1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
|
/*
Copyright (c) 2005-2022 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_detail__concurrent_queue_base_H
#define __TBB_detail__concurrent_queue_base_H
#include "_utils.h"
#include "_exception.h"
#include "_machine.h"
#include "_allocator_traits.h"
#include "../profiling.h"
#include "../spin_mutex.h"
#include "../cache_aligned_allocator.h"
#include <atomic>
namespace tbb {
namespace detail {
namespace d2 {
using ticket_type = std::size_t;
template <typename Page>
inline bool is_valid_page(const Page p) {
return reinterpret_cast<std::uintptr_t>(p) > 1;
}
template <typename T, typename Allocator>
struct concurrent_queue_rep;
template <typename Container, typename T, typename Allocator>
class micro_queue_pop_finalizer;
#if _MSC_VER && !defined(__INTEL_COMPILER)
// unary minus operator applied to unsigned type, result still unsigned
#pragma warning( push )
#pragma warning( disable: 4146 )
#endif
// A queue using simple locking.
// For efficiency, this class has no constructor.
// The caller is expected to zero-initialize it.
template <typename T, typename Allocator>
class micro_queue {
private:
using queue_rep_type = concurrent_queue_rep<T, Allocator>;
using self_type = micro_queue<T, Allocator>;
public:
using size_type = std::size_t;
using value_type = T;
using reference = value_type&;
using const_reference = const value_type&;
using allocator_type = Allocator;
using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<queue_rep_type>;
static constexpr size_type item_size = sizeof(T);
static constexpr size_type items_per_page = item_size <= 8 ? 32 :
item_size <= 16 ? 16 :
item_size <= 32 ? 8 :
item_size <= 64 ? 4 :
item_size <= 128 ? 2 : 1;
struct padded_page {
padded_page() {}
~padded_page() {}
reference operator[] (std::size_t index) {
__TBB_ASSERT(index < items_per_page, "Index out of range");
return items[index];
}
const_reference operator[] (std::size_t index) const {
__TBB_ASSERT(index < items_per_page, "Index out of range");
return items[index];
}
padded_page* next{ nullptr };
std::atomic<std::uintptr_t> mask{};
union {
value_type items[items_per_page];
};
}; // struct padded_page
using page_allocator_type = typename allocator_traits_type::template rebind_alloc<padded_page>;
protected:
using page_allocator_traits = tbb::detail::allocator_traits<page_allocator_type>;
public:
using item_constructor_type = void (*)(value_type* location, const void* src);
micro_queue() = default;
micro_queue( const micro_queue& ) = delete;
micro_queue& operator=( const micro_queue& ) = delete;
size_type prepare_page( ticket_type k, queue_rep_type& base, page_allocator_type page_allocator,
padded_page*& p ) {
__TBB_ASSERT(p == nullptr, "Invalid page argument for prepare_page");
k &= -queue_rep_type::n_queue;
size_type index = modulo_power_of_two(k / queue_rep_type::n_queue, items_per_page);
if (!index) {
try_call( [&] {
p = page_allocator_traits::allocate(page_allocator, 1);
}).on_exception( [&] {
++base.n_invalid_entries;
invalidate_page( k );
});
page_allocator_traits::construct(page_allocator, p);
}
spin_wait_until_my_turn(tail_counter, k, base);
d1::call_itt_notify(d1::acquired, &tail_counter);
if (p) {
spin_mutex::scoped_lock lock( page_mutex );
padded_page* q = tail_page.load(std::memory_order_relaxed);
if (is_valid_page(q)) {
q->next = p;
} else {
head_page.store(p, std::memory_order_relaxed);
}
tail_page.store(p, std::memory_order_relaxed);
} else {
p = tail_page.load(std::memory_order_relaxed);
}
return index;
}
template<typename... Args>
void push( ticket_type k, queue_rep_type& base, queue_allocator_type& allocator, Args&&... args )
{
padded_page* p = nullptr;
page_allocator_type page_allocator(allocator);
size_type index = prepare_page(k, base, page_allocator, p);
__TBB_ASSERT(p != nullptr, "Page was not prepared");
// try_call API is not convenient here due to broken
// variadic capture on GCC 4.8.5
auto value_guard = make_raii_guard([&] {
++base.n_invalid_entries;
d1::call_itt_notify(d1::releasing, &tail_counter);
tail_counter.fetch_add(queue_rep_type::n_queue);
});
page_allocator_traits::construct(page_allocator, &(*p)[index], std::forward<Args>(args)...);
// If no exception was thrown, mark item as present.
