator_traits::select_on_container_copy_construction(table.get_allocator()))
{
try_call( [&] {
internal_copy(table);
}).on_exception( [&] {
this->clear();
});
}
concurrent_hash_map( const concurrent_hash_map &table, const allocator_type &a)
: concurrent_hash_map(a)
{
try_call( [&] {
internal_copy(table);
}).on_exception( [&] {
this->clear();
});
}
// Move constructor
concurrent_hash_map( concurrent_hash_map &&table )
: concurrent_hash_map(std::move(table.get_allocator()))
{
this->internal_move(std::move(table));
}
// Move constructor
concurrent_hash_map( concurrent_hash_map &&table, const allocator_type &a )
: concurrent_hash_map(a)
{
using is_equal_type = typename node_allocator_traits::is_always_equal;
internal_move_construct_with_allocator(std::move(table), a, is_equal_type());
}
// Construction with copying iteration range and given allocator instance
template <typename I>
concurrent_hash_map( I first, I last, const allocator_type &a = allocator_type() )
: concurrent_hash_map(a)
{
try_call( [&] {
internal_copy(first, last, std::distance(first, last));
}).on_exception( [&] {
this->clear();
});
}
template <typename I>
concurrent_hash_map( I first, I last, const hash_compare_type& compare, const allocator_type& a = allocator_type() )
: concurrent_hash_map(compare, a)
{
try_call( [&] {
internal_copy(first, last, std::distance(first, last));
}).on_exception( [&] {
this->clear();
});
}
concurrent_hash_map( std::initializer_list<value_type> il, const hash_compare_type& compare = hash_compare_type(), const allocator_type& a = allocator_type() )
: concurrent_hash_map(compare, a)
{
try_call( [&] {
internal_copy(il.begin(), il.end(), il.size());
}).on_exception( [&] {
this->clear();
});
}
concurrent_hash_map( std::initializer_list<value_type> il, const allocator_type& a )
: concurrent_hash_map(il, hash_compare_type(), a) {}
// Assignment
concurrent_hash_map& operator=( const concurrent_hash_map &table ) {
if( this != &table ) {
clear();
copy_assign_allocators(this->my_allocator, table.my_allocator);
internal_copy(table);
}
return *this;
}
// Move Assignment
concurrent_hash_map& operator=( concurrent_hash_map &&table ) {
if( this != &table ) {
using pocma_type = typename node_allocator_traits::propagate_on_container_move_assignment;
using is_equal_type = typename node_allocator_traits::is_always_equal;
move_assign_allocators(this->my_allocator, table.my_allocator);
internal_move_assign(std::move(table), tbb::detail::disjunction<is_equal_type, pocma_type>());
}
return *this;
}
// Assignment
concurrent_hash_map& operator=( std::initializer_list<value_type> il ) {
clear();
internal_copy(il.begin(), il.end(), il.size());
return *this;
}
// Rehashes and optionally resizes the whole table.
/** Useful to optimize performance before or after concurrent operations.
