1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
|
/*
Copyright (c) 2005-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_concurrent_vector_H
#define __TBB_concurrent_vector_H
#include "detail/_namespace_injection.h"
#include "detail/_utils.h"
#include "detail/_assert.h"
#include "detail/_allocator_traits.h"
#include "detail/_segment_table.h"
#include "detail/_containers_helpers.h"
#include "blocked_range.h"
#include "cache_aligned_allocator.h"
#include <algorithm>
#include <utility> // std::move_if_noexcept
#include <algorithm>
#if __TBB_CPP20_COMPARISONS_PRESENT
#include <compare>
#endif
namespace tbb {
namespace detail {
namespace d1 {
template <typename Vector, typename Value>
class vector_iterator {
using vector_type = Vector;
public:
using value_type = Value;
using size_type = typename vector_type::size_type;
using difference_type = typename vector_type::difference_type;
using pointer = value_type*;
using reference = value_type&;
using iterator_category = std::random_access_iterator_tag;
template <typename Vec, typename Val>
friend vector_iterator<Vec, Val> operator+( typename vector_iterator<Vec, Val>::difference_type, const vector_iterator<Vec, Val>& );
template <typename Vec, typename Val1, typename Val2>
friend typename vector_iterator<Vec, Val1>::difference_type operator-( const vector_iterator<Vec, Val1>&, const vector_iterator<Vec, Val2>& );
template <typename Vec, typename Val1, typename Val2>
friend bool operator==( const vector_iterator<Vec, Val1>&, const vector_iterator<Vec, Val2>& );
template <typename Vec, typename Val1, typename Val2>
friend bool operator<( const vector_iterator<Vec, Val1>&, const vector_iterator<Vec, Val2>& );
template <typename Vec, typename Val>
friend class vector_iterator;
template <typename T, typename Allocator>
friend class concurrent_vector;
private:
vector_iterator( const vector_type& vector, size_type index, value_type* item = nullptr )
: my_vector(const_cast<vector_type*>(&vector)), my_index(index), my_item(item)
{}
public:
vector_iterator() : my_vector(nullptr), my_index(~size_type(0)), my_item(nullptr)
{}
vector_iterator( const vector_iterator<vector_type, typename vector_type::value_type>& other )
: my_vector(other.my_vector), my_index(other.my_index), my_item(other.my_item)
{}
vector_iterator& operator=( const vector_iterator<vector_type, typename vector_type::value_type>& other ) {
my_vector = other.my_vector;
my_index = other.my_index;
my_item = other.my_item;
return *this;
}
vector_iterator operator+( difference_type offset ) const {
return vector_iterator(*my_vector, my_index + offset);
}
vector_iterator& operator+=( difference_type offset ) {
my_index += offset;
my_item = nullptr;
return *this;
}
vector_iterator operator-( difference_type offset ) const {
return vector_iterator(*my_vector, my_index - offset);
}
vector_iterator& operator-=( difference_type offset ) {
my_index -= offset;
my_item = nullptr;
return *this;
}
reference operator*() const {
value_type *item = my_item;
if (item == nullptr) {
item = &my_vector->internal_subscript(my_index);
} else {
__TBB_ASSERT(item == &my_vector->internal_subscript(my_index), "corrupt cache");
}
return *item;
}
pointer operator->() const { return &(operator*()); }
reference operator[]( difference_type k ) const {
return my_vector->internal_subscript(my_index + k);
}
vector_iterator& operator++() {
++my_index;
if (my_item != nullptr) {
if (vector_type::is_first_element_in_segment(my_index)) {
// If the iterator crosses a segment boundary, the pointer become invalid
// as possibly next segment is in another memory location
my_item = nullptr;
} else {
++my_item;
}
}
return *this;
}
vector_iterator operator++(int) {
vector_iterator result = *this;
++(*this);
return result;
}
vector_iterator& operator--() {
__TBB_ASSERT(my_index > 0, "operator--() applied to iterator already at beginning of concurrent_vector");
--my_index;
if (my_item != nullptr) {
if (vector_type::is_first_element_in_segment(my_index)) {
// If the iterator crosses a segment boundary, the pointer become invalid
// as possibly next segment is in another memory location
my_item = nullptr;
} else {
--my_item;
}
}
return *this;
}
vector_iterator operator--(int) {
vector_iterator result = *this;
--(*this);
return result;
}
private:
// concurrent_vector over which we are iterating.
