File: concurrent_hash_map.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (1674 lines) | stat: -rw-r--r-- 72,004 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
/*
    Copyright (c) 2005-2025 Intel Corporation
    Copyright (c) 2025 UXL Foundation Contributors

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_concurrent_hash_map_H
#define __TBB_concurrent_hash_map_H

#include "detail/_namespace_injection.h"
#include "detail/_utils.h"
#include "detail/_assert.h"
#include "detail/_allocator_traits.h"
#include "detail/_containers_helpers.h"
#include "detail/_template_helpers.h"
#include "detail/_hash_compare.h"
#include "detail/_range_common.h"
#include "tbb_allocator.h"
#include "spin_rw_mutex.h"

#include <atomic>
#include <initializer_list>
#include <tuple>
#include <iterator>
#include <utility>      // Need std::pair
#include <cstring>      // Need std::memset

namespace tbb {
namespace detail {
namespace d2 {

#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS && __TBB_CPP20_CONCEPTS_PRESENT
template <typename Mutex>
concept ch_map_rw_scoped_lockable = rw_scoped_lockable<Mutex> &&
	requires(const typename Mutex::scoped_lock& sl) {
		{ sl.is_writer() } -> std::convertible_to<bool>;
};
#endif

template <typename MutexType>
struct hash_map_node_base : no_copy {
    using mutex_type = MutexType;
    // Scoped lock type for mutex
    using scoped_type = typename MutexType::scoped_lock;
    // Next node in chain
    hash_map_node_base* next;
    mutex_type mutex;
};

// Incompleteness flag value
static void* const rehash_req_flag = reinterpret_cast<void*>(std::size_t(3));
// Rehashed empty bucket flag
static void* const empty_rehashed_flag = reinterpret_cast<void*>(std::size_t(0));

template <typename MutexType>
bool rehash_required( hash_map_node_base<MutexType>* node_ptr ) {
    return reinterpret_cast<void*>(node_ptr) == rehash_req_flag;
}

#if TBB_USE_ASSERT
template <typename MutexType>
bool empty_rehashed( hash_map_node_base<MutexType>* node_ptr ) {
    return reinterpret_cast<void*>(node_ptr) == empty_rehashed_flag;
}
#endif

// base class of concurrent_hash_map

template <typename Allocator, typename MutexType>
class hash_map_base {
public:
    using size_type = std::size_t;
    using hashcode_type = std::size_t;
    using segment_index_type = std::size_t;
    using node_base = hash_map_node_base<MutexType>;

    struct bucket : no_copy {
        using mutex_type = MutexType;
        using scoped_type = typename mutex_type::scoped_lock;

        bucket() : node_list(nullptr) {}
        bucket( node_base* ptr ) : node_list(ptr) {}

        mutex_type mutex;
        std::atomic<node_base*> node_list;
    };

    using allocator_type = Allocator;
    using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
    using bucket_allocator_type = typename allocator_traits_type::template rebind_alloc<bucket>;
    using bucket_allocator_traits = tbb::detail::allocator_traits<bucket_allocator_type>;

    // Count of segments in the first block
    static constexpr size_type embedded_block = 1;
    // Count of segments in the first block
    static constexpr size_type embedded_buckets = 1 << embedded_block;
    // Count of segments in the first block
    static constexpr size_type first_block = 8; //including embedded_block. perfect with bucket size 16, so the allocations are power of 4096
    // Size of a pointer / table size
    static constexpr size_type pointers_per_table = sizeof(segment_index_type) * 8; // one segment per bit

    using segment_ptr_type = bucket*;
    using atomic_segment_type = std::atomic<segment_ptr_type>;
    using segments_table_type = atomic_segment_type[pointers_per_table];

    hash_map_base( const allocator_type& alloc ) : my_allocator(alloc), my_mask(embedded_buckets - 1), my_size(0) {
        for (size_type i = 0; i != embedded_buckets; ++i) {
            my_embedded_segment[i].node_list.store(nullptr, std::memory_order_relaxed);
        }

        for (size_type segment_index = 0; segment_index < pointers_per_table; ++segment_index) {
            auto argument = segment_index < embedded_block ? my_embedded_segment + segment_base(segment_index) : nullptr;
            my_table[segment_index].store(argument, std::memory_order_relaxed);
        }

        __TBB_ASSERT( embedded_block <= first_block, "The first block number must include embedded blocks");
    }

    // segment index of given index in the array
    static segment_index_type segment_index_of( size_type index ) {
        return segment_index_type(tbb::detail::log2( index|1 ));
    }

    // the first array index of given segment
    static segment_index_type segment_base( segment_index_type k ) {
        return (segment_index_type(1) << k & ~segment_index_type(1));
    }

    // segment size except for k == 0
    static size_type segment_size( segment_index_type k ) {
        return size_type(1) << k; // fake value for k==0
    }

    // true if ptr is valid pointer
    static bool is_valid( void* ptr ) {
        return reinterpret_cast<uintptr_t>(ptr) > uintptr_t(63);
    }

    template <typename... Args>
    void init_buckets_impl( segment_ptr_type ptr, size_type sz, const Args&... args ) {
        for (size_type i = 0; i < sz; ++i) {
            bucket_allocator_traits::construct(my_allocator, ptr + i, args...);
        }
    }

    // Initialize buckets
    void init_buckets( segment_ptr_type ptr, size_type sz, bool is_initial ) {
        if (is_initial) {
            init_buckets_impl(ptr, sz);
        } else {
            init_buckets_impl(ptr, sz, reinterpret_cast<node_base*>(rehash_req_flag));
        }
    }

    // Add node n to bucket b
    static void add_to_bucket( bucket* b, node_base* n ) {
        __TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), nullptr);
        n->next = b->node_list.load(std::memory_order_relaxed);
        b->node_list.store(n, std::memory_order_relaxed); // its under lock and flag is set
    }

    const bucket_allocator_type& get_allocator() const {
        return my_allocator;
    }

    bucket_allocator_type& get_allocator() {
        return my_allocator;
    }

    // Enable segment
    void enable_segment( segment_index_type k, bool is_initial = false ) {
        __TBB_ASSERT( k, "Zero segment must be embedded" );
        size_type sz;
        __TBB_ASSERT( !is_valid(my_table[k].load(std::memory_order_relaxed)), "Wrong concurrent assignment");
        if (k >= first_block) {
            sz = segment_size(k);
            segment_ptr_type ptr = nullptr;
            try_call( [&] {
                ptr = bucket_allocator_traits::allocate(my_allocator, sz);
            } ).on_exception( [&] {
                my_table[k].store(nullptr, std::memory_order_relaxed);
            });

            __TBB_ASSERT(ptr, nullptr);
            init_buckets(ptr, sz, is_initial);
            my_table[k].store(ptr, std::memory_order_release);
            sz <<= 1;// double it to get entire capacity of the container
        } else { // the first block
            __TBB_ASSERT( k == embedded_block, "Wrong segment index" );
            sz = segment_size(first_block);
            segment_ptr_type ptr = nullptr;
            try_call( [&] {
                ptr = bucket_allocator_traits::allocate(my_allocator, sz - embedded_buckets);
            } ).on_exception( [&] {
                my_table[k].store(nullptr, std::memory_order_relaxed);
            });

            __TBB_ASSERT(ptr, nullptr);
            init_buckets(ptr, sz - embedded_buckets, is_initial);
            ptr -= segment_base(embedded_block);
            for(segment_index_type i = embedded_block; i < first_block; i++) // calc the offsets
                my_table[i].store(ptr + segment_base(i), std::memory_order_release);
        }
        my_mask.store(sz-1, std::memory_order_release);
    }

    void delete_segment( segment_index_type s ) {
        segment_ptr_type buckets_ptr = my_table[s].load(std::memory_order_relaxed);
        size_type sz = segment_size( s ? s : 1 );

        size_type deallocate_size = 0;

        if (s >= first_block) { // the first segment or the next
            deallocate_size = sz;
        } else if (s == embedded_block && embedded_block != first_block) {
            deallocate_size = segment_size(first_block) - embedded_buckets;
        }

        for (size_type i = 0; i < deallocate_size; ++i) {
            bucket_allocator_traits::destroy(my_allocator, buckets_ptr + i);
        }
        if (deallocate_size != 0) {
            bucket_allocator_traits::deallocate(my_allocator, buckets_ptr, deallocate_size);
        }

        if (s >= embedded_block) my_table[s].store(nullptr, std::memory_order_relaxed);
    }