Also enables using of find() and count() concurrent methods in serial context. */
void rehash(size_type sz = 0) {
this->reserve(sz); // TODO: add reduction of number of buckets as well
hashcode_type mask = this->my_mask.load(std::memory_order_relaxed);
hashcode_type b = (mask+1)>>1; // size or first index of the last segment
__TBB_ASSERT((b&(b-1))==0, nullptr); // zero or power of 2
bucket *bp = this->get_bucket( b ); // only the last segment should be scanned for rehashing
for(; b <= mask; b++, bp++ ) {
node_base *n = bp->node_list.load(std::memory_order_relaxed);
__TBB_ASSERT( this->is_valid(n) || empty_rehashed(n) || rehash_required(n), "Broken internal structure" );
__TBB_ASSERT( *reinterpret_cast<intptr_t*>(&bp->mutex) == 0, "concurrent or unexpectedly terminated operation during rehash() execution" );
if (rehash_required(n)) { // rehash bucket, conditional because rehashing of a previous bucket may affect this one
hashcode_type h = b; bucket *b_old = bp;
do {
__TBB_ASSERT( h > 1, "The lowermost buckets can't be rehashed" );
hashcode_type m = ( hashcode_type(1) << tbb::detail::log2( h ) ) - 1; // get parent mask from the topmost bit
b_old = this->get_bucket( h &= m );
} while( rehash_required(b_old->node_list.load(std::memory_order_relaxed)) );
// now h - is index of the root rehashed bucket b_old
this->mark_rehashed_levels( h ); // mark all non-rehashed children recursively across all segments
node_base* prev = nullptr;
node_base* curr = b_old->node_list.load(std::memory_order_relaxed);
while (this->is_valid(curr)) {
hashcode_type curr_node_hash = my_hash_compare.hash(static_cast<node*>(curr)->value().first);
if ((curr_node_hash & mask) != h) { // should be rehashed
node_base* next = curr->next;
// exclude from b_old
if (prev == nullptr) {
b_old->node_list.store(curr->next, std::memory_order_relaxed);
} else {
prev->next = curr->next;
}
bucket *b_new = this->get_bucket(curr_node_hash & mask);
__TBB_ASSERT(!rehash_required(b_new->node_list.load(std::memory_order_relaxed)), "hash() function changed for key in table or internal error");
this->add_to_bucket(b_new, curr);
curr = next;
} else {
prev = curr;
curr = curr->next;
}
}
}
}
}
// Clear table
void clear() {
hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
__TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
this->my_size.store(0, std::memory_order_relaxed);
segment_index_type s = this->segment_index_of( m ) + 1;
__TBB_ASSERT( s == this->pointers_per_table || !this->my_table[s].load(std::memory_order_relaxed), "wrong mask or concurrent grow" );
while(s != 0) {
s--;
__TBB_ASSERT(this->is_valid(this->my_table[s].load(std::memory_order_relaxed)), "wrong mask or concurrent grow" );
segment_ptr_type buckets_ptr = this->my_table[s].load(std::memory_order_relaxed);
size_type sz = this->segment_size( s ? s : 1 );
for( segment_index_type i = 0; i < sz; i++ )
for( node_base *n = buckets_ptr[i].node_list.load(std::memory_order_relaxed);
this->is_valid(n); n = buckets_ptr[i].node_list.load(std::memory_order_relaxed) )
{
buckets_ptr[i].node_list.store(n->next, std::memory_order_relaxed);
delete_node( n );
}
this->delete_segment(s);
}
this->my_mask.store(this->embedded_buckets - 1, std::memory_order_relaxed);
}
// Clear table and destroy it.
~concurrent_hash_map() { clear(); }
//------------------------------------------------------------------------
// Parallel algorithm support
//------------------------------------------------------------------------
range_type range( size_type grainsize=1 ) {
return range_type( *this, grainsize );
}
const_range_type range( size_type grainsize=1 ) const {
return const_range_type( *this, grainsize );
}
//------------------------------------------------------------------------
// STL support - not thread-safe methods
//------------------------------------------------------------------------
iterator begin() { return iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
const_iterator begin() const { return const_iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
const_iterator cbegin() const { return const_iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
iterator end() { return iterator( *this, 0, nullptr, nullptr ); }
const_iterator end() const { return const_iterator( *this, 0, nullptr, nullptr ); }
const_iterator cend() const { return const_iterator( *this, 0, nullptr, nullptr ); }
std::pair<iterator, iterator> equal_range( const Key& key ) { return internal_equal_range( key, end() ); }
std::pair<const_iterator, const_iterator> equal_range( const Key& key ) const { return internal_equal_range( key, end() ); }
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
std::pair<iterator, iterator>>::type equal_range( const K& key ) {
return internal_equal_range(key, end());
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
std::pair<const_iterator, const_iterator>>::type equal_range( const K& key ) const {
return internal_equal_range(key, end());
}
// Number of items in table.
size_type size() const { return this->my_size.load(std::memory_order_acquire); }
// True if size()==0.