vector_type* my_vector;
// Index into the vector
size_type my_index;
// Caches my_vector *it;
// If my_item == nullptr cached value is not available use internal_subscript(my_index)
mutable value_type* my_item;
}; // class vector_iterator
template <typename Vector, typename T>
vector_iterator<Vector, T> operator+( typename vector_iterator<Vector, T>::difference_type offset,
const vector_iterator<Vector, T>& v )
{
return vector_iterator<Vector, T>(*v.my_vector, v.my_index + offset);
}
template <typename Vector, typename T, typename U>
typename vector_iterator<Vector, T>::difference_type operator-( const vector_iterator<Vector, T>& i,
const vector_iterator<Vector, U>& j )
{
using difference_type = typename vector_iterator<Vector, T>::difference_type;
return static_cast<difference_type>(i.my_index) - static_cast<difference_type>(j.my_index);
}
template <typename Vector, typename T, typename U>
bool operator==( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return i.my_vector == j.my_vector && i.my_index == j.my_index;
}
template <typename Vector, typename T, typename U>
bool operator!=( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return !(i == j);
}
template <typename Vector, typename T, typename U>
bool operator<( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return i.my_index < j.my_index;
}
template <typename Vector, typename T, typename U>
bool operator>( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return j < i;
}
template <typename Vector, typename T, typename U>
bool operator>=( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return !(i < j);
}
template <typename Vector, typename T, typename U>
bool operator<=( const vector_iterator<Vector, T>& i, const vector_iterator<Vector, U>& j ) {
return !(j < i);
}
static constexpr std::size_t embedded_table_num_segments = 3;
template <typename T, typename Allocator = tbb::cache_aligned_allocator<T>>
class concurrent_vector
: private segment_table<T, Allocator, concurrent_vector<T, Allocator>, embedded_table_num_segments>
{
using self_type = concurrent_vector<T, Allocator>;
using base_type = segment_table<T, Allocator, self_type, embedded_table_num_segments>;
friend class segment_table<T, Allocator, self_type, embedded_table_num_segments>;
template <typename Iterator>
class generic_range_type : public tbb::blocked_range<Iterator> {
using base_type = tbb::blocked_range<Iterator>;
public:
using value_type = T;
using reference = T&;
using const_reference = const T&;
using iterator = Iterator;
using difference_type = std::ptrdiff_t;
using base_type::base_type;
template<typename U>
generic_range_type( const generic_range_type<U>& r) : blocked_range<Iterator>(r.begin(), r.end(), r.grainsize()) {}
generic_range_type( generic_range_type& r, split ) : blocked_range<Iterator>(r, split()) {}
}; // class generic_range_type
static_assert(std::is_same<T, typename Allocator::value_type>::value,
"value_type of the container must be the same as its allocator's");
using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;
// Segment table for concurrent_vector can be extended
static constexpr bool allow_table_extending = true;
static constexpr bool is_noexcept_assignment = allocator_traits_type::propagate_on_container_move_assignment::value ||
allocator_traits_type::is_always_equal::value;
static constexpr bool is_noexcept_swap = allocator_traits_type::propagate_on_container_swap::value ||
allocator_traits_type::is_always_equal::value;
public:
using value_type = T;
using allocator_type = Allocator;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = typename allocator_traits_type::pointer;
using const_pointer = typename allocator_traits_type::const_pointer;
using iterator = vector_iterator<concurrent_vector, value_type>;
using const_iterator = vector_iterator<concurrent_vector, const value_type>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using range_type = generic_range_type<iterator>;
using const_range_type = generic_range_type<const_iterator>;
concurrent_vector() : concurrent_vector(allocator_type()) {}
explicit concurrent_vector( const allocator_type& alloc ) noexcept
: base_type(alloc)
{}
explicit concurrent_vector( size_type count, const value_type& value,
const allocator_type& alloc = allocator_type() )
: concurrent_vector(alloc)
{
try_call( [&] {
grow_by(count, value);
} ).on_exception( [&] {
base_type::clear();
});
}
explicit concurrent_vector( size_type count, const allocator_type& alloc = allocator_type() )
: concurrent_vector(alloc)
{
try_call( [&] {
grow_by(count);
} ).on_exception( [&] {
base_type::clear();
});
}
template <typename InputIterator>
concurrent_vector( InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type() )
: concurrent_vector(alloc)
{
try_call( [&] {
grow_by(first, last);
} ).on_exception( [&] {
base_type::clear();
});
}
concurrent_vector( const concurrent_vector& other )
: base_type(segment_table_allocator_traits::select_on_container_copy_construction(other.get_allocator()))
{
try_call( [&] {
grow_by(other.begin(), other.end());
} ).on_exception( [&] {
base_type::clear();
});
}
concurrent_vector( const concurrent_vector& other, const allocator_type& alloc )
: base_type(other, alloc) {}
concurrent_vector(concurrent_vector&& other) noexcept
: base_type(std::move(other))
{}
concurrent_vector( concurrent_vector&& other, const allocator_type& alloc )
: base_type(std::move(other), alloc)
{}
concurrent_vector( std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type() )
: concurrent_vector(init.begin(), init.end(), alloc)
{}
~concurrent_vector() {}
// Assignment
concurrent_vector& operator=( const concurrent_vector& other ) {