    // Get bucket by (masked) hashcode
    bucket *get_bucket( hashcode_type h ) const noexcept {
        segment_index_type s = segment_index_of( h );
        h -= segment_base(s);
        segment_ptr_type seg = my_table[s].load(std::memory_order_acquire);
        __TBB_ASSERT( is_valid(seg), "hashcode must be cut by valid mask for allocated segments" );
        return &seg[h];
    }

    // detail serial rehashing helper
    void mark_rehashed_levels( hashcode_type h ) noexcept {
        segment_index_type s = segment_index_of( h );
        while (segment_ptr_type seg = my_table[++s].load(std::memory_order_relaxed))
            if (rehash_required(seg[h].node_list.load(std::memory_order_relaxed))) {
                seg[h].node_list.store(reinterpret_cast<node_base*>(empty_rehashed_flag), std::memory_order_relaxed);
                mark_rehashed_levels( h + ((hashcode_type)1<<s) ); // optimized segment_base(s)
            }
    }

    // Check for mask race
    // Splitting into two functions should help inlining
    inline bool check_mask_race( const hashcode_type h, hashcode_type &m ) const {
        hashcode_type m_now, m_old = m;
        m_now = my_mask.load(std::memory_order_acquire);
        if (m_old != m_now) {
            return check_rehashing_collision(h, m_old, m = m_now);
        }
        return false;
    }

    // Process mask race, check for rehashing collision
    bool check_rehashing_collision( const hashcode_type h, hashcode_type m_old, hashcode_type m ) const {
        __TBB_ASSERT(m_old != m, nullptr); // TODO?: m arg could be optimized out by passing h = h&m
        if( (h & m_old) != (h & m) ) { // mask changed for this hashcode, rare event
            // condition above proves that 'h' has some other bits set beside 'm_old'
            // find next applicable mask after m_old    //TODO: look at bsl instruction
            for( ++m_old; !(h & m_old); m_old <<= 1 ) // at maximum few rounds depending on the first block size
                ;
            m_old = (m_old<<1) - 1; // get full mask from a bit
            __TBB_ASSERT((m_old&(m_old+1))==0 && m_old <= m, nullptr);
            // check whether it is rehashing/ed
            if (!rehash_required(get_bucket(h & m_old)->node_list.load(std::memory_order_acquire))) {
                return true;
            }
        }
        return false;
    }

    // Insert a node and check for load factor. @return segment index to enable.
    segment_index_type insert_new_node( bucket *b, node_base *n, hashcode_type mask ) {
        size_type sz = ++my_size; // prefix form is to enforce allocation after the first item inserted
        add_to_bucket( b, n );
        // check load factor
        if( sz >= mask ) { // TODO: add custom load_factor
            segment_index_type new_seg = tbb::detail::log2( mask+1 ); //optimized segment_index_of
            __TBB_ASSERT( is_valid(my_table[new_seg-1].load(std::memory_order_relaxed)), "new allocations must not publish new mask until segment has allocated");
            static const segment_ptr_type is_allocating = segment_ptr_type(2);
            segment_ptr_type disabled = nullptr;
            if (!(my_table[new_seg].load(std::memory_order_acquire))
                && my_table[new_seg].compare_exchange_strong(disabled, is_allocating))
                return new_seg; // The value must be processed
        }
        return 0;
    }

    // Prepare enough segments for number of buckets
    void reserve(size_type buckets) {
        if( !buckets-- ) return;
        bool is_initial = !my_size.load(std::memory_order_relaxed);
        for (size_type m = my_mask.load(std::memory_order_relaxed); buckets > m;
            m = my_mask.load(std::memory_order_relaxed))
        {
            enable_segment( segment_index_of( m+1 ), is_initial );
        }
    }

    // Swap hash_map_bases
    void internal_swap_content(hash_map_base &table) {
        using std::swap;
        swap_atomics_relaxed(my_mask, table.my_mask);
        swap_atomics_relaxed(my_size, table.my_size);

        for(size_type i = 0; i < embedded_buckets; i++) {
            auto temp = my_embedded_segment[i].node_list.load(std::memory_order_relaxed);
            my_embedded_segment[i].node_list.store(table.my_embedded_segment[i].node_list.load(std::memory_order_relaxed),
                std::memory_order_relaxed);
            table.my_embedded_segment[i].node_list.store(temp, std::memory_order_relaxed);
        }
        for(size_type i = embedded_block; i < pointers_per_table; i++) {
            auto temp = my_table[i].load(std::memory_order_relaxed);
            my_table[i].store(table.my_table[i].load(std::memory_order_relaxed),
                std::memory_order_relaxed);
            table.my_table[i].store(temp, std::memory_order_relaxed);
        }
    }

    void internal_move(hash_map_base&& other) {
        my_mask.store(other.my_mask.load(std::memory_order_relaxed), std::memory_order_relaxed);
        other.my_mask.store(embedded_buckets - 1, std::memory_order_relaxed);

        my_size.store(other.my_size.load(std::memory_order_relaxed), std::memory_order_relaxed);
        other.my_size.store(0, std::memory_order_relaxed);

        for (size_type i = 0; i < embedded_buckets; ++i) {
            my_embedded_segment[i].node_list.store(other.my_embedded_segment[i].node_list, std::memory_order_relaxed);
            other.my_embedded_segment[i].node_list.store(nullptr, std::memory_order_relaxed);
        }

        for (size_type i = embedded_block; i < pointers_per_table; ++i) {
            my_table[i].store(other.my_table[i].load(std::memory_order_relaxed),
                std::memory_order_relaxed);
            other.my_table[i].store(nullptr, std::memory_order_relaxed);
        }
    }

protected:
    bucket_allocator_type my_allocator;
    // Hash mask = sum of allocated segment sizes - 1
    std::atomic<hashcode_type> my_mask;
    // Size of container in stored items
    std::atomic<size_type> my_size; // It must be in separate cache line from my_mask due to performance effects
    // Zero segment
    bucket my_embedded_segment[embedded_buckets];
    // Segment pointers table. Also prevents false sharing between my_mask and my_size
    segments_table_type my_table;
};

template <typename Iterator>
class hash_map_range;

// Meets requirements of a forward iterator for STL
// Value is either the T or const T type of the container.
template <typename Container, typename Value>
class hash_map_iterator {
    using map_type = Container;
    using node = typename Container::node;
    using map_base = typename Container::base_type;
    using node_base = typename map_base::node_base;
    using bucket = typename map_base::bucket;
public:
    using value_type = Value;
    using size_type = typename Container::size_type;
    using difference_type = typename Container::difference_type;
    using pointer = value_type*;
    using reference = value_type&;
    using iterator_category = std::forward_iterator_tag;

    // Construct undefined iterator
    hash_map_iterator(): my_map(), my_index(), my_bucket(), my_node() {}
    hash_map_iterator( const hash_map_iterator<Container, typename Container::value_type>& other ) :
        my_map(other.my_map),
        my_index(other.my_index),
        my_bucket(other.my_bucket),
        my_node(other.my_node)
    {}

    hash_map_iterator& operator=( const hash_map_iterator<Container, typename Container::value_type>& other ) {
        my_map = other.my_map;
        my_index = other.my_index;
        my_bucket = other.my_bucket;
        my_node = other.my_node;
        return *this;
    }

    Value& operator*() const {
        __TBB_ASSERT( map_base::is_valid(my_node), "iterator uninitialized or at end of container?" );
        return my_node->value();
    }

    Value* operator->() const {return &operator*();}

    hash_map_iterator& operator++() {
        my_node = static_cast<node*>( my_node->next );
        if( !my_node ) advance_to_next_bucket();
        return *this;
    }