__TBB_nodiscard bool empty() const { return size() == 0; }
// Upper bound on size.
size_type max_size() const {
return allocator_traits_type::max_size(base_type::get_allocator());
}
// Returns the current number of buckets
size_type bucket_count() const { return this->my_mask.load(std::memory_order_relaxed) + 1; }
// return allocator object
allocator_type get_allocator() const { return base_type::get_allocator(); }
// swap two instances. Iterators are invalidated
void swap(concurrent_hash_map& table) {
using pocs_type = typename node_allocator_traits::propagate_on_container_swap;
using is_equal_type = typename node_allocator_traits::is_always_equal;
swap_allocators(this->my_allocator, table.my_allocator);
internal_swap(table, tbb::detail::disjunction<pocs_type, is_equal_type>());
}
//------------------------------------------------------------------------
// concurrent map operations
//------------------------------------------------------------------------
// Return count of items (0 or 1)
size_type count( const Key &key ) const {
return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, nullptr, /*write=*/false, &do_not_allocate_node);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
size_type>::type count( const K& key ) const {
return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, nullptr, /*write=*/false, &do_not_allocate_node);
}
// Find item and acquire a read lock on the item.
/** Return true if item is found, false otherwise. */
bool find( const_accessor &result, const Key &key ) const {
result.release();
return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, &result, /*write=*/false, &do_not_allocate_node );
}
// Find item and acquire a write lock on the item.
/** Return true if item is found, false otherwise. */
bool find( accessor &result, const Key &key ) {
result.release();
return lookup</*insert*/false>(key, nullptr, &result, /*write=*/true, &do_not_allocate_node);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
bool>::type find( const_accessor& result, const K& key ) {
result.release();
return lookup</*insert*/false>(key, nullptr, &result, /*write=*/false, &do_not_allocate_node);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
bool>::type find( accessor& result, const K& key ) {
result.release();
return lookup</*insert*/false>(key, nullptr, &result, /*write=*/true, &do_not_allocate_node);
}
// Insert item (if not already present) and acquire a read lock on the item.
/** Returns true if item is new. */
bool insert( const_accessor &result, const Key &key ) {
result.release();
return lookup</*insert*/true>(key, nullptr, &result, /*write=*/false, &allocate_node_default_construct<>);
}
// Insert item (if not already present) and acquire a write lock on the item.
/** Returns true if item is new. */
bool insert( accessor &result, const Key &key ) {
result.release();
return lookup</*insert*/true>(key, nullptr, &result, /*write=*/true, &allocate_node_default_construct<>);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value &&
std::is_constructible<key_type, const K&>::value,
bool>::type insert( const_accessor& result, const K& key ) {
result.release();
return lookup</*insert*/true>(key, nullptr, &result, /*write=*/false, &allocate_node_default_construct<K>);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value &&
std::is_constructible<key_type, const K&>::value,
bool>::type insert( accessor& result, const K& key ) {
result.release();
return lookup</*insert*/true>(key, nullptr, &result, /*write=*/true, &allocate_node_default_construct<K>);
}
// Insert item by copying if there is no such key present already and acquire a read lock on the item.
/** Returns true if item is new. */
bool insert( const_accessor &result, const value_type &value ) {
result.release();
return lookup</*insert*/true>(value.first, &value.second, &result, /*write=*/false, &allocate_node_copy_construct);
}
// Insert item by copying if there is no such key present already and acquire a write lock on the item.
/** Returns true if item is new. */
bool insert( accessor &result, const value_type &value ) {
result.release();
return lookup</*insert*/true>(value.first, &value.second, &result, /*write=*/true, &allocate_node_copy_construct);
}
// Insert item by copying if there is no such key present already
/** Returns true if item is inserted. */
bool insert( const value_type &value ) {
return lookup</*insert*/true>(value.first, &value.second, nullptr, /*write=*/false, &allocate_node_copy_construct);
}
// Insert item by copying if there is no such key present already and acquire a read lock on the item.
/** Returns true if item is new. */
bool insert( const_accessor &result, value_type && value ) {
return generic_move_insert(result, std::move(value));
}
// Insert item by copying if there is no such key present already and acquire a write lock on the item.
/** Returns true if item is new. */
bool insert( accessor &result, value_type && value ) {
return generic_move_insert(result, std::move(value));
}
// Insert item by copying if there is no such key present already
/** Returns true if item is inserted. */
bool insert( value_type && value ) {
return generic_move_insert(accessor_not_used(), std::move(value));
}
// Insert item by copying if there is no such key present already and acquire a read lock on the item.