base_type::operator=(other);
return *this;
}
concurrent_vector& operator=( concurrent_vector&& other ) noexcept(is_noexcept_assignment) {
base_type::operator=(std::move(other));
return *this;
}
concurrent_vector& operator=( std::initializer_list<value_type> init ) {
assign(init);
return *this;
}
void assign( size_type count, const value_type& value ) {
destroy_elements();
grow_by(count, value);
}
template <typename InputIterator>
typename std::enable_if<is_input_iterator<InputIterator>::value, void>::type
assign( InputIterator first, InputIterator last ) {
destroy_elements();
grow_by(first, last);
}
void assign( std::initializer_list<value_type> init ) {
destroy_elements();
assign(init.begin(), init.end());
}
// Concurrent growth
iterator grow_by( size_type delta ) {
return internal_grow_by_delta(delta);
}
iterator grow_by( size_type delta, const value_type& value ) {
return internal_grow_by_delta(delta, value);
}
template <typename ForwardIterator>
typename std::enable_if<is_input_iterator<ForwardIterator>::value, iterator>::type
grow_by( ForwardIterator first, ForwardIterator last ) {
auto delta = std::distance(first, last);
return internal_grow_by_delta(delta, first, last);
}
iterator grow_by( std::initializer_list<value_type> init ) {
return grow_by(init.begin(), init.end());
}
iterator grow_to_at_least( size_type n ) {
return internal_grow_to_at_least(n);
}
iterator grow_to_at_least( size_type n, const value_type& value ) {
return internal_grow_to_at_least(n, value);
}
iterator push_back( const value_type& item ) {
return internal_emplace_back(item);
}
iterator push_back( value_type&& item ) {
return internal_emplace_back(std::move(item));
}
template <typename... Args>
iterator emplace_back( Args&&... args ) {
return internal_emplace_back(std::forward<Args>(args)...);
}
// Items access
reference operator[]( size_type index ) {
return internal_subscript(index);
}
const_reference operator[]( size_type index ) const {
return internal_subscript(index);
}
reference at( size_type index ) {
return internal_subscript_with_exceptions(index);
}
const_reference at( size_type index ) const {
return internal_subscript_with_exceptions(index);
}
// Get range for iterating with parallel algorithms
range_type range( size_t grainsize = 1 ) {
return range_type(begin(), end(), grainsize);
}
// Get const range for iterating with parallel algorithms
const_range_type range( size_t grainsize = 1 ) const {
return const_range_type(begin(), end(), grainsize);
}
reference front() {
return internal_subscript(0);
}
const_reference front() const {
return internal_subscript(0);
}
reference back() {
return internal_subscript(size() - 1);
}
const_reference back() const {
return internal_subscript(size() - 1);
}
// Iterators
iterator begin() { return iterator(*this, 0); }
const_iterator begin() const { return const_iterator(*this, 0); }
const_iterator cbegin() const { return const_iterator(*this, 0); }
iterator end() { return iterator(*this, size()); }
const_iterator end() const { return const_iterator(*this, size()); }
const_iterator cend() const { return const_iterator(*this, size()); }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
const_reverse_iterator crbegin() const { return const_reverse_iterator(cend()); }
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
const_reverse_iterator crend() const { return const_reverse_iterator(cbegin()); }
allocator_type get_allocator() const {
return base_type::get_allocator();
}
// Storage
bool empty() const noexcept {
return 0 == size();
}
size_type size() const noexcept {
return std::min(this->my_size.load(std::memory_order_acquire), capacity());
}
size_type max_size() const noexcept {
return allocator_traits_type::max_size(base_type::get_allocator());
}
size_type capacity() const noexcept {
return base_type::capacity();
}
void reserve( size_type n ) {
if (n == 0) return;
if (n > max_size()) {
tbb::detail::throw_exception(exception_id::reservation_length_error);
}
this->assign_first_block_if_necessary(this->segment_index_of(n - 1) + 1);
base_type::reserve(n);
}
void resize( size_type n ) {
internal_resize(n);
}
void resize( size_type n, const value_type& val ) {
internal_resize(n, val);
}
void shrink_to_fit() {
internal_compact();
}
void swap(concurrent_vector& other) noexcept(is_noexcept_swap) {
base_type::swap(other);
}
void clear() {
destroy_elements();
}
private:
using segment_type = typename base_type::segment_type;
using segment_table_type = typename base_type::segment_table_type;
using segment_table_allocator_traits = typename base_type::segment_table_allocator_traits;
using segment_index_type = typename base_type::segment_index_type;
using segment_element_type = typename base_type::value_type;
using segment_element_allocator_type = typename allocator_traits_type::template rebind_alloc<segment_element_type>;
using segment_element_allocator_traits = tbb::detail::allocator_traits<segment_element_allocator_type>;
segment_table_type allocate_long_table( const typename base_type::atomic_segment* embedded_table, size_type start_index ) {
__TBB_ASSERT(start_index <= this->embedded_table_size, "Start index out of embedded table");
// If other threads are trying to set pointers in the short segment, wait for them to finish their
// assignments before we copy the short segment to the long segment. Note: grow_to_at_least depends on it
for (segment_index_type i = 0; this->segment_base(i) < start_index; ++i) {
spin_wait_while_eq(embedded_table[i], segment_type(nullptr));
}
// It is possible that the table was extend by a thread allocating first_block, need to check this.