    // Post increment
    hash_map_iterator operator++(int) {
        hash_map_iterator old(*this);
        operator++();
        return old;
    }
private:
    template <typename C, typename T, typename U>
    friend bool operator==( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );

    template <typename C, typename T, typename U>
    friend bool operator!=( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );

    template <typename C, typename T, typename U>
    friend ptrdiff_t operator-( const hash_map_iterator<C,T>& i, const hash_map_iterator<C,U>& j );

    template <typename C, typename U>
    friend class hash_map_iterator;

    template <typename I>
    friend class hash_map_range;

    void advance_to_next_bucket() { // TODO?: refactor to iterator_base class
        size_t k = my_index+1;
        __TBB_ASSERT( my_bucket, "advancing an invalid iterator?");
        while (k <= my_map->my_mask.load(std::memory_order_relaxed)) {
            // Following test uses 2's-complement wizardry
            if( k&(k-2) ) // not the beginning of a segment
                ++my_bucket;
            else my_bucket = my_map->get_bucket( k );
            node_base *n = my_bucket->node_list.load(std::memory_order_relaxed);
            if( map_base::is_valid(n) ) {
                my_node = static_cast<node*>(n);
                my_index = k;
                return;
            }
            ++k;
        }
        my_bucket = nullptr; my_node = nullptr; my_index = k; // the end
    }

    template <typename Key, typename T, typename HashCompare, typename A
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
            , typename M
             >
        __TBB_requires(tbb::detail::hash_compare<HashCompare, Key> &&
                       ch_map_rw_scoped_lockable<M>)
#else
             >
        __TBB_requires(tbb::detail::hash_compare<HashCompare, Key>)
#endif
    friend class concurrent_hash_map;

    hash_map_iterator( const Container &map, std::size_t index, const bucket *b, node_base *n ) :
        my_map(&map), my_index(index), my_bucket(b), my_node(nullptr)
    {
        // Cannot directly initialize to n, because it could be an invalid node pointer (e.g., when
        // setting a midpoint for a 1-element range). If it is, try one from a subsequent bucket.
        if( map_base::is_valid(n) )
            my_node = static_cast<node*>(n);
        else if( b )
            advance_to_next_bucket();
    }

    // concurrent_hash_map over which we are iterating.
    const Container *my_map;
    // Index in hash table for current item
    size_t my_index;
    // Pointer to bucket
    const bucket* my_bucket;
    // Pointer to node that has current item
    node* my_node;
};

template <typename Container, typename T, typename U>
bool operator==( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
    return i.my_node == j.my_node && i.my_map == j.my_map;
}

template <typename Container, typename T, typename U>
bool operator!=( const hash_map_iterator<Container,T>& i, const hash_map_iterator<Container,U>& j ) {
    return i.my_node != j.my_node || i.my_map != j.my_map;
}

// Range class used with concurrent_hash_map
template <typename Iterator>
class hash_map_range {
    using map_type = typename Iterator::map_type;
public:
    // Type for size of a range
    using size_type = std::size_t;
    using value_type = typename Iterator::value_type;
    using reference = typename Iterator::reference;
    using difference_type = typename Iterator::difference_type;
    using iterator = Iterator;

    // True if range is empty.
    bool empty() const { return my_begin == my_end; }

    // True if range can be partitioned into two subranges.
    bool is_divisible() const {
        return my_midpoint != my_end;
    }

    // Split range.
    hash_map_range( hash_map_range& r, split ) :
        my_end(r.my_end),
        my_grainsize(r.my_grainsize)
    {
        r.my_end = my_begin = r.my_midpoint;
        __TBB_ASSERT( !empty(), "Splitting despite the range is not divisible" );
        __TBB_ASSERT( !r.empty(), "Splitting despite the range is not divisible" );
        set_midpoint();
        r.set_midpoint();
    }

    // Init range with container and grainsize specified
    hash_map_range( const map_type &map, size_type grainsize_ = 1 ) :
        my_begin( Iterator( map, 0, map.my_embedded_segment, map.my_embedded_segment->node_list.load(std::memory_order_relaxed) ) ),
        my_end( Iterator( map, map.my_mask.load(std::memory_order_relaxed) + 1, nullptr, nullptr ) ),
        my_grainsize( grainsize_ )
    {
        __TBB_ASSERT( grainsize_>0, "grainsize must be positive" );
        set_midpoint();
    }

    Iterator begin() const { return my_begin; }
    Iterator end() const { return my_end; }
    // The grain size for this range.
    size_type grainsize() const { return my_grainsize; }

private:
    Iterator my_begin;
    Iterator my_end;
    mutable Iterator my_midpoint;
    size_t my_grainsize;
    // Set my_midpoint to point approximately half way between my_begin and my_end.
    void set_midpoint() const;
    template <typename U> friend class hash_map_range;
};

template <typename Iterator>
void hash_map_range<Iterator>::set_midpoint() const {
    // Split by groups of nodes
    size_t m = my_end.my_index-my_begin.my_index;
    if( m > my_grainsize ) {
        m = my_begin.my_index + m/2u;
        auto b = my_begin.my_map->get_bucket(m);
        my_midpoint = Iterator(*my_begin.my_map,m,b,b->node_list.load(std::memory_order_relaxed));
    } else {
        my_midpoint = my_end;
    }
    __TBB_ASSERT( my_begin.my_index <= my_midpoint.my_index,
        "my_begin is after my_midpoint" );
    __TBB_ASSERT( my_midpoint.my_index <= my_end.my_index,
        "my_midpoint is after my_end" );
    __TBB_ASSERT( my_begin != my_midpoint || my_begin == my_end,
        "[my_begin, my_midpoint) range should not be empty" );
}

template <typename Key, typename T,
          typename HashCompare = d1::tbb_hash_compare<Key>,
          typename Allocator = tbb_allocator<std::pair<const Key, T>>
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
        , typename MutexType = spin_rw_mutex
         >
    __TBB_requires(tbb::detail::hash_compare<HashCompare, Key> &&
                   ch_map_rw_scoped_lockable<MutexType>)
#else
         >
    __TBB_requires(tbb::detail::hash_compare<HashCompare, Key>)
#endif
class concurrent_hash_map
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
    : protected hash_map_base<Allocator, MutexType>
#else
    : protected hash_map_base<Allocator, spin_rw_mutex>
#endif
{
    template <typename Container, typename Value>
    friend class hash_map_iterator;

    template <typename I>
    friend class hash_map_range;
    using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;

#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
    using base_type = hash_map_base<Allocator, MutexType>;
#else
    using base_type = hash_map_base<Allocator, spin_rw_mutex>;
#endif
public:
    using key_type = Key;
    using mapped_type = T;
    // type_identity is needed to disable implicit deduction guides for std::initializer_list constructors
    // and copy/move constructor with explicit allocator argument
    using allocator_type = tbb::detail::type_identity_t<Allocator>;
    using hash_compare_type = tbb::detail::type_identity_t<HashCompare>;
    using value_type = std::pair<const Key, T>;
    using size_type = typename base_type::size_type;
    using difference_type = std::ptrdiff_t;
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
    using mutex_type = MutexType;
#endif
    using pointer = typename allocator_traits_type::pointer;
    using const_pointer = typename allocator_traits_type::const_pointer;

    using reference = value_type&;
    using const_reference = const value_type&;
    using iterator = hash_map_iterator<concurrent_hash_map, value_type>;
    using const_iterator = hash_map_iterator<concurrent_hash_map, const value_type>;
    using range_type = hash_map_range<iterator>;
    using const_range_type = hash_map_range<const_iterator>;

protected:
    static_assert(std::is_same<value_type, typename Allocator::value_type>::value,
        "value_type of the container must be the same as its allocator's");