/** Returns true if item is new. */
template <typename... Args>
bool emplace( const_accessor &result, Args&&... args ) {
return generic_emplace(result, std::forward<Args>(args)...);
}
// Insert item by copying if there is no such key present already and acquire a write lock on the item.
/** Returns true if item is new. */
template <typename... Args>
bool emplace( accessor &result, Args&&... args ) {
return generic_emplace(result, std::forward<Args>(args)...);
}
// Insert item by copying if there is no such key present already
/** Returns true if item is inserted. */
template <typename... Args>
bool emplace( Args&&... args ) {
return generic_emplace(accessor_not_used(), std::forward<Args>(args)...);
}
// Insert range [first, last)
template <typename I>
void insert( I first, I last ) {
for ( ; first != last; ++first )
insert( *first );
}
// Insert initializer list
void insert( std::initializer_list<value_type> il ) {
insert( il.begin(), il.end() );
}
// Erase item.
/** Return true if item was erased by particularly this call. */
bool erase( const Key &key ) {
return internal_erase(key);
}
template <typename K>
typename std::enable_if<hash_compare_is_transparent<K>::value,
bool>::type erase( const K& key ) {
return internal_erase(key);
}
// Erase item by const_accessor.
/** Return true if item was erased by particularly this call. */
bool erase( const_accessor& item_accessor ) {
return exclude( item_accessor );
}
// Erase item by accessor.
/** Return true if item was erased by particularly this call. */
bool erase( accessor& item_accessor ) {
return exclude( item_accessor );
}
protected:
template <typename K, typename AllocateNodeType>
node* allocate_node_helper( const K& key, const T* t, AllocateNodeType allocate_node, std::true_type ) {
return allocate_node(base_type::get_allocator(), key, t);
}
template <typename K, typename AllocateNodeType>
node* allocate_node_helper( const K&, const T*, AllocateNodeType, std::false_type ) {
__TBB_ASSERT(false, "allocate_node_helper with std::false_type should never been called");
return nullptr;
}
// Insert or find item and optionally acquire a lock on the item.
template <bool OpInsert, typename K, typename AllocateNodeType>
bool lookup( const K &key, const T *t, const_accessor *result, bool write, AllocateNodeType allocate_node, node *tmp_n = nullptr)
{
__TBB_ASSERT( !result || !result->my_node, nullptr );
bool return_value;
hashcode_type const h = my_hash_compare.hash( key );
hashcode_type m = this->my_mask.load(std::memory_order_acquire);
segment_index_type grow_segment = 0;
node *n;
restart:
{//lock scope
__TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
return_value = false;
// get bucket
bucket_accessor b( this, h & m );
// find a node
n = search_bucket( key, b() );
if( OpInsert ) {
// [opt] insert a key
if( !n ) {
if( !tmp_n ) {
tmp_n = allocate_node_helper(key, t, allocate_node, std::integral_constant<bool, OpInsert>{});
}
while ( !b.is_writer() && !b.upgrade_to_writer() ) { // TODO: improved insertion
// Rerun search list, in case another thread inserted the intem during the upgrade
n = search_bucket(key, b());
if (this->is_valid(n)) { // unfortunately, it did
if (!b.downgrade_to_reader()) {
// If the lock was downgraded with reacquiring the mutex
// Rerun search list in case another thread removed the item during the downgrade
n = search_bucket(key, b());
if (!this->is_valid(n)) {
// Unfortunately, it did
// We need to try upgrading to writer again
continue;
}
}
goto exists;
}
}
if( this->check_mask_race(h, m) )
goto restart; // b.release() is done in ~b().
