File: _concurrent_queue_base.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (650 lines) | stat: -rw-r--r-- 26,211 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
/*
    Copyright (c) 2005-2022 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_detail__concurrent_queue_base_H
#define __TBB_detail__concurrent_queue_base_H

#include "_utils.h"
#include "_exception.h"
#include "_machine.h"
#include "_allocator_traits.h"

#include "../profiling.h"
#include "../spin_mutex.h"
#include "../cache_aligned_allocator.h"

#include <atomic>

namespace tbb {
namespace detail {
namespace d2 {

using ticket_type = std::size_t;

template <typename Page>
inline bool is_valid_page(const Page p) {
    return reinterpret_cast<std::uintptr_t>(p) > 1;
}

template <typename T, typename Allocator>
struct concurrent_queue_rep;

template <typename Container, typename T, typename Allocator>
class micro_queue_pop_finalizer;

#if _MSC_VER && !defined(__INTEL_COMPILER)
// unary minus operator applied to unsigned type, result still unsigned
#pragma warning( push )
#pragma warning( disable: 4146 )
#endif

// A queue using simple locking.
// For efficiency, this class has no constructor.
// The caller is expected to zero-initialize it.
template <typename T, typename Allocator>
class micro_queue {
private:
    using queue_rep_type = concurrent_queue_rep<T, Allocator>;
    using self_type = micro_queue<T, Allocator>;
public:
    using size_type = std::size_t;
    using value_type = T;
    using reference = value_type&;
    using const_reference = const value_type&;

    using allocator_type = Allocator;
    using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
    using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<queue_rep_type>;

    static constexpr size_type item_size = sizeof(T);
    static constexpr size_type items_per_page = item_size <=   8 ? 32 :
                                                item_size <=  16 ? 16 :
                                                item_size <=  32 ?  8 :
                                                item_size <=  64 ?  4 :
                                                item_size <= 128 ?  2 : 1;

    struct padded_page {
        padded_page() {}
        ~padded_page() {}

        reference operator[] (std::size_t index) {
            __TBB_ASSERT(index < items_per_page, "Index out of range");
            return items[index];
        }

        const_reference operator[] (std::size_t index) const {
            __TBB_ASSERT(index < items_per_page, "Index out of range");
            return items[index];
        }

        padded_page* next{ nullptr };
        std::atomic<std::uintptr_t> mask{};

        union {
            value_type items[items_per_page];
        };
    }; // struct padded_page

    using page_allocator_type = typename allocator_traits_type::template rebind_alloc<padded_page>;
protected:
    using page_allocator_traits = tbb::detail::allocator_traits<page_allocator_type>;

public:
    using item_constructor_type = void (*)(value_type* location, const void* src);
    micro_queue() = default;
    micro_queue( const micro_queue& ) = delete;
    micro_queue& operator=( const micro_queue& ) = delete;

    size_type prepare_page( ticket_type k, queue_rep_type& base, page_allocator_type page_allocator,
                            padded_page*& p ) {
        __TBB_ASSERT(p == nullptr, "Invalid page argument for prepare_page");
        k &= -queue_rep_type::n_queue;
        size_type index = modulo_power_of_two(k / queue_rep_type::n_queue, items_per_page);
        if (!index) {
            try_call( [&] {
                p = page_allocator_traits::allocate(page_allocator, 1);
            }).on_exception( [&] {
                ++base.n_invalid_entries;
                invalidate_page( k );
            });
            page_allocator_traits::construct(page_allocator, p);
        }

        spin_wait_until_my_turn(tail_counter, k, base);
        d1::call_itt_notify(d1::acquired, &tail_counter);

        if (p) {
            spin_mutex::scoped_lock lock( page_mutex );
            padded_page* q = tail_page.load(std::memory_order_relaxed);
            if (is_valid_page(q)) {
                q->next = p;
            } else {
                head_page.store(p, std::memory_order_relaxed);
            }
            tail_page.store(p, std::memory_order_relaxed);
        } else {
            p = tail_page.load(std::memory_order_relaxed);
        }
        return index;
    }

    template<typename... Args>
    void push( ticket_type k, queue_rep_type& base, queue_allocator_type& allocator, Args&&... args )
    {
        padded_page* p = nullptr;
        page_allocator_type page_allocator(allocator);
        size_type index = prepare_page(k, base, page_allocator, p);
        __TBB_ASSERT(p != nullptr, "Page was not prepared");