    friend class const_accessor;
    class node;
    using segment_index_type = typename base_type::segment_index_type;
    using segment_ptr_type = typename base_type::segment_ptr_type;
    using node_base = typename base_type::node_base;
    using bucket = typename base_type::bucket;
    using hashcode_type = typename base_type::hashcode_type;
    using bucket_allocator_type = typename base_type::bucket_allocator_type;
    using node_allocator_type = typename base_type::allocator_traits_type::template rebind_alloc<node>;
    using node_allocator_traits = tbb::detail::allocator_traits<node_allocator_type>;
    hash_compare_type my_hash_compare;

    class node : public node_base {
    public:
        node() {}
        ~node() {}
        pointer storage() { return &my_value; }
        value_type& value() { return *storage(); }
    private:
        union {
            value_type my_value;
        };
    };

    void delete_node( node_base *n ) {
        node_allocator_type node_allocator(this->get_allocator());
        node_allocator_traits::destroy(node_allocator, static_cast<node*>(n)->storage());
        node_allocator_traits::destroy(node_allocator, static_cast<node*>(n));
        node_allocator_traits::deallocate(node_allocator, static_cast<node*>(n), 1);
    }

    template <typename... Args>
    static node* create_node(bucket_allocator_type& allocator, Args&&... args) {
        node_allocator_type node_allocator(allocator);
        node* node_ptr = node_allocator_traits::allocate(node_allocator, 1);
        auto guard = make_raii_guard([&] {
            node_allocator_traits::destroy(node_allocator, node_ptr);
            node_allocator_traits::deallocate(node_allocator, node_ptr, 1);
        });

        node_allocator_traits::construct(node_allocator, node_ptr);
        node_allocator_traits::construct(node_allocator, node_ptr->storage(), std::forward<Args>(args)...);
        guard.dismiss();
        return node_ptr;
    }

    static node* allocate_node_copy_construct(bucket_allocator_type& allocator, const Key &key, const T * t){
        return create_node(allocator, key, *t);
    }

    static node* allocate_node_move_construct(bucket_allocator_type& allocator, const Key &key, const T * t){
        return create_node(allocator, key, std::move(*const_cast<T*>(t)));
    }

    template <typename K = Key>
    static node* allocate_node_default_construct(bucket_allocator_type& allocator, const K &key, const T * ){
        // Emplace construct an empty T object inside the pair
        return create_node(allocator, std::piecewise_construct,
                           std::forward_as_tuple(key), std::forward_as_tuple());
    }

    static node* do_not_allocate_node(bucket_allocator_type& , const Key &, const T * ){
        __TBB_ASSERT(false,"this dummy function should not be called");
        return nullptr;
    }

    template <typename K>
    node *search_bucket( const K &key, bucket *b ) const {
        node *n = static_cast<node*>( b->node_list.load(std::memory_order_relaxed) );
        while (this->is_valid(n) && !my_hash_compare.equal(key, n->value().first))
            n = static_cast<node*>( n->next );
        __TBB_ASSERT(!rehash_required(n), "Search can be executed only for rehashed bucket");
        return n;
    }

    // bucket accessor is to find, rehash, acquire a lock, and access a bucket
    class bucket_accessor : public bucket::scoped_type {
        bucket *my_b;
    public:
        bucket_accessor( concurrent_hash_map *base, const hashcode_type h, bool writer = false ) { acquire( base, h, writer ); }
        // find a bucket by masked hashcode, optionally rehash, and acquire the lock
        inline void acquire( concurrent_hash_map *base, const hashcode_type h, bool writer = false ) {
            my_b = base->get_bucket( h );
            // TODO: actually, notification is unnecessary here, just hiding double-check
            if (rehash_required(my_b->node_list.load(std::memory_order_acquire))
                && bucket::scoped_type::try_acquire( my_b->mutex, /*write=*/true ) )
            {
                if (rehash_required(my_b->node_list.load(std::memory_order_relaxed))) base->rehash_bucket(my_b, h); // recursive rehashing
            }
            else bucket::scoped_type::acquire( my_b->mutex, writer );
            __TBB_ASSERT(!rehash_required(my_b->node_list.load(std::memory_order_relaxed)), nullptr);
        }

        // get bucket pointer
        bucket *operator() () { return my_b; }
    };

    // TODO refactor to hash_base
    void rehash_bucket( bucket *b_new, const hashcode_type hash ) {
        __TBB_ASSERT( hash > 1, "The lowermost buckets can't be rehashed" );
        b_new->node_list.store(reinterpret_cast<node_base*>(empty_rehashed_flag), std::memory_order_release); // mark rehashed
        hashcode_type mask = (hashcode_type(1) << tbb::detail::log2(hash)) - 1; // get parent mask from the topmost bit
        bucket_accessor b_old( this, hash & mask );

        mask = (mask<<1) | 1; // get full mask for new bucket
        __TBB_ASSERT( (mask&(mask+1))==0 && (hash & mask) == hash, nullptr );
    restart:
        node_base* prev = nullptr;
        node_base* curr = b_old()->node_list.load(std::memory_order_acquire);
        while (this->is_valid(curr)) {
            hashcode_type curr_node_hash = my_hash_compare.hash(static_cast<node*>(curr)->value().first);

            if ((curr_node_hash & mask) == hash) {
                if (!b_old.is_writer()) {
                    if (!b_old.upgrade_to_writer()) {
                        goto restart; // node ptr can be invalid due to concurrent erase
                    }
                }
                node_base* next = curr->next;
                // exclude from b_old
                if (prev == nullptr) {
                    b_old()->node_list.store(curr->next, std::memory_order_relaxed);
                } else {
                    prev->next = curr->next;
                }
                this->add_to_bucket(b_new, curr);
                curr = next;
            } else {
                prev = curr;
                curr = curr->next;
            }
        }
    }

    template <typename U>
    using hash_compare_is_transparent = dependent_bool<comp_is_transparent<hash_compare_type>, U>;

public:

    class accessor;
    // Combines data access, locking, and garbage collection.
    class const_accessor : private node::scoped_type /*which derived from no_copy*/ {
#if __TBB_PREVIEW_CONCURRENT_HASH_MAP_EXTENSIONS
        friend class concurrent_hash_map<Key,T,HashCompare,Allocator,MutexType>;
#else
        friend class concurrent_hash_map<Key,T,HashCompare,Allocator>;
#endif
        friend class accessor;
    public:
        // Type of value
        using value_type = const typename concurrent_hash_map::value_type;

        // True if result is empty.
        bool empty() const { return !my_node; }

        // Set to null
        void release() {
            if( my_node ) {
                node::scoped_type::release();
                my_node = nullptr;
            }
        }

        // Return reference to associated value in hash table.
        const_reference operator*() const {
            __TBB_ASSERT( my_node, "attempt to dereference empty accessor" );
            return my_node->value();
        }

        // Return pointer to associated value in hash table.
        const_pointer operator->() const {
            return &operator*();
        }

        // Create empty result
        const_accessor() : my_node(nullptr), my_hash() {}

        // Destroy result after releasing the underlying reference.
        ~const_accessor() {
            my_node = nullptr; // scoped lock's release() is called in its destructor
        }
    protected:
        bool is_writer() { return node::scoped_type::is_writer(); }
        node *my_node;
        hashcode_type my_hash;
    };

    // Allows write access to elements and combines data access, locking, and garbage collection.
    class accessor: public const_accessor {
    public:
        // Type of value
        using value_type = typename concurrent_hash_map::value_type;

        // Return reference to associated value in hash table.
        reference operator*() const {
            __TBB_ASSERT( this->my_node, "attempt to dereference empty accessor" );
            return this->my_node->value();
        }

        // Return pointer to associated value in hash table.
        pointer operator->() const {
            return &operator*();
        }
    };

    explicit concurrent_hash_map( const hash_compare_type& compare, const allocator_type& a = allocator_type() )
        : base_type(a)
        , my_hash_compare(compare)
    {}

    concurrent_hash_map() : concurrent_hash_map(hash_compare_type()) {}

    explicit concurrent_hash_map( const allocator_type& a )
        : concurrent_hash_map(hash_compare_type(), a)
    {}