// insert and set flag to grow the container
grow_segment = this->insert_new_node( b(), n = tmp_n, m );
tmp_n = nullptr;
return_value = true;
}
} else { // find or count
if( !n ) {
if( this->check_mask_race( h, m ) )
goto restart; // b.release() is done in ~b(). TODO: replace by continue
return false;
}
return_value = true;
}
exists:
if( !result ) goto check_growth;
// TODO: the following seems as generic/regular operation
// acquire the item
if( !result->try_acquire( n->mutex, write ) ) {
for( tbb::detail::atomic_backoff backoff(true);; ) {
if( result->try_acquire( n->mutex, write ) ) break;
if( !backoff.bounded_pause() ) {
// the wait takes really long, restart the operation
b.release();
__TBB_ASSERT( !OpInsert || !return_value, "Can't acquire new item in locked bucket?" );
yield();
m = this->my_mask.load(std::memory_order_acquire);
goto restart;
}
}
}
}//lock scope
result->my_node = n;
result->my_hash = h;
check_growth:
// [opt] grow the container
if( grow_segment ) {
this->enable_segment( grow_segment );
}
if( tmp_n ) // if OpInsert only
delete_node( tmp_n );
return return_value;
}
struct accessor_not_used { void release(){}};
friend const_accessor* accessor_location( accessor_not_used const& ){ return nullptr;}
friend const_accessor* accessor_location( const_accessor & a ) { return &a;}
friend bool is_write_access_needed( accessor const& ) { return true;}
friend bool is_write_access_needed( const_accessor const& ) { return false;}
friend bool is_write_access_needed( accessor_not_used const& ) { return false;}
template <typename Accessor>
bool generic_move_insert( Accessor && result, value_type && value ) {
result.release();
return lookup</*insert*/true>(value.first, &value.second, accessor_location(result), is_write_access_needed(result), &allocate_node_move_construct);
}
template <typename Accessor, typename... Args>
bool generic_emplace( Accessor && result, Args &&... args ) {
result.release();
node * node_ptr = create_node(base_type::get_allocator(), std::forward<Args>(args)...);
return lookup</*insert*/true>(node_ptr->value().first, nullptr, accessor_location(result), is_write_access_needed(result), &do_not_allocate_node, node_ptr);
}
// delete item by accessor
bool exclude( const_accessor &item_accessor ) {
__TBB_ASSERT( item_accessor.my_node, nullptr );
node_base *const exclude_node = item_accessor.my_node;
hashcode_type const hash = item_accessor.my_hash;
hashcode_type mask = this->my_mask.load(std::memory_order_acquire);
do {
// get bucket
bucket_accessor b( this, hash & mask, /*writer=*/true );
node_base* prev = nullptr;
node_base* curr = b()->node_list.load(std::memory_order_relaxed);
while (curr && curr != exclude_node) {
prev = curr;
curr = curr->next;
}
if (curr == nullptr) { // someone else was first
if (this->check_mask_race(hash, mask))
continue;
item_accessor.release();
return false;
}
__TBB_ASSERT( curr == exclude_node, nullptr );
// remove from container
if (prev == nullptr) {
b()->node_list.store(curr->next, std::memory_order_relaxed);
} else {
prev->next = curr->next;
}
this->my_size--;
break;
} while(true);
if (!item_accessor.is_writer()) { // need to get exclusive lock
item_accessor.upgrade_to_writer(); // return value means nothing here
}
item_accessor.release();
delete_node(exclude_node); // Only one thread can delete it
return true;
}
template <typename K>
bool internal_erase( const K& key ) {
node_base *erase_node;
hashcode_type const hash = my_hash_compare.hash(key);
hashcode_type mask = this->my_mask.load(std::memory_order_acquire);
restart:
{//lock scope
// get bucket
bucket_accessor b( this, hash & mask );
search:
node_base* prev = nullptr;
erase_node = b()->node_list.load(std::memory_order_relaxed);
while (this->is_valid(erase_node) && !my_hash_compare.equal(key, static_cast<node*>(erase_node)->value().first ) ) {
prev = erase_node;
erase_node = erase_node->next;
}
if (erase_node == nullptr) { // not found, but mask could be changed
if (this->check_mask_race(hash, mask))
goto restart;
return false;
} else if (!b.is_writer() && !b.upgrade_to_writer()) {
if (this->check_mask_race(hash, mask)) // contended upgrade, check mask
goto restart;
goto search;
}
// remove from container
if (prev == nullptr) {
b()->node_list.store(erase_node->next, std::memory_order_relaxed);
} else {
prev->next = erase_node->next;
}
this->my_size--;
}
{
typename node::scoped_type item_locker( erase_node->mutex, /*write=*/true );
}
// note: there should be no threads pretending to acquire this mutex again, do not try to upgrade const_accessor!