        // try_call API is not convenient here due to broken
        // variadic capture on GCC 4.8.5
        auto value_guard = make_raii_guard([&] {
            ++base.n_invalid_entries;
            d1::call_itt_notify(d1::releasing, &tail_counter);
            tail_counter.fetch_add(queue_rep_type::n_queue);
        });

        page_allocator_traits::construct(page_allocator, &(*p)[index], std::forward<Args>(args)...);
        // If no exception was thrown, mark item as present.
        p->mask.store(p->mask.load(std::memory_order_relaxed) | uintptr_t(1) << index, std::memory_order_relaxed);
        d1::call_itt_notify(d1::releasing, &tail_counter);

        value_guard.dismiss();
        tail_counter.fetch_add(queue_rep_type::n_queue);
    }

    void abort_push( ticket_type k, queue_rep_type& base, queue_allocator_type& allocator ) {
        padded_page* p = nullptr;
        prepare_page(k, base, allocator, p);
        ++base.n_invalid_entries;
        tail_counter.fetch_add(queue_rep_type::n_queue);
    }

    bool pop( void* dst, ticket_type k, queue_rep_type& base, queue_allocator_type& allocator ) {
        k &= -queue_rep_type::n_queue;
        spin_wait_until_eq(head_counter, k);
        d1::call_itt_notify(d1::acquired, &head_counter);
        spin_wait_while_eq(tail_counter, k);
        d1::call_itt_notify(d1::acquired, &tail_counter);
        padded_page *p = head_page.load(std::memory_order_relaxed);
        __TBB_ASSERT( p, nullptr );
        size_type index = modulo_power_of_two( k/queue_rep_type::n_queue, items_per_page );
        bool success = false;
        {
            page_allocator_type page_allocator(allocator);
            micro_queue_pop_finalizer<self_type, value_type, page_allocator_type> finalizer(*this, page_allocator,
                k + queue_rep_type::n_queue, index == items_per_page - 1 ? p : nullptr );
            if (p->mask.load(std::memory_order_relaxed) & (std::uintptr_t(1) << index)) {
                success = true;
                assign_and_destroy_item(dst, *p, index);
            } else {
                --base.n_invalid_entries;
            }
        }
        return success;
    }

    micro_queue& assign( const micro_queue& src, queue_allocator_type& allocator,
        item_constructor_type construct_item )
    {
        head_counter.store(src.head_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
        tail_counter.store(src.tail_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);

        const padded_page* srcp = src.head_page.load(std::memory_order_relaxed);
        if( is_valid_page(srcp) ) {
            ticket_type g_index = head_counter.load(std::memory_order_relaxed);
            size_type n_items  = (tail_counter.load(std::memory_order_relaxed) - head_counter.load(std::memory_order_relaxed))
                / queue_rep_type::n_queue;
            size_type index = modulo_power_of_two(head_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue, items_per_page);
            size_type end_in_first_page = (index+n_items < items_per_page) ? (index + n_items) : items_per_page;

            try_call( [&] {
                head_page.store(make_copy(allocator, srcp, index, end_in_first_page, g_index, construct_item), std::memory_order_relaxed);
            }).on_exception( [&] {
                head_counter.store(0, std::memory_order_relaxed);
                tail_counter.store(0, std::memory_order_relaxed);
            });
            padded_page* cur_page = head_page.load(std::memory_order_relaxed);

            try_call( [&] {
                if (srcp != src.tail_page.load(std::memory_order_relaxed)) {
                    for (srcp = srcp->next; srcp != src.tail_page.load(std::memory_order_relaxed); srcp=srcp->next ) {
                        cur_page->next = make_copy( allocator, srcp, 0, items_per_page, g_index, construct_item );
                        cur_page = cur_page->next;
                    }