p->mask.store(p->mask.load(std::memory_order_relaxed) | uintptr_t(1) << index, std::memory_order_relaxed);
d1::call_itt_notify(d1::releasing, &tail_counter);
value_guard.dismiss();
tail_counter.fetch_add(queue_rep_type::n_queue);
}
void abort_push( ticket_type k, queue_rep_type& base, queue_allocator_type& allocator ) {
padded_page* p = nullptr;
prepare_page(k, base, allocator, p);
++base.n_invalid_entries;
tail_counter.fetch_add(queue_rep_type::n_queue);
}
bool pop( void* dst, ticket_type k, queue_rep_type& base, queue_allocator_type& allocator ) {
k &= -queue_rep_type::n_queue;
spin_wait_until_eq(head_counter, k);
d1::call_itt_notify(d1::acquired, &head_counter);
spin_wait_while_eq(tail_counter, k);
d1::call_itt_notify(d1::acquired, &tail_counter);
padded_page *p = head_page.load(std::memory_order_relaxed);
__TBB_ASSERT( p, nullptr );
size_type index = modulo_power_of_two( k/queue_rep_type::n_queue, items_per_page );
bool success = false;
{
page_allocator_type page_allocator(allocator);
micro_queue_pop_finalizer<self_type, value_type, page_allocator_type> finalizer(*this, page_allocator,
k + queue_rep_type::n_queue, index == items_per_page - 1 ? p : nullptr );
if (p->mask.load(std::memory_order_relaxed) & (std::uintptr_t(1) << index)) {
success = true;
assign_and_destroy_item(dst, *p, index);
} else {
--base.n_invalid_entries;
}
}
return success;
}
micro_queue& assign( const micro_queue& src, queue_allocator_type& allocator,
item_constructor_type construct_item )
{
head_counter.store(src.head_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
tail_counter.store(src.tail_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
const padded_page* srcp = src.head_page.load(std::memory_order_relaxed);
if( is_valid_page(srcp) ) {
ticket_type g_index = head_counter.load(std::memory_order_relaxed);
size_type n_items = (tail_counter.load(std::memory_order_relaxed) - head_counter.load(std::memory_order_relaxed))
/ queue_rep_type::n_queue;
size_type index = modulo_power_of_two(head_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue, items_per_page);
size_type end_in_first_page = (index+n_items < items_per_page) ? (index + n_items) : items_per_page;
try_call( [&] {
head_page.store(make_copy(allocator, srcp, index, end_in_first_page, g_index, construct_item), std::memory_order_relaxed);
}).on_exception( [&] {
head_counter.store(0, std::memory_order_relaxed);
tail_counter.store(0, std::memory_order_relaxed);
});
padded_page* cur_page = head_page.load(std::memory_order_relaxed);
try_call( [&] {
if (srcp != src.tail_page.load(std::memory_order_relaxed)) {
for (srcp = srcp->next; srcp != src.tail_page.load(std::memory_order_relaxed); srcp=srcp->next ) {
cur_page->next = make_copy( allocator, srcp, 0, items_per_page, g_index, construct_item );
cur_page = cur_page->next;
}
__TBB_ASSERT(srcp == src.tail_page.load(std::memory_order_relaxed), nullptr );
size_type last_index = modulo_power_of_two(tail_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue, items_per_page);
if( last_index==0 ) last_index = items_per_page;
cur_page->next = make_copy( allocator, srcp, 0, last_index, g_index, construct_item );
cur_page = cur_page->next;
}
tail_page.store(cur_page, std::memory_order_relaxed);
}).on_exception( [&] {
padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
tail_page.store(invalid_page, std::memory_order_relaxed);
});
} else {
head_page.store(nullptr, std::memory_order_relaxed);