if (this->get_table() != embedded_table) {
return nullptr;
}
// Allocate long segment table and fill with null pointers
segment_table_type new_segment_table = segment_table_allocator_traits::allocate(base_type::get_allocator(), this->pointers_per_long_table);
// Copy segment pointers from the embedded table
for (size_type segment_index = 0; segment_index < this->pointers_per_embedded_table; ++segment_index) {
segment_table_allocator_traits::construct(base_type::get_allocator(), &new_segment_table[segment_index],
embedded_table[segment_index].load(std::memory_order_relaxed));
}
for (size_type segment_index = this->pointers_per_embedded_table; segment_index < this->pointers_per_long_table; ++segment_index) {
segment_table_allocator_traits::construct(base_type::get_allocator(), &new_segment_table[segment_index], nullptr);
}
return new_segment_table;
}
// create_segment function is required by the segment_table base class
segment_type create_segment( segment_table_type table, segment_index_type seg_index, size_type index ) {
size_type first_block = this->my_first_block.load(std::memory_order_relaxed);
// First block allocation
if (seg_index < first_block) {
// If 0 segment is already allocated, then it remains to wait until the segments are filled to requested
if (table[0].load(std::memory_order_acquire) != nullptr) {
spin_wait_while_eq(table[seg_index], segment_type(nullptr));
return nullptr;
}
segment_element_allocator_type segment_allocator(base_type::get_allocator());
segment_type new_segment = nullptr;
size_type first_block_size = this->segment_size(first_block);
try_call( [&] {
new_segment = segment_element_allocator_traits::allocate(segment_allocator, first_block_size);
} ).on_exception( [&] {
segment_type disabled_segment = nullptr;
if (table[0].compare_exchange_strong(disabled_segment, this->segment_allocation_failure_tag)) {
size_type end_segment = table == this->my_embedded_table ? this->pointers_per_embedded_table : first_block;
for (size_type i = 1; i < end_segment; ++i) {
table[i].store(this->segment_allocation_failure_tag, std::memory_order_release);
}
}
});
segment_type disabled_segment = nullptr;
if (table[0].compare_exchange_strong(disabled_segment, new_segment)) {
this->extend_table_if_necessary(table, /*start_index*/0, /*end_index*/first_block_size);
for (size_type i = 1; i < first_block; ++i) {
table[i].store(new_segment, std::memory_order_release);
}
// Other threads can wait on a snapshot of an embedded table, need to fill it.
for (size_type i = 1; i < first_block && i < this->pointers_per_embedded_table; ++i) {
this->my_embedded_table[i].store(new_segment, std::memory_order_release);
}
} else if (new_segment != this->segment_allocation_failure_tag) {
// Deallocate the memory
segment_element_allocator_traits::deallocate(segment_allocator, new_segment, first_block_size);
// 0 segment is already allocated, then it remains to wait until the segments are filled to requested
spin_wait_while_eq(table[seg_index], segment_type(nullptr));
}
} else {
size_type offset = this->segment_base(seg_index);
if (index == offset) {
__TBB_ASSERT(table[seg_index].load(std::memory_order_relaxed) == nullptr, "Only this thread can enable this segment");
segment_element_allocator_type segment_allocator(base_type::get_allocator());
segment_type new_segment = this->segment_allocation_failure_tag;
try_call( [&] {
new_segment = segment_element_allocator_traits::allocate(segment_allocator,this->segment_size(seg_index));
// Shift base address to simplify access by index
new_segment -= this->segment_base(seg_index);
} ).on_completion( [&] {
table[seg_index].store(new_segment, std::memory_order_release);
});
} else {
spin_wait_while_eq(table[seg_index], segment_type(nullptr));
}
}
return nullptr;
}
// Returns the number of elements in the segment to be destroy
size_type number_of_elements_in_segment( segment_index_type seg_index ) {
size_type curr_vector_size = this->my_size.load(std::memory_order_relaxed);
size_type curr_segment_base = this->segment_base(seg_index);
if (seg_index == 0) {
return std::min(curr_vector_size, this->segment_size(seg_index));
} else {
// Perhaps the segment is allocated, but there are no elements in it.