                    __TBB_ASSERT(srcp == src.tail_page.load(std::memory_order_relaxed), nullptr );
                    size_type last_index = modulo_power_of_two(tail_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue, items_per_page);
                    if( last_index==0 ) last_index = items_per_page;

                    cur_page->next = make_copy( allocator, srcp, 0, last_index, g_index, construct_item );
                    cur_page = cur_page->next;
                }
                tail_page.store(cur_page, std::memory_order_relaxed);
            }).on_exception( [&] {
                padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
                tail_page.store(invalid_page, std::memory_order_relaxed);
            });
        } else {
            head_page.store(nullptr, std::memory_order_relaxed);
            tail_page.store(nullptr, std::memory_order_relaxed);
        }
        return *this;
    }

    padded_page* make_copy( queue_allocator_type& allocator, const padded_page* src_page, size_type begin_in_page,
        size_type end_in_page, ticket_type& g_index, item_constructor_type construct_item )
    {
        page_allocator_type page_allocator(allocator);
        padded_page* new_page = page_allocator_traits::allocate(page_allocator, 1);
        new_page->next = nullptr;
        new_page->mask.store(src_page->mask.load(std::memory_order_relaxed), std::memory_order_relaxed);
        for (; begin_in_page!=end_in_page; ++begin_in_page, ++g_index) {
            if (new_page->mask.load(std::memory_order_relaxed) & uintptr_t(1) << begin_in_page) {
                copy_item(*new_page, begin_in_page, *src_page, begin_in_page, construct_item);
            }
        }
        return new_page;
    }

    void invalidate_page( ticket_type k )  {
        // Append an invalid page at address 1 so that no more pushes are allowed.
        padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
        {
            spin_mutex::scoped_lock lock( page_mutex );
            tail_counter.store(k + queue_rep_type::n_queue + 1, std::memory_order_relaxed);
            padded_page* q = tail_page.load(std::memory_order_relaxed);
            if (is_valid_page(q)) {
                q->next = invalid_page;
            } else {
                head_page.store(invalid_page, std::memory_order_relaxed);
            }
            tail_page.store(invalid_page, std::memory_order_relaxed);
        }
    }

    padded_page* get_head_page() {
        return head_page.load(std::memory_order_relaxed);
    }

    void clear(queue_allocator_type& allocator, padded_page* new_head = nullptr, padded_page* new_tail = nullptr) {
        padded_page* curr_page = get_head_page();
        size_type index = (head_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue) % items_per_page;
        page_allocator_type page_allocator(allocator);

        while (curr_page && is_valid_page(curr_page)) {
            while (index != items_per_page) {
                if (curr_page->mask.load(std::memory_order_relaxed) & (std::uintptr_t(1) << index)) {
                    page_allocator_traits::destroy(page_allocator, &curr_page->operator[](index));
                }
                ++index;
            }

            index = 0;
            padded_page* next_page = curr_page->next;
            page_allocator_traits::destroy(page_allocator, curr_page);
            page_allocator_traits::deallocate(page_allocator, curr_page, 1);
            curr_page = next_page;
        }
        head_counter.store(0, std::memory_order_relaxed);
        tail_counter.store(0, std::memory_order_relaxed);
        head_page.store(new_head, std::memory_order_relaxed);
        tail_page.store(new_tail, std::memory_order_relaxed);
    }

    void clear_and_invalidate(queue_allocator_type& allocator) {
        padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
        clear(allocator, invalid_page, invalid_page);
    }

private:
    // template <typename U, typename A>
    friend class micro_queue_pop_finalizer<self_type, value_type, page_allocator_type>;