delete_node(erase_node); // Only one thread can delete it due to write lock on the bucket
return true;
}
// Returns an iterator for an item defined by the key, or for the next item after it (if upper==true)
template <typename K, typename I>
std::pair<I, I> internal_equal_range( const K& key, I end_ ) const {
hashcode_type h = my_hash_compare.hash( key );
hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
__TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
h &= m;
bucket *b = this->get_bucket( h );
while (rehash_required(b->node_list.load(std::memory_order_relaxed))) {
m = ( hashcode_type(1) << tbb::detail::log2( h ) ) - 1; // get parent mask from the topmost bit
b = this->get_bucket( h &= m );
}
node *n = search_bucket( key, b );
if( !n )
return std::make_pair(end_, end_);
iterator lower(*this, h, b, n), upper(lower);
return std::make_pair(lower, ++upper);
}
// Copy "source" to *this, where *this must start out empty.
void internal_copy( const concurrent_hash_map& source ) {
hashcode_type mask = source.my_mask.load(std::memory_order_relaxed);
if( this->my_mask.load(std::memory_order_relaxed) == mask ) { // optimized version
this->reserve(source.my_size.load(std::memory_order_relaxed)); // TODO: load_factor?
bucket *dst = nullptr, *src = nullptr;
bool rehashing_required = false;
for( hashcode_type k = 0; k <= mask; k++ ) {
if( k & (k-2) ) ++dst,src++; // not the beginning of a segment
else { dst = this->get_bucket( k ); src = source.get_bucket( k ); }
__TBB_ASSERT(!rehash_required(dst->node_list.load(std::memory_order_relaxed)), "Invalid bucket in destination table");
node *n = static_cast<node*>( src->node_list.load(std::memory_order_relaxed) );
if (rehash_required(n)) { // source is not rehashed, items are in previous buckets
rehashing_required = true;
dst->node_list.store(reinterpret_cast<node_base*>(rehash_req_flag), std::memory_order_relaxed);
} else for(; n; n = static_cast<node*>( n->next ) ) {
node* node_ptr = create_node(base_type::get_allocator(), n->value().first, n->value().second);
this->add_to_bucket( dst, node_ptr);
this->my_size.fetch_add(1, std::memory_order_relaxed);
}
}
if( rehashing_required ) rehash();
} else internal_copy(source.begin(), source.end(), source.my_size.load(std::memory_order_relaxed));
}
template <typename I>
void internal_copy( I first, I last, size_type reserve_size ) {
this->reserve(reserve_size); // TODO: load_factor?
hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
for(; first != last; ++first) {
const auto& key = (*first).first;
hashcode_type h = my_hash_compare.hash(key);
bucket *b = this->get_bucket( h & m );
__TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), "Invalid bucket in destination table");
if (search_bucket(key, b) == nullptr) {
node* node_ptr = create_node(base_type::get_allocator(), *first);
this->add_to_bucket( b, node_ptr );
++this->my_size; // TODO: replace by non-atomic op
}
}
}
void internal_move_construct_with_allocator( concurrent_hash_map&& other, const allocator_type&,
/*is_always_equal=*/std::true_type )
{
this->internal_move(std::move(other));
}
void internal_move_construct_with_allocator( concurrent_hash_map&& other, const allocator_type& a,
/*is_always_equal=*/std::false_type )
{
if (a == other.get_allocator()){
this->internal_move(std::move(other));
} else {
try_call( [&] {
internal_copy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()),
other.size());
}).on_exception( [&] {
this->clear();
});
}
}
void internal_move_assign( concurrent_hash_map&& other,
/*is_always_equal || POCMA = */std::true_type)
{
this->internal_move(std::move(other));
}
void internal_move_assign(concurrent_hash_map&& other, /*is_always_equal=*/ std::false_type) {
if (this->my_allocator == other.my_allocator) {
this->internal_move(std::move(other));
} else {
//do per element move
internal_copy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()),
other.size());
}
}
void internal_swap(concurrent_hash_map& other, /*is_always_equal || POCS = */ std::true_type) {
this->internal_swap_content(other);
}
void internal_swap(concurrent_hash_map& other, /*is_always_equal || POCS = */ std::false_type) {
__TBB_ASSERT(this->my_allocator == other.my_allocator, nullptr);
this->internal_swap_content(other);
}
// Fast find when no concurrent erasure is used. For internal use inside TBB only!