if (curr_vector_size < curr_segment_base) {
return 0;
}
return curr_segment_base * 2 > curr_vector_size ? curr_vector_size - curr_segment_base : curr_segment_base;
}
}
segment_type nullify_segment( segment_table_type table, size_type segment_index ) {
segment_type target_segment = table[segment_index].load(std::memory_order_relaxed);
if (segment_index >= this->my_first_block) {
table[segment_index].store(nullptr, std::memory_order_relaxed);
} else {
if (segment_index == 0) {
for (size_type i = 0; i < this->my_first_block; ++i) {
table[i].store(nullptr, std::memory_order_relaxed);
}
}
}
return target_segment;
}
void deallocate_segment( segment_type address, segment_index_type seg_index ) {
segment_element_allocator_type segment_allocator(base_type::get_allocator());
size_type first_block = this->my_first_block.load(std::memory_order_relaxed);
if (seg_index >= first_block) {
segment_element_allocator_traits::deallocate(segment_allocator, address, this->segment_size(seg_index));
}
else if (seg_index == 0) {
size_type elements_to_deallocate = first_block > 0 ? this->segment_size(first_block) : this->segment_size(0);
segment_element_allocator_traits::deallocate(segment_allocator, address, elements_to_deallocate);
}
}
// destroy_segment function is required by the segment_table base class
void destroy_segment( segment_type address, segment_index_type seg_index ) {
size_type elements_to_destroy = number_of_elements_in_segment(seg_index);
segment_element_allocator_type segment_allocator(base_type::get_allocator());
for (size_type i = 0; i < elements_to_destroy; ++i) {
segment_element_allocator_traits::destroy(segment_allocator, address + i);
}
deallocate_segment(address, seg_index);
}
// copy_segment function is required by the segment_table base class
void copy_segment( segment_index_type seg_index, segment_type from, segment_type to ) {
size_type i = 0;
try_call( [&] {
for (; i != number_of_elements_in_segment(seg_index); ++i) {
segment_table_allocator_traits::construct(base_type::get_allocator(), to + i, from[i]);
}
} ).on_exception( [&] {
// Zero-initialize items left not constructed after the exception
zero_unconstructed_elements(this->get_segment(seg_index) + i, this->segment_size(seg_index) - i);
segment_index_type last_segment = this->segment_index_of(this->my_size.load(std::memory_order_relaxed));
auto table = this->get_table();
for (segment_index_type j = seg_index + 1; j != last_segment; ++j) {
auto curr_segment = table[j].load(std::memory_order_relaxed);
if (curr_segment) {
zero_unconstructed_elements(curr_segment + this->segment_base(j), this->segment_size(j));
}
}
this->my_size.store(this->segment_size(seg_index) + i, std::memory_order_relaxed);
});
}
// move_segment function is required by the segment_table base class
void move_segment( segment_index_type seg_index, segment_type from, segment_type to ) {
size_type i = 0;
try_call( [&] {
for (; i != number_of_elements_in_segment(seg_index); ++i) {
segment_table_allocator_traits::construct(base_type::get_allocator(), to + i, std::move(from[i]));
}
} ).on_exception( [&] {
// Zero-initialize items left not constructed after the exception
zero_unconstructed_elements(this->get_segment(seg_index) + i, this->segment_size(seg_index) - i);
segment_index_type last_segment = this->segment_index_of(this->my_size.load(std::memory_order_relaxed));
auto table = this->get_table();
for (segment_index_type j = seg_index + 1; j != last_segment; ++j) {
auto curr_segment = table[j].load(std::memory_order_relaxed);
if (curr_segment) {
zero_unconstructed_elements(curr_segment + this->segment_base(j), this->segment_size(j));
}
}
this->my_size.store(this->segment_size(seg_index) + i, std::memory_order_relaxed);
});
}
static constexpr bool is_first_element_in_segment( size_type index ) {
// An element is the first in a segment if its index is equal to a power of two
return is_power_of_two_at_least(index, 2);
}
const_reference internal_subscript( size_type index ) const {
return const_cast<self_type*>(this)->internal_subscript(index);
}
reference internal_subscript( size_type index ) {