    // Class used to ensure exception-safety of method "pop"
    class destroyer  {
        value_type& my_value;
    public:
        destroyer( reference value ) : my_value(value) {}
        destroyer( const destroyer& ) = delete;
        destroyer& operator=( const destroyer& ) = delete;
        ~destroyer() {my_value.~T();}
    }; // class destroyer

    void copy_item( padded_page& dst, size_type dindex, const padded_page& src, size_type sindex,
        item_constructor_type construct_item )
    {
        auto& src_item = src[sindex];
        construct_item( &dst[dindex], static_cast<const void*>(&src_item) );
    }

    void assign_and_destroy_item( void* dst, padded_page& src, size_type index ) {
        auto& from = src[index];
        destroyer d(from);
        *static_cast<T*>(dst) = std::move(from);
    }

    void spin_wait_until_my_turn( std::atomic<ticket_type>& counter, ticket_type k, queue_rep_type& rb ) const {
        for (atomic_backoff b{};; b.pause()) {
            ticket_type c = counter.load(std::memory_order_acquire);
            if (c == k) return;
            else if (c & 1) {
                ++rb.n_invalid_entries;
                throw_exception( exception_id::bad_last_alloc);
            }
        }
    }

    std::atomic<padded_page*> head_page{};
    std::atomic<ticket_type> head_counter{};

    std::atomic<padded_page*> tail_page{};
    std::atomic<ticket_type> tail_counter{};

    spin_mutex page_mutex{};
}; // class micro_queue

#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif // warning 4146 is back

template <typename Container, typename T, typename Allocator>
class micro_queue_pop_finalizer {
public:
    using padded_page = typename Container::padded_page;
    using allocator_type = Allocator;
    using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;

    micro_queue_pop_finalizer( Container& queue, Allocator& alloc, ticket_type k, padded_page* p ) :
        my_ticket_type(k), my_queue(queue), my_page(p), allocator(alloc)
    {}

    micro_queue_pop_finalizer( const micro_queue_pop_finalizer& ) = delete;
    micro_queue_pop_finalizer& operator=( const micro_queue_pop_finalizer& ) = delete;

    ~micro_queue_pop_finalizer() {
        padded_page* p = my_page;
        if( is_valid_page(p) ) {
            spin_mutex::scoped_lock lock( my_queue.page_mutex );
            padded_page* q = p->next;
            my_queue.head_page.store(q, std::memory_order_relaxed);
            if( !is_valid_page(q) ) {
                my_queue.tail_page.store(nullptr, std::memory_order_relaxed);
            }
        }
        my_queue.head_counter.store(my_ticket_type, std::memory_order_release);
        if ( is_valid_page(p) ) {
            allocator_traits_type::destroy(allocator, static_cast<padded_page*>(p));
            allocator_traits_type::deallocate(allocator, static_cast<padded_page*>(p), 1);
        }
    }
private:
    ticket_type my_ticket_type;
    Container& my_queue;
    padded_page* my_page;
    Allocator& allocator;
}; // class micro_queue_pop_finalizer

#if _MSC_VER && !defined(__INTEL_COMPILER)
// structure was padded due to alignment specifier
#pragma warning( push )
#pragma warning( disable: 4324 )
#endif

template <typename T, typename Allocator>
struct concurrent_queue_rep {
    using self_type = concurrent_queue_rep<T, Allocator>;
    using size_type = std::size_t;
    using micro_queue_type = micro_queue<T, Allocator>;
    using allocator_type = Allocator;
    using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
    using padded_page = typename micro_queue_type::padded_page;
    using page_allocator_type = typename micro_queue_type::page_allocator_type;
    using item_constructor_type = typename micro_queue_type::item_constructor_type;
private:
    using page_allocator_traits = tbb::detail::allocator_traits<page_allocator_type>;
    using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<self_type>;

public:
    // must be power of 2
    static constexpr size_type n_queue = 8;
    // Approximately n_queue/golden ratio
    static constexpr size_type phi = 3;
    static constexpr size_type item_size = micro_queue_type::item_size;
    static constexpr size_type items_per_page = micro_queue_type::items_per_page;

    concurrent_queue_rep() {}

    concurrent_queue_rep( const concurrent_queue_rep& ) = delete;
    concurrent_queue_rep& operator=( const concurrent_queue_rep& ) = delete;

    void clear( queue_allocator_type& alloc ) {
        for (size_type index = 0; index < n_queue; ++index) {
            array[index].clear(alloc);
        }
        head_counter.store(0, std::memory_order_relaxed);
        tail_counter.store(0, std::memory_order_relaxed);
        n_invalid_entries.store(0, std::memory_order_relaxed);
    }

    void assign( const concurrent_queue_rep& src, queue_allocator_type& alloc, item_constructor_type construct_item ) {
        head_counter.store(src.head_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
        tail_counter.store(src.tail_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
        n_invalid_entries.store(src.n_invalid_entries.load(std::memory_order_relaxed), std::memory_order_relaxed);