    // Construct empty table with n preallocated buckets. This number serves also as initial concurrency level.
    concurrent_hash_map( size_type n, const allocator_type &a = allocator_type() )
        : concurrent_hash_map(a)
    {
        this->reserve(n);
    }

    concurrent_hash_map( size_type n, const hash_compare_type& compare, const allocator_type& a = allocator_type() )
        : concurrent_hash_map(compare, a)
    {
        this->reserve(n);
    }

    // Copy constructor
    concurrent_hash_map( const concurrent_hash_map &table )
        : concurrent_hash_map(node_allocator_traits::select_on_container_copy_construction(table.get_allocator()))
    {
        try_call( [&] {
            internal_copy(table);
        }).on_exception( [&] {
            this->clear();
        });
    }

    concurrent_hash_map( const concurrent_hash_map &table, const allocator_type &a)
        : concurrent_hash_map(a)
    {
        try_call( [&] {
            internal_copy(table);
        }).on_exception( [&] {
            this->clear();
        });
    }

    // Move constructor
    concurrent_hash_map( concurrent_hash_map &&table )
        : concurrent_hash_map(std::move(table.get_allocator()))
    {
        this->internal_move(std::move(table));
    }

    // Move constructor
    concurrent_hash_map( concurrent_hash_map &&table, const allocator_type &a )
        : concurrent_hash_map(a)
    {
        using is_equal_type = typename node_allocator_traits::is_always_equal;
        internal_move_construct_with_allocator(std::move(table), a, is_equal_type());
    }

    // Construction with copying iteration range and given allocator instance
    template <typename I>
    concurrent_hash_map( I first, I last, const allocator_type &a = allocator_type() )
        : concurrent_hash_map(a)
    {
        try_call( [&] {
            internal_copy(first, last, std::distance(first, last));
        }).on_exception( [&] {
            this->clear();
        });
    }

    template <typename I>
    concurrent_hash_map( I first, I last, const hash_compare_type& compare, const allocator_type& a = allocator_type() )
        : concurrent_hash_map(compare, a)
    {
        try_call( [&] {
            internal_copy(first, last, std::distance(first, last));
        }).on_exception( [&] {
            this->clear();
        });
    }

    concurrent_hash_map( std::initializer_list<value_type> il, const hash_compare_type& compare = hash_compare_type(), const allocator_type& a = allocator_type() )
        : concurrent_hash_map(compare, a)
    {
        try_call( [&] {
            internal_copy(il.begin(), il.end(), il.size());
        }).on_exception( [&] {
            this->clear();
        });
    }

    concurrent_hash_map( std::initializer_list<value_type> il, const allocator_type& a )
        : concurrent_hash_map(il, hash_compare_type(), a) {}

    // Assignment
    concurrent_hash_map& operator=( const concurrent_hash_map &table ) {
        if( this != &table ) {
            clear();
            copy_assign_allocators(this->my_allocator, table.my_allocator);
            internal_copy(table);
        }
        return *this;
    }

    // Move Assignment
    concurrent_hash_map& operator=( concurrent_hash_map &&table ) {
        if( this != &table ) {
            using pocma_type = typename node_allocator_traits::propagate_on_container_move_assignment;
            using is_equal_type = typename node_allocator_traits::is_always_equal;
            move_assign_allocators(this->my_allocator, table.my_allocator);
            internal_move_assign(std::move(table), tbb::detail::disjunction<is_equal_type, pocma_type>());
        }
        return *this;
    }

    // Assignment
    concurrent_hash_map& operator=( std::initializer_list<value_type> il ) {
        clear();
        internal_copy(il.begin(), il.end(), il.size());
        return *this;
    }

    // Rehashes and optionally resizes the whole table.
    /** Useful to optimize performance before or after concurrent operations.
        Also enables using of find() and count() concurrent methods in serial context. */
    void rehash(size_type sz = 0) {
        this->reserve(sz); // TODO: add reduction of number of buckets as well
        hashcode_type mask = this->my_mask.load(std::memory_order_relaxed);
        hashcode_type b = (mask+1)>>1; // size or first index of the last segment
        __TBB_ASSERT((b&(b-1))==0, nullptr); // zero or power of 2
        bucket *bp = this->get_bucket( b ); // only the last segment should be scanned for rehashing
        for(; b <= mask; b++, bp++ ) {
            node_base *n = bp->node_list.load(std::memory_order_relaxed);
            __TBB_ASSERT( this->is_valid(n) || empty_rehashed(n) || rehash_required(n), "Broken internal structure" );
            __TBB_ASSERT( *reinterpret_cast<intptr_t*>(&bp->mutex) == 0, "concurrent or unexpectedly terminated operation during rehash() execution" );
            if (rehash_required(n)) { // rehash bucket, conditional because rehashing of a previous bucket may affect this one
                hashcode_type h = b; bucket *b_old = bp;
                do {
                    __TBB_ASSERT( h > 1, "The lowermost buckets can't be rehashed" );
                    hashcode_type m = ( hashcode_type(1) << tbb::detail::log2( h ) ) - 1; // get parent mask from the topmost bit
                    b_old = this->get_bucket( h &= m );
                } while( rehash_required(b_old->node_list.load(std::memory_order_relaxed)) );
                // now h - is index of the root rehashed bucket b_old
                this->mark_rehashed_levels( h ); // mark all non-rehashed children recursively across all segments
                node_base* prev = nullptr;
                node_base* curr = b_old->node_list.load(std::memory_order_relaxed);
                while (this->is_valid(curr)) {
                    hashcode_type curr_node_hash = my_hash_compare.hash(static_cast<node*>(curr)->value().first);

                    if ((curr_node_hash & mask) != h) { // should be rehashed
                        node_base* next = curr->next;
                        // exclude from b_old
                        if (prev == nullptr) {
                            b_old->node_list.store(curr->next, std::memory_order_relaxed);
                        } else {
                            prev->next = curr->next;
                        }
                        bucket *b_new = this->get_bucket(curr_node_hash & mask);
                        __TBB_ASSERT(!rehash_required(b_new->node_list.load(std::memory_order_relaxed)), "hash() function changed for key in table or internal error");
                        this->add_to_bucket(b_new, curr);
                        curr = next;
                    } else {
                        prev = curr;
                        curr = curr->next;
                    }
                }
            }
        }
    }

    // Clear table
    void clear() {
        hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
        __TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
        this->my_size.store(0, std::memory_order_relaxed);
        segment_index_type s = this->segment_index_of( m ) + 1;
        __TBB_ASSERT( s == this->pointers_per_table || !this->my_table[s].load(std::memory_order_relaxed), "wrong mask or concurrent grow" );
        while(s != 0) {
            s--;
            __TBB_ASSERT(this->is_valid(this->my_table[s].load(std::memory_order_relaxed)), "wrong mask or concurrent grow" );
            segment_ptr_type buckets_ptr = this->my_table[s].load(std::memory_order_relaxed);
            size_type sz = this->segment_size( s ? s : 1 );
            for( segment_index_type i = 0; i < sz; i++ )
                for( node_base *n = buckets_ptr[i].node_list.load(std::memory_order_relaxed);
                    this->is_valid(n); n = buckets_ptr[i].node_list.load(std::memory_order_relaxed) )
                {
                    buckets_ptr[i].node_list.store(n->next, std::memory_order_relaxed);
                    delete_node( n );
                }
            this->delete_segment(s);
        }
        this->my_mask.store(this->embedded_buckets - 1, std::memory_order_relaxed);
    }

    // Clear table and destroy it.
    ~concurrent_hash_map() { clear(); }

    //------------------------------------------------------------------------
    // Parallel algorithm support
    //------------------------------------------------------------------------
    range_type range( size_type grainsize=1 ) {
        return range_type( *this, grainsize );
    }
    const_range_type range( size_type grainsize=1 ) const {
        return const_range_type( *this, grainsize );
    }