__TBB_ASSERT(index < this->my_size.load(std::memory_order_relaxed), "Invalid subscript index");
return base_type::template internal_subscript</*allow_out_of_range_access=*/false>(index);
}
const_reference internal_subscript_with_exceptions( size_type index ) const {
return const_cast<self_type*>(this)->internal_subscript_with_exceptions(index);
}
reference internal_subscript_with_exceptions( size_type index ) {
if (index >= this->my_size.load(std::memory_order_acquire)) {
tbb::detail::throw_exception(exception_id::out_of_range);
}
segment_table_type table = this->my_segment_table.load(std::memory_order_acquire);
size_type seg_index = this->segment_index_of(index);
if (base_type::number_of_segments(table) < seg_index) {
tbb::detail::throw_exception(exception_id::out_of_range);
}
if (table[seg_index] <= this->segment_allocation_failure_tag) {
tbb::detail::throw_exception(exception_id::out_of_range);
}
return base_type::template internal_subscript</*allow_out_of_range_access=*/false>(index);
}
static void zero_unconstructed_elements( pointer start, size_type count ) {
std::memset(static_cast<void *>(start), 0, count * sizeof(value_type));
}
template <typename... Args>
iterator internal_emplace_back( Args&&... args ) {
size_type old_size = this->my_size++;
this->assign_first_block_if_necessary(default_first_block_size);
auto element_address = &base_type::template internal_subscript</*allow_out_of_range_access=*/true>(old_size);
// try_call API is not convenient here due to broken
// variadic capture on GCC 4.8.5
auto value_guard = make_raii_guard([&] {
zero_unconstructed_elements(element_address, /*count =*/1);
});
segment_table_allocator_traits::construct(base_type::get_allocator(), element_address, std::forward<Args>(args)...);
value_guard.dismiss();
return iterator(*this, old_size, element_address);
}
template <typename... Args>
void internal_loop_construct( segment_table_type table, size_type start_idx, size_type end_idx, const Args&... args ) {
static_assert(sizeof...(Args) < 2, "Too many parameters");
for (size_type idx = start_idx; idx < end_idx; ++idx) {
auto element_address = &base_type::template internal_subscript</*allow_out_of_range_access=*/true>(idx);
// try_call API is not convenient here due to broken
// variadic capture on GCC 4.8.5
auto value_guard = make_raii_guard( [&] {
segment_index_type last_allocated_segment = this->find_last_allocated_segment(table);
size_type segment_size = this->segment_size(last_allocated_segment);
end_idx = end_idx < segment_size ? end_idx : segment_size;
for (size_type i = idx; i < end_idx; ++i) {
zero_unconstructed_elements(&this->internal_subscript(i), /*count =*/1);
}
});
segment_table_allocator_traits::construct(base_type::get_allocator(), element_address, args...);
value_guard.dismiss();
}
}
template <typename ForwardIterator>
void internal_loop_construct( segment_table_type table, size_type start_idx, size_type end_idx, ForwardIterator first, ForwardIterator ) {
for (size_type idx = start_idx; idx < end_idx; ++idx) {
auto element_address = &base_type::template internal_subscript</*allow_out_of_range_access=*/true>(idx);
try_call( [&] {
segment_table_allocator_traits::construct(base_type::get_allocator(), element_address, *first++);
} ).on_exception( [&] {
segment_index_type last_allocated_segment = this->find_last_allocated_segment(table);
size_type segment_size = this->segment_size(last_allocated_segment);
end_idx = end_idx < segment_size ? end_idx : segment_size;
for (size_type i = idx; i < end_idx; ++i) {
zero_unconstructed_elements(&this->internal_subscript(i), /*count =*/1);
}
});
}
}
template <typename... Args>
iterator internal_grow( size_type start_idx, size_type end_idx, const Args&... args ) {
size_type seg_index = this->segment_index_of(end_idx - 1);
this->assign_first_block_if_necessary(seg_index + 1);
segment_table_type table = this->get_table();
this->extend_table_if_necessary(table, start_idx, end_idx);
if (seg_index > this->my_first_block.load(std::memory_order_relaxed)) {
// So that other threads be able to work with the last segment of grow_by, allocate it immediately.