tail_page.store(nullptr, std::memory_order_relaxed);
}
return *this;
}
padded_page* make_copy( queue_allocator_type& allocator, const padded_page* src_page, size_type begin_in_page,
size_type end_in_page, ticket_type& g_index, item_constructor_type construct_item )
{
page_allocator_type page_allocator(allocator);
padded_page* new_page = page_allocator_traits::allocate(page_allocator, 1);
new_page->next = nullptr;
new_page->mask.store(src_page->mask.load(std::memory_order_relaxed), std::memory_order_relaxed);
for (; begin_in_page!=end_in_page; ++begin_in_page, ++g_index) {
if (new_page->mask.load(std::memory_order_relaxed) & uintptr_t(1) << begin_in_page) {
copy_item(*new_page, begin_in_page, *src_page, begin_in_page, construct_item);
}
}
return new_page;
}
void invalidate_page( ticket_type k ) {
// Append an invalid page at address 1 so that no more pushes are allowed.
padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
{
spin_mutex::scoped_lock lock( page_mutex );
tail_counter.store(k + queue_rep_type::n_queue + 1, std::memory_order_relaxed);
padded_page* q = tail_page.load(std::memory_order_relaxed);
if (is_valid_page(q)) {
q->next = invalid_page;
} else {
head_page.store(invalid_page, std::memory_order_relaxed);
}
tail_page.store(invalid_page, std::memory_order_relaxed);
}
}
padded_page* get_head_page() {
return head_page.load(std::memory_order_relaxed);
}
void clear(queue_allocator_type& allocator, padded_page* new_head = nullptr, padded_page* new_tail = nullptr) {
padded_page* curr_page = get_head_page();
size_type index = (head_counter.load(std::memory_order_relaxed) / queue_rep_type::n_queue) % items_per_page;
page_allocator_type page_allocator(allocator);
while (curr_page && is_valid_page(curr_page)) {
while (index != items_per_page) {
if (curr_page->mask.load(std::memory_order_relaxed) & (std::uintptr_t(1) << index)) {
page_allocator_traits::destroy(page_allocator, &curr_page->operator[](index));
}
++index;
}
index = 0;
padded_page* next_page = curr_page->next;
page_allocator_traits::destroy(page_allocator, curr_page);
page_allocator_traits::deallocate(page_allocator, curr_page, 1);
curr_page = next_page;
}
head_counter.store(0, std::memory_order_relaxed);
tail_counter.store(0, std::memory_order_relaxed);
head_page.store(new_head, std::memory_order_relaxed);
tail_page.store(new_tail, std::memory_order_relaxed);
}
void clear_and_invalidate(queue_allocator_type& allocator) {
padded_page* invalid_page = reinterpret_cast<padded_page*>(std::uintptr_t(1));
clear(allocator, invalid_page, invalid_page);
}
private:
// template <typename U, typename A>
friend class micro_queue_pop_finalizer<self_type, value_type, page_allocator_type>;
// Class used to ensure exception-safety of method "pop"
class destroyer {
value_type& my_value;
public:
destroyer( reference value ) : my_value(value) {}
destroyer( const destroyer& ) = delete;
destroyer& operator=( const destroyer& ) = delete;
~destroyer() {my_value.~T();}
}; // class destroyer
void copy_item( padded_page& dst, size_type dindex, const padded_page& src, size_type sindex,
item_constructor_type construct_item )
{
auto& src_item = src[sindex];
construct_item( &dst[dindex], static_cast<const void*>(&src_item) );
}
void assign_and_destroy_item( void* dst, padded_page& src, size_type index ) {
auto& from = src[index];
destroyer d(from);
*static_cast<T*>(dst) = std::move(from);
}