    //------------------------------------------------------------------------
    // STL support - not thread-safe methods
    //------------------------------------------------------------------------
    iterator begin() { return iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
    const_iterator begin() const { return const_iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
    const_iterator cbegin() const { return const_iterator( *this, 0, this->my_embedded_segment, this->my_embedded_segment->node_list.load(std::memory_order_relaxed) ); }
    iterator end() { return iterator( *this, 0, nullptr, nullptr ); }
    const_iterator end() const { return const_iterator( *this, 0, nullptr, nullptr ); }
    const_iterator cend() const { return const_iterator( *this, 0, nullptr, nullptr ); }
    std::pair<iterator, iterator> equal_range( const Key& key ) { return internal_equal_range( key, end() ); }
    std::pair<const_iterator, const_iterator> equal_range( const Key& key ) const { return internal_equal_range( key, end() ); }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            std::pair<iterator, iterator>>::type equal_range( const K& key ) {
        return internal_equal_range(key, end());
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            std::pair<const_iterator, const_iterator>>::type equal_range( const K& key ) const {
        return internal_equal_range(key, end());
    }

    // Number of items in table.
    size_type size() const { return this->my_size.load(std::memory_order_acquire); }

    // True if size()==0.
    __TBB_nodiscard bool empty() const { return size() == 0; }

    // Upper bound on size.
    size_type max_size() const {
        return allocator_traits_type::max_size(base_type::get_allocator());
    }

    // Returns the current number of buckets
    size_type bucket_count() const { return this->my_mask.load(std::memory_order_relaxed) + 1; }

    // return allocator object
    allocator_type get_allocator() const { return base_type::get_allocator(); }

    // swap two instances. Iterators are invalidated
    void swap(concurrent_hash_map& table) {
        using pocs_type = typename node_allocator_traits::propagate_on_container_swap;
        using is_equal_type = typename node_allocator_traits::is_always_equal;
        swap_allocators(this->my_allocator, table.my_allocator);
        internal_swap(table, tbb::detail::disjunction<pocs_type, is_equal_type>());
    }

    //------------------------------------------------------------------------
    // concurrent map operations
    //------------------------------------------------------------------------

    // Return count of items (0 or 1)
    size_type count( const Key &key ) const {
        return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, nullptr, /*write=*/false, &do_not_allocate_node);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            size_type>::type count( const K& key ) const {
        return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, nullptr, /*write=*/false, &do_not_allocate_node);
    }

    // Find item and acquire a read lock on the item.
    /** Return true if item is found, false otherwise. */
    bool find( const_accessor &result, const Key &key ) const {
        result.release();
        return const_cast<concurrent_hash_map*>(this)->lookup</*insert*/false>(key, nullptr, &result, /*write=*/false, &do_not_allocate_node );
    }

    // Find item and acquire a write lock on the item.
    /** Return true if item is found, false otherwise. */
    bool find( accessor &result, const Key &key ) {
        result.release();
        return lookup</*insert*/false>(key, nullptr, &result, /*write=*/true, &do_not_allocate_node);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            bool>::type find( const_accessor& result, const K& key ) {
        result.release();
        return lookup</*insert*/false>(key, nullptr, &result, /*write=*/false, &do_not_allocate_node);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            bool>::type find( accessor& result, const K& key ) {
        result.release();
        return lookup</*insert*/false>(key, nullptr, &result, /*write=*/true, &do_not_allocate_node);
    }

    // Insert item (if not already present) and acquire a read lock on the item.
    /** Returns true if item is new. */
    bool insert( const_accessor &result, const Key &key ) {
        result.release();
        return lookup</*insert*/true>(key, nullptr, &result, /*write=*/false, &allocate_node_default_construct<>);
    }

    // Insert item (if not already present) and acquire a write lock on the item.
    /** Returns true if item is new. */
    bool insert( accessor &result, const Key &key ) {
        result.release();
        return lookup</*insert*/true>(key, nullptr, &result, /*write=*/true, &allocate_node_default_construct<>);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value &&
                            std::is_constructible<key_type, const K&>::value,
                            bool>::type insert( const_accessor& result, const K& key ) {
        result.release();
        return lookup</*insert*/true>(key, nullptr, &result, /*write=*/false, &allocate_node_default_construct<K>);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value &&
                            std::is_constructible<key_type, const K&>::value,
                            bool>::type insert( accessor& result, const K& key ) {
        result.release();
        return lookup</*insert*/true>(key, nullptr, &result, /*write=*/true, &allocate_node_default_construct<K>);
    }

    // Insert item by copying if there is no such key present already and acquire a read lock on the item.
    /** Returns true if item is new. */
    bool insert( const_accessor &result, const value_type &value ) {
        result.release();
        return lookup</*insert*/true>(value.first, &value.second, &result, /*write=*/false, &allocate_node_copy_construct);
    }

    // Insert item by copying if there is no such key present already and acquire a write lock on the item.
    /** Returns true if item is new. */
    bool insert( accessor &result, const value_type &value ) {
        result.release();
        return lookup</*insert*/true>(value.first, &value.second, &result, /*write=*/true, &allocate_node_copy_construct);
    }

    // Insert item by copying if there is no such key present already
    /** Returns true if item is inserted. */
    bool insert( const value_type &value ) {
        return lookup</*insert*/true>(value.first, &value.second, nullptr, /*write=*/false, &allocate_node_copy_construct);
    }

    // Insert item by copying if there is no such key present already and acquire a read lock on the item.
    /** Returns true if item is new. */
    bool insert( const_accessor &result, value_type && value ) {
        return generic_move_insert(result, std::move(value));
    }

    // Insert item by copying if there is no such key present already and acquire a write lock on the item.
    /** Returns true if item is new. */
    bool insert( accessor &result, value_type && value ) {
        return generic_move_insert(result, std::move(value));
    }

    // Insert item by copying if there is no such key present already
    /** Returns true if item is inserted. */
    bool insert( value_type && value ) {
        return generic_move_insert(accessor_not_used(), std::move(value));
    }

    // Insert item by copying if there is no such key present already and acquire a read lock on the item.
    /** Returns true if item is new. */
    template <typename... Args>
    bool emplace( const_accessor &result, Args&&... args ) {
        return generic_emplace(result, std::forward<Args>(args)...);
    }

    // Insert item by copying if there is no such key present already and acquire a write lock on the item.
    /** Returns true if item is new. */
    template <typename... Args>
    bool emplace( accessor &result, Args&&... args ) {
        return generic_emplace(result, std::forward<Args>(args)...);
    }

    // Insert item by copying if there is no such key present already
    /** Returns true if item is inserted. */
    template <typename... Args>
    bool emplace( Args&&... args ) {
        return generic_emplace(accessor_not_used(), std::forward<Args>(args)...);
    }

    // Insert range [first, last)
    template <typename I>
    void insert( I first, I last ) {
        for ( ; first != last; ++first )
            insert( *first );
    }

    // Insert initializer list
    void insert( std::initializer_list<value_type> il ) {
        insert( il.begin(), il.end() );
    }

    // Erase item.
    /** Return true if item was erased by particularly this call. */
    bool erase( const Key &key ) {
        return internal_erase(key);
    }

    template <typename K>
    typename std::enable_if<hash_compare_is_transparent<K>::value,
                            bool>::type erase( const K& key ) {
        return internal_erase(key);
    }

    // Erase item by const_accessor.
    /** Return true if item was erased by particularly this call. */
    bool erase( const_accessor& item_accessor ) {
        return exclude( item_accessor );
    }

    // Erase item by accessor.
    /** Return true if item was erased by particularly this call. */
    bool erase( accessor& item_accessor ) {
        return exclude( item_accessor );
    }

protected:
    template <typename K, typename AllocateNodeType>
    node* allocate_node_helper( const K& key, const T* t, AllocateNodeType allocate_node, std::true_type ) {
        return allocate_node(base_type::get_allocator(), key, t);
    }

    template <typename K, typename AllocateNodeType>
    node* allocate_node_helper( const K&, const T*, AllocateNodeType, std::false_type ) {
        __TBB_ASSERT(false, "allocate_node_helper with std::false_type should never been called");
        return nullptr;
    }