/** Return pointer to item with given key, or nullptr if no such item exists.
Must not be called concurrently with erasure operations. */
const_pointer internal_fast_find( const Key& key ) const {
hashcode_type h = my_hash_compare.hash( key );
hashcode_type m = this->my_mask.load(std::memory_order_acquire);
node *n;
restart:
__TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
bucket *b = this->get_bucket( h & m );
// TODO: actually, notification is unnecessary here, just hiding double-check
if (rehash_required(b->node_list.load(std::memory_order_acquire)))
{
typename bucket::scoped_type lock;
if( lock.try_acquire( b->mutex, /*write=*/true ) ) {
if (rehash_required(b->node_list.load(std::memory_order_relaxed)))
const_cast<concurrent_hash_map*>(this)->rehash_bucket( b, h & m ); //recursive rehashing
}
else lock.acquire( b->mutex, /*write=*/false );
__TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), nullptr);
}
n = search_bucket( key, b );
if( n )
return n->storage();
else if( this->check_mask_race( h, m ) )
goto restart;
return nullptr;
}
};
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <typename It,
typename HashCompare = d1::tbb_hash_compare<iterator_key_t<It>>,
typename Alloc = tbb_allocator<iterator_alloc_pair_t<It>>,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>,
typename = std::enable_if_t<!is_allocator_v<HashCompare>>>
concurrent_hash_map( It, It, HashCompare = HashCompare(), Alloc = Alloc() )
-> concurrent_hash_map<iterator_key_t<It>, iterator_mapped_t<It>, HashCompare, Alloc>;
template <typename It, typename Alloc,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_hash_map( It, It, Alloc )
-> concurrent_hash_map<iterator_key_t<It>, iterator_mapped_t<It>, d1::tbb_hash_compare<iterator_key_t<It>>, Alloc>;
template <typename Key, typename T,
typename HashCompare = d1::tbb_hash_compare<std::remove_const_t<Key>>,
typename Alloc = tbb_allocator<std::pair<const Key, T>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>,
typename = std::enable_if_t<!is_allocator_v<HashCompare>>>
concurrent_hash_map( std::initializer_list<std::pair<Key, T>>, HashCompare = HashCompare(), Alloc = Alloc() )
-> concurrent_hash_map<std::remove_const_t<Key>, T, HashCompare, Alloc>;
template <typename Key, typename T, typename Alloc,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_hash_map( std::initializer_list<std::pair<Key, T>>, Alloc )
-> concurrent_hash_map<std::remove_const_t<Key>, T, d1::tbb_hash_compare<std::remove_const_t<Key>>, Alloc>;
#endif /* __TBB_CPP17_DEDUCTION_GUIDES_PRESENT */
template <typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator==(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b) {
if(a.size() != b.size()) return false;
typename concurrent_hash_map<Key, T, HashCompare, A1>::const_iterator i(a.begin()), i_end(a.end());
typename concurrent_hash_map<Key, T, HashCompare, A2>::const_iterator j, j_end(b.end());
for(; i != i_end; ++i) {
j = b.equal_range(i->first).first;
if( j == j_end || !(i->second == j->second) ) return false;
}
return true;
}
#if !__TBB_CPP20_COMPARISONS_PRESENT
template <typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator!=(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b)
{ return !(a == b); }
#endif // !__TBB_CPP20_COMPARISONS_PRESENT
template <typename Key, typename T, typename HashCompare, typename A>
inline void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)
{ a.swap( b ); }
} // namespace d2
} // namespace detail
inline namespace v1 {
using detail::split;
using detail::d2::concurrent_hash_map;
using detail::d1::tbb_hash_compare;
} // namespace v1
} // namespace tbb
#endif /* __TBB_concurrent_hash_map_H */
|