        // copy or move micro_queues
        size_type queue_idx = 0;
        try_call( [&] {
            for (; queue_idx < n_queue; ++queue_idx) {
                array[queue_idx].assign(src.array[queue_idx], alloc, construct_item);
            }
        }).on_exception( [&] {
            for (size_type i = 0; i < queue_idx + 1; ++i) {
                array[i].clear_and_invalidate(alloc);
            }
            head_counter.store(0, std::memory_order_relaxed);
            tail_counter.store(0, std::memory_order_relaxed);
            n_invalid_entries.store(0, std::memory_order_relaxed);
        });

        __TBB_ASSERT(head_counter.load(std::memory_order_relaxed) == src.head_counter.load(std::memory_order_relaxed) &&
                     tail_counter.load(std::memory_order_relaxed) == src.tail_counter.load(std::memory_order_relaxed),
                     "the source concurrent queue should not be concurrently modified." );
    }

    bool empty() const {
        ticket_type tc = tail_counter.load(std::memory_order_acquire);
        ticket_type hc = head_counter.load(std::memory_order_relaxed);
        // if tc!=r.tail_counter, the queue was not empty at some point between the two reads.
        return tc == tail_counter.load(std::memory_order_relaxed) &&
               std::ptrdiff_t(tc - hc - n_invalid_entries.load(std::memory_order_relaxed)) <= 0;
    }

    std::ptrdiff_t size() const {
        __TBB_ASSERT(sizeof(std::ptrdiff_t) <= sizeof(size_type), nullptr);
        std::ptrdiff_t hc = head_counter.load(std::memory_order_acquire);
        std::ptrdiff_t tc = tail_counter.load(std::memory_order_relaxed);
        std::ptrdiff_t nie = n_invalid_entries.load(std::memory_order_relaxed);

        return tc - hc - nie;
    }

    friend class micro_queue<T, Allocator>;

    // Map ticket_type to an array index
    static size_type index( ticket_type k ) {
        return k * phi % n_queue;
    }

    micro_queue_type& choose( ticket_type k ) {
        // The formula here approximates LRU in a cache-oblivious way.
        return array[index(k)];
    }

    alignas(max_nfs_size) micro_queue_type array[n_queue];

    alignas(max_nfs_size) std::atomic<ticket_type> head_counter{};
    alignas(max_nfs_size) std::atomic<ticket_type> tail_counter{};
    alignas(max_nfs_size) std::atomic<size_type> n_invalid_entries{};
}; // class concurrent_queue_rep

#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif

template <typename Value, typename Allocator>
class concurrent_queue_iterator_base {
    using queue_rep_type = concurrent_queue_rep<Value, Allocator>;
    using padded_page = typename queue_rep_type::padded_page;
protected:
    concurrent_queue_iterator_base() = default;

    concurrent_queue_iterator_base( const concurrent_queue_iterator_base& other ) {
        assign(other);
    }

    concurrent_queue_iterator_base( queue_rep_type* queue_rep )
        : my_queue_rep(queue_rep),
          my_head_counter(my_queue_rep->head_counter.load(std::memory_order_relaxed))
    {
        for (std::size_t i = 0; i < queue_rep_type::n_queue; ++i) {
            my_array[i] = my_queue_rep->array[i].get_head_page();
        }

        if (!get_item(my_item, my_head_counter)) advance();
    }

    void assign( const concurrent_queue_iterator_base& other ) {
        my_item = other.my_item;
        my_queue_rep = other.my_queue_rep;