    // Insert or find item and optionally acquire a lock on the item.
    template <bool OpInsert, typename K, typename AllocateNodeType>
    bool lookup( const K &key, const T *t, const_accessor *result, bool write, AllocateNodeType allocate_node, node *tmp_n  = nullptr)
    {
        __TBB_ASSERT( !result || !result->my_node, nullptr );
        bool return_value;
        hashcode_type const h = my_hash_compare.hash( key );
        hashcode_type m = this->my_mask.load(std::memory_order_acquire);
        segment_index_type grow_segment = 0;
        node *n;
        restart:
        {//lock scope
            __TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
            return_value = false;
            // get bucket
            bucket_accessor b( this, h & m );
            // find a node
            n = search_bucket( key, b() );
            if( OpInsert ) {
                // [opt] insert a key
                if( !n ) {
                    if( !tmp_n ) {
                        tmp_n = allocate_node_helper(key, t, allocate_node, std::integral_constant<bool, OpInsert>{});
                    }
                    while ( !b.is_writer() && !b.upgrade_to_writer() ) { // TODO: improved insertion
                        // Rerun search list, in case another thread inserted the intem during the upgrade
                        n = search_bucket(key, b());
                        if (this->is_valid(n)) { // unfortunately, it did
                            if (!b.downgrade_to_reader()) {
                                // If the lock was downgraded with reacquiring the mutex
                                // Rerun search list in case another thread removed the item during the downgrade
                                n = search_bucket(key, b());
                                if (!this->is_valid(n)) {
                                    // Unfortunately, it did
                                    // We need to try upgrading to writer again
                                    continue;
                                }
                            }
                            goto exists;
                        }
                    }

                    if( this->check_mask_race(h, m) )
                        goto restart; // b.release() is done in ~b().
                    // insert and set flag to grow the container
                    grow_segment = this->insert_new_node( b(), n = tmp_n, m );
                    tmp_n = nullptr;
                    return_value = true;
                }
            } else { // find or count
                if( !n ) {
                    if( this->check_mask_race( h, m ) )
                        goto restart; // b.release() is done in ~b(). TODO: replace by continue
                    return false;
                }
                return_value = true;
            }
        exists:
            if( !result ) goto check_growth;
            // TODO: the following seems as generic/regular operation
            // acquire the item
            if( !result->try_acquire( n->mutex, write ) ) {
                for( tbb::detail::atomic_backoff backoff(true);; ) {
                    if( result->try_acquire( n->mutex, write ) ) break;
                    if( !backoff.bounded_pause() ) {
                        // the wait takes really long, restart the operation
                        b.release();
                        __TBB_ASSERT( !OpInsert || !return_value, "Can't acquire new item in locked bucket?" );
                        yield();
                        m = this->my_mask.load(std::memory_order_acquire);
                        goto restart;
                    }
                }
            }
        }//lock scope
        result->my_node = n;
        result->my_hash = h;
    check_growth:
        // [opt] grow the container
        if( grow_segment ) {
            this->enable_segment( grow_segment );
        }
        if( tmp_n ) // if OpInsert only
            delete_node( tmp_n );
        return return_value;
    }

    struct accessor_not_used { void release(){}};
    friend const_accessor* accessor_location( accessor_not_used const& ){ return nullptr;}
    friend const_accessor* accessor_location( const_accessor & a )      { return &a;}

    friend bool is_write_access_needed( accessor const& )           { return true;}
    friend bool is_write_access_needed( const_accessor const& )     { return false;}
    friend bool is_write_access_needed( accessor_not_used const& )  { return false;}

    template <typename Accessor>
    bool generic_move_insert( Accessor && result, value_type && value ) {
        result.release();
        return lookup</*insert*/true>(value.first, &value.second, accessor_location(result), is_write_access_needed(result), &allocate_node_move_construct);
    }

    template <typename Accessor, typename... Args>
    bool generic_emplace( Accessor && result, Args &&... args ) {
        result.release();
        node * node_ptr = create_node(base_type::get_allocator(), std::forward<Args>(args)...);
        return lookup</*insert*/true>(node_ptr->value().first, nullptr, accessor_location(result), is_write_access_needed(result), &do_not_allocate_node, node_ptr);
    }

    // delete item by accessor
    bool exclude( const_accessor &item_accessor ) {
        __TBB_ASSERT( item_accessor.my_node, nullptr );
        node_base *const exclude_node = item_accessor.my_node;
        hashcode_type const hash = item_accessor.my_hash;
        hashcode_type mask = this->my_mask.load(std::memory_order_acquire);
        do {
            // get bucket
            bucket_accessor b( this, hash & mask, /*writer=*/true );
            node_base* prev = nullptr;
            node_base* curr = b()->node_list.load(std::memory_order_relaxed);

            while (curr && curr != exclude_node) {
                prev = curr;
                curr = curr->next;
            }

            if (curr == nullptr) { // someone else was first
                if (this->check_mask_race(hash, mask))
                    continue;
                item_accessor.release();
                return false;
            }
            __TBB_ASSERT( curr == exclude_node, nullptr );
            // remove from container
            if (prev == nullptr) {
                b()->node_list.store(curr->next, std::memory_order_relaxed);
            } else {
                prev->next = curr->next;
            }

            this->my_size--;
            break;
        } while(true);
        if (!item_accessor.is_writer()) { // need to get exclusive lock
            item_accessor.upgrade_to_writer(); // return value means nothing here
        }

        item_accessor.release();
        delete_node(exclude_node); // Only one thread can delete it
        return true;
    }

    template <typename K>
    bool internal_erase( const K& key ) {
        node_base *erase_node;
        hashcode_type const hash = my_hash_compare.hash(key);
        hashcode_type mask = this->my_mask.load(std::memory_order_acquire);
    restart:
        {//lock scope
            // get bucket
            bucket_accessor b( this, hash & mask );
        search:
            node_base* prev = nullptr;
            erase_node = b()->node_list.load(std::memory_order_relaxed);
            while (this->is_valid(erase_node) && !my_hash_compare.equal(key, static_cast<node*>(erase_node)->value().first ) ) {
                prev = erase_node;
                erase_node = erase_node->next;
            }

            if (erase_node == nullptr) { // not found, but mask could be changed
                if (this->check_mask_race(hash, mask))
                    goto restart;
                return false;
            } else if (!b.is_writer() && !b.upgrade_to_writer()) {
                if (this->check_mask_race(hash, mask)) // contended upgrade, check mask
                    goto restart;
                goto search;
            }

            // remove from container
            if (prev == nullptr) {
                b()->node_list.store(erase_node->next, std::memory_order_relaxed);
            } else {
                prev->next = erase_node->next;
            }
            this->my_size--;
        }
        {
            typename node::scoped_type item_locker( erase_node->mutex, /*write=*/true );
        }
        // note: there should be no threads pretending to acquire this mutex again, do not try to upgrade const_accessor!
        delete_node(erase_node); // Only one thread can delete it due to write lock on the bucket
        return true;
    }

    // Returns an iterator for an item defined by the key, or for the next item after it (if upper==true)
    template <typename K, typename I>
    std::pair<I, I> internal_equal_range( const K& key, I end_ ) const {
        hashcode_type h = my_hash_compare.hash( key );
        hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
        __TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
        h &= m;
        bucket *b = this->get_bucket( h );
        while (rehash_required(b->node_list.load(std::memory_order_relaxed))) {
            m = ( hashcode_type(1) << tbb::detail::log2( h ) ) - 1; // get parent mask from the topmost bit
            b = this->get_bucket( h &= m );
        }
        node *n = search_bucket( key, b );
        if( !n )
            return std::make_pair(end_, end_);
        iterator lower(*this, h, b, n), upper(lower);
        return std::make_pair(lower, ++upper);
    }