// If the last segment is not less than the first block
if (table[seg_index].load(std::memory_order_relaxed) == nullptr) {
size_type first_element = this->segment_base(seg_index);
if (first_element >= start_idx && first_element < end_idx) {
segment_type segment = table[seg_index].load(std::memory_order_relaxed);
base_type::enable_segment(segment, table, seg_index, first_element);
}
}
}
internal_loop_construct(table, start_idx, end_idx, args...);
return iterator(*this, start_idx, &base_type::template internal_subscript</*allow_out_of_range_access=*/false>(start_idx));
}
template <typename... Args>
iterator internal_grow_by_delta( size_type delta, const Args&... args ) {
if (delta == size_type(0)) {
return end();
}
size_type start_idx = this->my_size.fetch_add(delta);
size_type end_idx = start_idx + delta;
return internal_grow(start_idx, end_idx, args...);
}
template <typename... Args>
iterator internal_grow_to_at_least( size_type new_size, const Args&... args ) {
size_type old_size = this->my_size.load(std::memory_order_relaxed);
if (new_size == size_type(0)) return iterator(*this, 0);
while (old_size < new_size && !this->my_size.compare_exchange_weak(old_size, new_size))
{}
int delta = static_cast<int>(new_size) - static_cast<int>(old_size);
if (delta > 0) {
return internal_grow(old_size, new_size, args...);
}
size_type end_segment = this->segment_index_of(new_size - 1);
// Check/wait for segments allocation completes
if (end_segment >= this->pointers_per_embedded_table &&
this->get_table() == this->my_embedded_table)
{
spin_wait_while_eq(this->my_segment_table, this->my_embedded_table);
}
for (segment_index_type seg_idx = 0; seg_idx <= end_segment; ++seg_idx) {
if (this->get_table()[seg_idx].load(std::memory_order_relaxed) == nullptr) {
atomic_backoff backoff(true);
while (this->get_table()[seg_idx].load(std::memory_order_relaxed) == nullptr) {
backoff.pause();
}
}
}
#if TBB_USE_DEBUG
size_type cap = capacity();
__TBB_ASSERT( cap >= new_size, nullptr);
#endif
return iterator(*this, size());
}
template <typename... Args>
void internal_resize( size_type n, const Args&... args ) {
if (n == 0) {
clear();
return;
}
size_type old_size = this->my_size.load(std::memory_order_acquire);
if (n > old_size) {
reserve(n);
grow_to_at_least(n, args...);
} else {
if (old_size == n) {
return;
}
size_type last_segment = this->segment_index_of(old_size - 1);
// Delete segments
for (size_type seg_idx = this->segment_index_of(n - 1) + 1; seg_idx <= last_segment; ++seg_idx) {
this->delete_segment(seg_idx);
}
// If n > segment_size(n) => we need to destroy all of the items in the first segment
// Otherwise, we need to destroy only items with the index < n
size_type n_segment = this->segment_index_of(n - 1);
size_type last_index_to_destroy = std::min(this->segment_base(n_segment) + this->segment_size(n_segment), old_size);
// Destroy elements in curr segment
for (size_type idx = n; idx < last_index_to_destroy; ++idx) {
segment_table_allocator_traits::destroy(base_type::get_allocator(), &base_type::template internal_subscript</*allow_out_of_range_access=*/false>(idx));
}
this->my_size.store(n, std::memory_order_release);
}
}
void destroy_elements() {
allocator_type alloc(base_type::get_allocator());
for (size_type i = 0; i < this->my_size.load(std::memory_order_relaxed); ++i) {
allocator_traits_type::destroy(alloc, &base_type::template internal_subscript</*allow_out_of_range_access=*/false>(i));
}
this->my_size.store(0, std::memory_order_relaxed);
}
static bool incompact_predicate( size_type size ) {
// memory page size
const size_type page_size = 4096;
return size < page_size || ((size - 1) % page_size < page_size / 2 && size < page_size * 128);
}
void internal_compact() {
const size_type curr_size = this->my_size.load(std::memory_order_relaxed);
segment_table_type table = this->get_table();
const segment_index_type k_end = this->find_last_allocated_segment(table); // allocated segments
const segment_index_type k_stop = curr_size ? this->segment_index_of(curr_size - 1) + 1 : 0; // number of segments to store existing items: 0=>0; 1,2=>1; 3,4=>2; [5-8]=>3;..
const segment_index_type first_block = this->my_first_block; // number of merged segments, getting values from atomics
segment_index_type k = first_block;
if (k_stop < first_block) {
k = k_stop;
}
else {
while (k < k_stop && incompact_predicate(this->segment_size(k) * sizeof(value_type))) k++;
}
if (k_stop == k_end && k == first_block) {
return;
}
// First segment optimization
if (k != first_block && k) {
size_type max_block = std::max(first_block, k);
auto buffer_table = segment_table_allocator_traits::allocate(base_type::get_allocator(), max_block);
for (size_type seg_idx = 0; seg_idx < max_block; ++seg_idx) {
segment_table_allocator_traits::construct(base_type::get_allocator(), &buffer_table[seg_idx],
table[seg_idx].load(std::memory_order_relaxed));
table[seg_idx].store(nullptr, std::memory_order_relaxed);
}
this->my_first_block.store(k, std::memory_order_relaxed);
size_type index = 0;
try_call( [&] {
for (; index < std::min(this->segment_size(max_block), curr_size); ++index) {
auto element_address = &static_cast<base_type*>(this)->operator[](index);
segment_index_type seg_idx = this->segment_index_of(index);
segment_table_allocator_traits::construct(base_type::get_allocator(), element_address,
std::move_if_noexcept(buffer_table[seg_idx].load(std::memory_order_relaxed)[index]));
}
} ).on_exception( [&] {
segment_element_allocator_type allocator(base_type::get_allocator());
for (size_type i = 0; i < index; ++i) {
auto element_adress = &this->operator[](i);
segment_element_allocator_traits::destroy(allocator, element_adress);
}
segment_element_allocator_traits::deallocate(allocator,
table[0].load(std::memory_order_relaxed), this->segment_size(max_block));
for (size_type seg_idx = 0; seg_idx < max_block; ++seg_idx) {
table[seg_idx].store(buffer_table[seg_idx].load(std::memory_order_relaxed),
std::memory_order_relaxed);
buffer_table[seg_idx].store(nullptr, std::memory_order_relaxed);
}
segment_table_allocator_traits::deallocate(base_type::get_allocator(),
buffer_table, max_block);
this->my_first_block.store(first_block, std::memory_order_relaxed);
});
// Need to correct deallocate old segments
// Method destroy_segment respect active first_block, therefore,
// in order for the segment deletion to work correctly, set the first_block size that was earlier,
// destroy the unnecessary segments.