void spin_wait_until_my_turn( std::atomic<ticket_type>& counter, ticket_type k, queue_rep_type& rb ) const {
for (atomic_backoff b{};; b.pause()) {
ticket_type c = counter.load(std::memory_order_acquire);
if (c == k) return;
else if (c & 1) {
++rb.n_invalid_entries;
throw_exception( exception_id::bad_last_alloc);
}
}
}
std::atomic<padded_page*> head_page{};
std::atomic<ticket_type> head_counter{};
std::atomic<padded_page*> tail_page{};
std::atomic<ticket_type> tail_counter{};
spin_mutex page_mutex{};
}; // class micro_queue
#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif // warning 4146 is back
template <typename Container, typename T, typename Allocator>
class micro_queue_pop_finalizer {
public:
using padded_page = typename Container::padded_page;
using allocator_type = Allocator;
using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
micro_queue_pop_finalizer( Container& queue, Allocator& alloc, ticket_type k, padded_page* p ) :
my_ticket_type(k), my_queue(queue), my_page(p), allocator(alloc)
{}
micro_queue_pop_finalizer( const micro_queue_pop_finalizer& ) = delete;
micro_queue_pop_finalizer& operator=( const micro_queue_pop_finalizer& ) = delete;
~micro_queue_pop_finalizer() {
padded_page* p = my_page;
if( is_valid_page(p) ) {
spin_mutex::scoped_lock lock( my_queue.page_mutex );
padded_page* q = p->next;
my_queue.head_page.store(q, std::memory_order_relaxed);
if( !is_valid_page(q) ) {
my_queue.tail_page.store(nullptr, std::memory_order_relaxed);
}
}
my_queue.head_counter.store(my_ticket_type, std::memory_order_release);
if ( is_valid_page(p) ) {
allocator_traits_type::destroy(allocator, static_cast<padded_page*>(p));
allocator_traits_type::deallocate(allocator, static_cast<padded_page*>(p), 1);
}
}
private:
ticket_type my_ticket_type;
Container& my_queue;
padded_page* my_page;
Allocator& allocator;
}; // class micro_queue_pop_finalizer
#if _MSC_VER && !defined(__INTEL_COMPILER)
// structure was padded due to alignment specifier
#pragma warning( push )
#pragma warning( disable: 4324 )
#endif
template <typename T, typename Allocator>
struct concurrent_queue_rep {
using self_type = concurrent_queue_rep<T, Allocator>;
using size_type = std::size_t;
using micro_queue_type = micro_queue<T, Allocator>;
using allocator_type = Allocator;
using allocator_traits_type = tbb::detail::allocator_traits<allocator_type>;
using padded_page = typename micro_queue_type::padded_page;
using page_allocator_type = typename micro_queue_type::page_allocator_type;
using item_constructor_type = typename micro_queue_type::item_constructor_type;
private:
using page_allocator_traits = tbb::detail::allocator_traits<page_allocator_type>;
using queue_allocator_type = typename allocator_traits_type::template rebind_alloc<self_type>;
public:
// must be power of 2
static constexpr size_type n_queue = 8;
// Approximately n_queue/golden ratio
static constexpr size_type phi = 3;
static constexpr size_type item_size = micro_queue_type::item_size;
static constexpr size_type items_per_page = micro_queue_type::items_per_page;
concurrent_queue_rep() {}
concurrent_queue_rep( const concurrent_queue_rep& ) = delete;
concurrent_queue_rep& operator=( const concurrent_queue_rep& ) = delete;
void clear( queue_allocator_type& alloc ) {
for (size_type index = 0; index < n_queue; ++index) {
array[index].clear(alloc);
}
head_counter.store(0, std::memory_order_relaxed);
tail_counter.store(0, std::memory_order_relaxed);