    // Copy "source" to *this, where *this must start out empty.
    void internal_copy( const concurrent_hash_map& source ) {
        hashcode_type mask = source.my_mask.load(std::memory_order_relaxed);
        if( this->my_mask.load(std::memory_order_relaxed) == mask ) { // optimized version
            this->reserve(source.my_size.load(std::memory_order_relaxed)); // TODO: load_factor?
            bucket *dst = nullptr, *src = nullptr;
            bool rehashing_required = false;
            for( hashcode_type k = 0; k <= mask; k++ ) {
                if( k & (k-2) ) ++dst,src++; // not the beginning of a segment
                else { dst = this->get_bucket( k ); src = source.get_bucket( k ); }
                __TBB_ASSERT(!rehash_required(dst->node_list.load(std::memory_order_relaxed)), "Invalid bucket in destination table");
                node *n = static_cast<node*>( src->node_list.load(std::memory_order_relaxed) );
                if (rehash_required(n)) { // source is not rehashed, items are in previous buckets
                    rehashing_required = true;
                    dst->node_list.store(reinterpret_cast<node_base*>(rehash_req_flag), std::memory_order_relaxed);
                } else for(; n; n = static_cast<node*>( n->next ) ) {
                    node* node_ptr = create_node(base_type::get_allocator(), n->value().first, n->value().second);
                    this->add_to_bucket( dst, node_ptr);
                    this->my_size.fetch_add(1, std::memory_order_relaxed);
                }
            }
            if( rehashing_required ) rehash();
        } else internal_copy(source.begin(), source.end(), source.my_size.load(std::memory_order_relaxed));
    }

    template <typename I>
    void internal_copy( I first, I last, size_type reserve_size ) {
        this->reserve(reserve_size); // TODO: load_factor?
        hashcode_type m = this->my_mask.load(std::memory_order_relaxed);
        for(; first != last; ++first) {
            const auto& key = (*first).first;
            hashcode_type h = my_hash_compare.hash(key);
            bucket *b = this->get_bucket( h & m );
            __TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), "Invalid bucket in destination table");
            
            if (search_bucket(key, b) == nullptr) {
                node* node_ptr = create_node(base_type::get_allocator(), *first);
                this->add_to_bucket( b, node_ptr );
                ++this->my_size; // TODO: replace by non-atomic op
            }
        }
    }

    void internal_move_construct_with_allocator( concurrent_hash_map&& other, const allocator_type&,
                                                /*is_always_equal=*/std::true_type )
    {
        this->internal_move(std::move(other));
    }

    void internal_move_construct_with_allocator( concurrent_hash_map&& other, const allocator_type& a,
                                                /*is_always_equal=*/std::false_type )
    {
        if (a == other.get_allocator()){
            this->internal_move(std::move(other));
        } else {
            try_call( [&] {
                internal_copy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()),
                    other.size());
            }).on_exception( [&] {
                this->clear();
            });
        }
    }

    void internal_move_assign( concurrent_hash_map&& other,
        /*is_always_equal || POCMA = */std::true_type)
    {
        this->internal_move(std::move(other));
    }

    void internal_move_assign(concurrent_hash_map&& other, /*is_always_equal=*/ std::false_type) {
        if (this->my_allocator == other.my_allocator) {
            this->internal_move(std::move(other));
        } else {
            //do per element move
            internal_copy(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()),
                other.size());
        }
    }

    void internal_swap(concurrent_hash_map& other, /*is_always_equal || POCS = */ std::true_type) {
        this->internal_swap_content(other);
    }

    void internal_swap(concurrent_hash_map& other, /*is_always_equal || POCS = */ std::false_type) {
        __TBB_ASSERT(this->my_allocator == other.my_allocator, nullptr);
        this->internal_swap_content(other);
    }

    // Fast find when no concurrent erasure is used. For internal use inside TBB only!
    /** Return pointer to item with given key, or nullptr if no such item exists.
        Must not be called concurrently with erasure operations. */
    const_pointer internal_fast_find( const Key& key ) const {
        hashcode_type h = my_hash_compare.hash( key );
        hashcode_type m = this->my_mask.load(std::memory_order_acquire);
        node *n;
    restart:
        __TBB_ASSERT((m&(m+1))==0, "data structure is invalid");
        bucket *b = this->get_bucket( h & m );
        // TODO: actually, notification is unnecessary here, just hiding double-check
        if (rehash_required(b->node_list.load(std::memory_order_acquire)))
        {
            typename bucket::scoped_type lock;
            if( lock.try_acquire( b->mutex, /*write=*/true ) ) {
                if (rehash_required(b->node_list.load(std::memory_order_relaxed)))
                    const_cast<concurrent_hash_map*>(this)->rehash_bucket( b, h & m ); //recursive rehashing
            }
            else lock.acquire( b->mutex, /*write=*/false );
            __TBB_ASSERT(!rehash_required(b->node_list.load(std::memory_order_relaxed)), nullptr);
        }
        n = search_bucket( key, b );
        if( n )
            return n->storage();
        else if( this->check_mask_race( h, m ) )
            goto restart;
        return nullptr;
    }
};

#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <typename It,
          typename HashCompare = d1::tbb_hash_compare<iterator_key_t<It>>,
          typename Alloc = tbb_allocator<iterator_alloc_pair_t<It>>,
          typename = std::enable_if_t<is_input_iterator_v<It>>,
          typename = std::enable_if_t<is_allocator_v<Alloc>>,
          typename = std::enable_if_t<!is_allocator_v<HashCompare>>>
concurrent_hash_map( It, It, HashCompare = HashCompare(), Alloc = Alloc() )
-> concurrent_hash_map<iterator_key_t<It>, iterator_mapped_t<It>, HashCompare, Alloc>;

template <typename It, typename Alloc,
          typename = std::enable_if_t<is_input_iterator_v<It>>,
          typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_hash_map( It, It, Alloc )
-> concurrent_hash_map<iterator_key_t<It>, iterator_mapped_t<It>, d1::tbb_hash_compare<iterator_key_t<It>>, Alloc>;

template <typename Key, typename T,
          typename HashCompare = d1::tbb_hash_compare<std::remove_const_t<Key>>,
          typename Alloc = tbb_allocator<std::pair<const Key, T>>,
          typename = std::enable_if_t<is_allocator_v<Alloc>>,
          typename = std::enable_if_t<!is_allocator_v<HashCompare>>>
concurrent_hash_map( std::initializer_list<std::pair<Key, T>>, HashCompare = HashCompare(), Alloc = Alloc() )
-> concurrent_hash_map<std::remove_const_t<Key>, T, HashCompare, Alloc>;

template <typename Key, typename T, typename Alloc,
          typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_hash_map( std::initializer_list<std::pair<Key, T>>, Alloc )
-> concurrent_hash_map<std::remove_const_t<Key>, T, d1::tbb_hash_compare<std::remove_const_t<Key>>, Alloc>;

#endif /* __TBB_CPP17_DEDUCTION_GUIDES_PRESENT */

template <typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator==(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b) {
    if(a.size() != b.size()) return false;
    typename concurrent_hash_map<Key, T, HashCompare, A1>::const_iterator i(a.begin()), i_end(a.end());
    typename concurrent_hash_map<Key, T, HashCompare, A2>::const_iterator j, j_end(b.end());
    for(; i != i_end; ++i) {
        j = b.equal_range(i->first).first;
        if( j == j_end || !(i->second == j->second) ) return false;
    }
    return true;
}

#if !__TBB_CPP20_COMPARISONS_PRESENT
template <typename Key, typename T, typename HashCompare, typename A1, typename A2>
inline bool operator!=(const concurrent_hash_map<Key, T, HashCompare, A1> &a, const concurrent_hash_map<Key, T, HashCompare, A2> &b)
{    return !(a == b); }
#endif // !__TBB_CPP20_COMPARISONS_PRESENT

template <typename Key, typename T, typename HashCompare, typename A>
inline void swap(concurrent_hash_map<Key, T, HashCompare, A> &a, concurrent_hash_map<Key, T, HashCompare, A> &b)
{    a.swap( b ); }

} // namespace d2
} // namespace detail

inline namespace v1 {
    using detail::split;
    using detail::d2::concurrent_hash_map;
    using detail::d1::tbb_hash_compare;
} // namespace v1

} // namespace tbb

#endif /* __TBB_concurrent_hash_map_H */