this->my_first_block.store(first_block, std::memory_order_relaxed);
for (size_type seg_idx = max_block; seg_idx > 0 ; --seg_idx) {
auto curr_segment = buffer_table[seg_idx - 1].load(std::memory_order_relaxed);
if (curr_segment != nullptr) {
destroy_segment(buffer_table[seg_idx - 1].load(std::memory_order_relaxed) + this->segment_base(seg_idx - 1),
seg_idx - 1);
}
}
this->my_first_block.store(k, std::memory_order_relaxed);
for (size_type seg_idx = 0; seg_idx < max_block; ++seg_idx) {
segment_table_allocator_traits::destroy(base_type::get_allocator(), &buffer_table[seg_idx]);
}
segment_table_allocator_traits::deallocate(base_type::get_allocator(), buffer_table, max_block);
}
// free unnecessary segments allocated by reserve() call
if (k_stop < k_end) {
for (size_type seg_idx = k_end; seg_idx != k_stop; --seg_idx) {
if (table[seg_idx - 1].load(std::memory_order_relaxed) != nullptr) {
this->delete_segment(seg_idx - 1);
}
}
if (!k) this->my_first_block.store(0, std::memory_order_relaxed);
}
}
// Lever for adjusting the size of first_block at the very first insertion.
// TODO: consider >1 value, check performance
static constexpr size_type default_first_block_size = 1;
template <typename Vector, typename Value>
friend class vector_iterator;
}; // class concurrent_vector
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
// Deduction guide for the constructor from two iterators
template <typename It, typename Alloc = tbb::cache_aligned_allocator<iterator_value_t<It>>,
typename = std::enable_if_t<is_input_iterator_v<It>>,
typename = std::enable_if_t<is_allocator_v<Alloc>>>
concurrent_vector( It, It, Alloc = Alloc() )
-> concurrent_vector<iterator_value_t<It>, Alloc>;
#endif
template <typename T, typename Allocator>
void swap(concurrent_vector<T, Allocator> &lhs,
concurrent_vector<T, Allocator> &rhs)
{
lhs.swap(rhs);
}
template <typename T, typename Allocator>
bool operator==(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
#if !__TBB_CPP20_COMPARISONS_PRESENT
template <typename T, typename Allocator>
bool operator!=(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return !(lhs == rhs);
}
#endif // !__TBB_CPP20_COMPARISONS_PRESENT
#if __TBB_CPP20_COMPARISONS_PRESENT && __TBB_CPP20_CONCEPTS_PRESENT
template <typename T, typename Allocator>
tbb::detail::synthesized_three_way_result<typename concurrent_vector<T, Allocator>::value_type>
operator<=>(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return std::lexicographical_compare_three_way(lhs.begin(), lhs.end(),
rhs.begin(), rhs.end(),
tbb::detail::synthesized_three_way_comparator{});
}
#else
template <typename T, typename Allocator>
bool operator<(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
}
template <typename T, typename Allocator>
bool operator<=(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return !(rhs < lhs);
}
template <typename T, typename Allocator>
bool operator>(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return rhs < lhs;
}
template <typename T, typename Allocator>
bool operator>=(const concurrent_vector<T, Allocator> &lhs,
const concurrent_vector<T, Allocator> &rhs)
{
return !(lhs < rhs);
}
#endif // __TBB_CPP20_COMPARISONS_PRESENT && __TBB_CPP20_CONCEPTS_PRESENT
} // namespace d1
} // namespace detail
inline namespace v1 {
using detail::d1::concurrent_vector;
} // namespace v1
} // namespace tbb
#endif // __TBB_concurrent_vector_H
|