n_invalid_entries.store(0, std::memory_order_relaxed);
}
void assign( const concurrent_queue_rep& src, queue_allocator_type& alloc, item_constructor_type construct_item ) {
head_counter.store(src.head_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
tail_counter.store(src.tail_counter.load(std::memory_order_relaxed), std::memory_order_relaxed);
n_invalid_entries.store(src.n_invalid_entries.load(std::memory_order_relaxed), std::memory_order_relaxed);
// copy or move micro_queues
size_type queue_idx = 0;
try_call( [&] {
for (; queue_idx < n_queue; ++queue_idx) {
array[queue_idx].assign(src.array[queue_idx], alloc, construct_item);
}
}).on_exception( [&] {
for (size_type i = 0; i < queue_idx + 1; ++i) {
array[i].clear_and_invalidate(alloc);
}
head_counter.store(0, std::memory_order_relaxed);
tail_counter.store(0, std::memory_order_relaxed);
n_invalid_entries.store(0, std::memory_order_relaxed);
});
__TBB_ASSERT(head_counter.load(std::memory_order_relaxed) == src.head_counter.load(std::memory_order_relaxed) &&
tail_counter.load(std::memory_order_relaxed) == src.tail_counter.load(std::memory_order_relaxed),
"the source concurrent queue should not be concurrently modified." );
}
bool empty() const {
ticket_type tc = tail_counter.load(std::memory_order_acquire);
ticket_type hc = head_counter.load(std::memory_order_relaxed);
// if tc!=r.tail_counter, the queue was not empty at some point between the two reads.
return tc == tail_counter.load(std::memory_order_relaxed) &&
std::ptrdiff_t(tc - hc - n_invalid_entries.load(std::memory_order_relaxed)) <= 0;
}
std::ptrdiff_t size() const {
__TBB_ASSERT(sizeof(std::ptrdiff_t) <= sizeof(size_type), nullptr);
std::ptrdiff_t hc = head_counter.load(std::memory_order_acquire);
std::ptrdiff_t tc = tail_counter.load(std::memory_order_relaxed);
std::ptrdiff_t nie = n_invalid_entries.load(std::memory_order_relaxed);
return tc - hc - nie;
}
friend class micro_queue<T, Allocator>;
// Map ticket_type to an array index
static size_type index( ticket_type k ) {
return k * phi % n_queue;
}
micro_queue_type& choose( ticket_type k ) {
// The formula here approximates LRU in a cache-oblivious way.
return array[index(k)];
}
alignas(max_nfs_size) micro_queue_type array[n_queue];
alignas(max_nfs_size) std::atomic<ticket_type> head_counter{};
alignas(max_nfs_size) std::atomic<ticket_type> tail_counter{};
alignas(max_nfs_size) std::atomic<size_type> n_invalid_entries{};
}; // class concurrent_queue_rep
#if _MSC_VER && !defined(__INTEL_COMPILER)
#pragma warning( pop )
#endif
template <typename Value, typename Allocator>
class concurrent_queue_iterator_base {
using queue_rep_type = concurrent_queue_rep<Value, Allocator>;
using padded_page = typename queue_rep_type::padded_page;
protected:
concurrent_queue_iterator_base() = default;
concurrent_queue_iterator_base( const concurrent_queue_iterator_base& other ) {
assign(other);
}
concurrent_queue_iterator_base( queue_rep_type* queue_rep )
: my_queue_rep(queue_rep),
my_head_counter(my_queue_rep->head_counter.load(std::memory_order_relaxed))
{
for (std::size_t i = 0; i < queue_rep_type::n_queue; ++i) {
my_array[i] = my_queue_rep->array[i].get_head_page();
}
if (!get_item(my_item, my_head_counter)) advance();
}
void assign( const concurrent_queue_iterator_base& other ) {
my_item = other.my_item;
my_queue_rep = other.my_queue_rep;
if (my_queue_rep != nullptr) {
my_head_counter = other.my_head_counter;
for (std::size_t i = 0; i < queue_rep_type::n_queue; ++i) {