        if (my_queue_rep != nullptr) {
            my_head_counter = other.my_head_counter;

            for (std::size_t i = 0; i < queue_rep_type::n_queue; ++i) {
                my_array[i] = other.my_array[i];
            }
        }
    }

    void advance() {
        __TBB_ASSERT(my_item, "Attempt to increment iterator past end of the queue");
        std::size_t k = my_head_counter;
#if TBB_USE_ASSERT
        Value* tmp;
        get_item(tmp, k);
        __TBB_ASSERT(my_item == tmp, nullptr);
#endif
        std::size_t i = modulo_power_of_two(k / queue_rep_type::n_queue, my_queue_rep->items_per_page);
        if (i == my_queue_rep->items_per_page - 1) {
            padded_page*& root = my_array[queue_rep_type::index(k)];
            root = root->next;
        }
        // Advance k
        my_head_counter = ++k;
        if (!get_item(my_item, k)) advance();
    }

    concurrent_queue_iterator_base& operator=( const concurrent_queue_iterator_base& other ) {
        this->assign(other);
        return *this;
    }

    bool get_item( Value*& item, std::size_t k ) {
        if (k == my_queue_rep->tail_counter.load(std::memory_order_relaxed)) {
            item = nullptr;
            return true;
        } else {
            padded_page* p = my_array[queue_rep_type::index(k)];
            __TBB_ASSERT(p, nullptr);
            std::size_t i = modulo_power_of_two(k / queue_rep_type::n_queue, my_queue_rep->items_per_page);
            item = &(*p)[i];
            return (p->mask & uintptr_t(1) << i) != 0;
        }
    }

    Value* my_item{ nullptr };
    queue_rep_type* my_queue_rep{ nullptr };
    ticket_type my_head_counter{};
    padded_page* my_array[queue_rep_type::n_queue]{};
}; // class concurrent_queue_iterator_base

struct concurrent_queue_iterator_provider {
    template <typename Iterator, typename Container>
    static Iterator get( const Container& container ) {
        return Iterator(container);
    }
}; // struct concurrent_queue_iterator_provider

template <typename Container, typename Value, typename Allocator>
class concurrent_queue_iterator : public concurrent_queue_iterator_base<typename std::remove_cv<Value>::type, Allocator> {
    using base_type = concurrent_queue_iterator_base<typename std::remove_cv<Value>::type, Allocator>;
public:
    using value_type = Value;
    using pointer = value_type*;
    using reference = value_type&;
    using difference_type = std::ptrdiff_t;
    using iterator_category = std::forward_iterator_tag;

    concurrent_queue_iterator() = default;

    /** If Value==Container::value_type, then this routine is the copy constructor.
        If Value==const Container::value_type, then this routine is a conversion constructor. */
    concurrent_queue_iterator( const concurrent_queue_iterator<Container, typename Container::value_type, Allocator>& other )
        : base_type(other) {}

private:
    concurrent_queue_iterator( const Container& container )
        : base_type(container.my_queue_representation) {}
public:
    concurrent_queue_iterator& operator=( const concurrent_queue_iterator<Container, typename Container::value_type, Allocator>& other ) {
        this->assign(other);
        return *this;
    }

    reference operator*() const {
        return *static_cast<pointer>(this->my_item);
    }

    pointer operator->() const { return &operator*(); }

    concurrent_queue_iterator& operator++() {
        this->advance();
        return *this;
    }

    concurrent_queue_iterator operator++(int) {
        concurrent_queue_iterator tmp = *this;
        ++*this;
        return tmp;
    }

    friend bool operator==( const concurrent_queue_iterator& lhs, const concurrent_queue_iterator& rhs ) {
        return lhs.my_item == rhs.my_item;
    }

    friend bool operator!=( const concurrent_queue_iterator& lhs, const concurrent_queue_iterator& rhs ) {
        return lhs.my_item != rhs.my_item;
    }
private:
    friend struct concurrent_queue_iterator_provider;
}; // class concurrent_queue_iterator

} // namespace d2
} // namespace detail
} // tbb

#endif // __TBB_detail__concurrent_queue_base_H