my_array[i] = other.my_array[i];
}
}
}
void advance() {
__TBB_ASSERT(my_item, "Attempt to increment iterator past end of the queue");
std::size_t k = my_head_counter;
#if TBB_USE_ASSERT
Value* tmp;
get_item(tmp, k);
__TBB_ASSERT(my_item == tmp, nullptr);
#endif
std::size_t i = modulo_power_of_two(k / queue_rep_type::n_queue, my_queue_rep->items_per_page);
if (i == my_queue_rep->items_per_page - 1) {
padded_page*& root = my_array[queue_rep_type::index(k)];
root = root->next;
}
// Advance k
my_head_counter = ++k;
if (!get_item(my_item, k)) advance();
}
concurrent_queue_iterator_base& operator=( const concurrent_queue_iterator_base& other ) {
this->assign(other);
return *this;
}
bool get_item( Value*& item, std::size_t k ) {
if (k == my_queue_rep->tail_counter.load(std::memory_order_relaxed)) {
item = nullptr;
return true;
} else {
padded_page* p = my_array[queue_rep_type::index(k)];
__TBB_ASSERT(p, nullptr);
std::size_t i = modulo_power_of_two(k / queue_rep_type::n_queue, my_queue_rep->items_per_page);
item = &(*p)[i];
return (p->mask & uintptr_t(1) << i) != 0;
}
}
Value* my_item{ nullptr };
queue_rep_type* my_queue_rep{ nullptr };
ticket_type my_head_counter{};
padded_page* my_array[queue_rep_type::n_queue]{};
}; // class concurrent_queue_iterator_base
struct concurrent_queue_iterator_provider {
template <typename Iterator, typename Container>
static Iterator get( const Container& container ) {
return Iterator(container);
}
}; // struct concurrent_queue_iterator_provider
template <typename Container, typename Value, typename Allocator>
class concurrent_queue_iterator : public concurrent_queue_iterator_base<typename std::remove_cv<Value>::type, Allocator> {
using base_type = concurrent_queue_iterator_base<typename std::remove_cv<Value>::type, Allocator>;
public:
using value_type = Value;
using pointer = value_type*;
using reference = value_type&;
using difference_type = std::ptrdiff_t;
using iterator_category = std::forward_iterator_tag;
concurrent_queue_iterator() = default;
/** If Value==Container::value_type, then this routine is the copy constructor.
If Value==const Container::value_type, then this routine is a conversion constructor. */
concurrent_queue_iterator( const concurrent_queue_iterator<Container, typename Container::value_type, Allocator>& other )
: base_type(other) {}
private:
concurrent_queue_iterator( const Container& container )
: base_type(container.my_queue_representation) {}
public:
concurrent_queue_iterator& operator=( const concurrent_queue_iterator<Container, typename Container::value_type, Allocator>& other ) {
this->assign(other);
return *this;
}
reference operator*() const {
return *static_cast<pointer>(this->my_item);
}
pointer operator->() const { return &operator*(); }
concurrent_queue_iterator& operator++() {
this->advance();
return *this;
}
concurrent_queue_iterator operator++(int) {
concurrent_queue_iterator tmp = *this;
++*this;
return tmp;
}
friend bool operator==( const concurrent_queue_iterator& lhs, const concurrent_queue_iterator& rhs ) {
return lhs.my_item == rhs.my_item;
}
friend bool operator!=( const concurrent_queue_iterator& lhs, const concurrent_queue_iterator& rhs ) {
return lhs.my_item != rhs.my_item;
}
private:
friend struct concurrent_queue_iterator_provider;
}; // class concurrent_queue_iterator
} // namespace d2
} // namespace detail
} // tbb
#endif // __TBB_detail__concurrent_queue_base_H
|