1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
/*
Copyright (c) 2005-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB__flow_graph_cache_impl_H
#define __TBB__flow_graph_cache_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
// included in namespace tbb::detail::d2 (in flow_graph.h)
//! A node_cache maintains a std::queue of elements of type T. Each operation is protected by a lock.
template< typename T, typename M=spin_mutex >
class node_cache {
public:
typedef size_t size_type;
bool empty() {
typename mutex_type::scoped_lock lock( my_mutex );
return internal_empty();
}
void add( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
internal_push(n);
}
void remove( T &n ) {
typename mutex_type::scoped_lock lock( my_mutex );
for ( size_t i = internal_size(); i != 0; --i ) {
T &s = internal_pop();
if ( &s == &n )
break; // only remove one predecessor per request
internal_push(s);
}
}
void clear() {
while( !my_q.empty()) (void)my_q.pop();
}
protected:
typedef M mutex_type;
mutex_type my_mutex;
std::queue< T * > my_q;
// Assumes lock is held
inline bool internal_empty( ) {
return my_q.empty();
}
// Assumes lock is held
inline size_type internal_size( ) {
return my_q.size();
}
// Assumes lock is held
inline void internal_push( T &n ) {
my_q.push(&n);
}
// Assumes lock is held
inline T &internal_pop() {
T *v = my_q.front();
my_q.pop();
return *v;
}
};
//! A cache of predecessors that only supports try_get
template< typename T, typename M=spin_mutex >
class predecessor_cache : public node_cache< sender<T>, M > {
public:
typedef M mutex_type;
typedef T output_type;
typedef sender<output_type> predecessor_type;
typedef receiver<output_type> successor_type;
predecessor_cache( successor_type* owner ) : my_owner( owner ) {
__TBB_ASSERT( my_owner, "predecessor_cache should have an owner." );
// Do not work with the passed pointer here as it may not be fully initialized yet
}
private:
bool get_item_impl( output_type& v
__TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo* metainfo_ptr = nullptr) )
{
bool successful_get = false;
do {
predecessor_type *src;
{
typename mutex_type::scoped_lock lock(this->my_mutex);
if ( this->internal_empty() ) {
break;
}
src = &this->internal_pop();
}
// Try to get from this sender
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (metainfo_ptr) {
successful_get = src->try_get( v, *metainfo_ptr );
} else
#endif
{
successful_get = src->try_get( v );
}
if (successful_get == false) {
// Relinquish ownership of the edge
register_successor(*src, *my_owner);
} else {
// Retain ownership of the edge
this->add(*src);
}
} while ( successful_get == false );
return successful_get;
}
public:
bool get_item( output_type& v ) {
return get_item_impl(v);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool get_item( output_type& v, message_metainfo& metainfo ) {
return get_item_impl(v, &metainfo);
}
#endif
// If we are removing arcs (rf_clear_edges), call clear() rather than reset().
void reset() {
for(;;) {
predecessor_type *src;
{
if (this->internal_empty()) break;
src = &this->internal_pop();
}
register_successor(*src, *my_owner);
}
}
protected:
successor_type* my_owner;
};
//! An cache of predecessors that supports requests and reservations
template< typename T, typename M=spin_mutex >
class reservable_predecessor_cache : public predecessor_cache< T, M > {
public:
typedef M mutex_type;
typedef T output_type;
typedef sender<T> predecessor_type;
typedef receiver<T> successor_type;
reservable_predecessor_cache( successor_type* owner )
: predecessor_cache<T,M>(owner), reserved_src(nullptr)
{
// Do not work with the passed pointer here as it may not be fully initialized yet
}
private:
bool try_reserve_impl( output_type &v __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo* metainfo) ) {
bool successful_reserve = false;
do {
predecessor_type* pred = nullptr;
{
typename mutex_type::scoped_lock lock(this->my_mutex);
if ( reserved_src.load(std::memory_order_relaxed) || this->internal_empty() )
return false;
pred = &this->internal_pop();
reserved_src.store(pred, std::memory_order_relaxed);
}
// Try to get from this sender
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (metainfo) {
successful_reserve = pred->try_reserve( v, *metainfo );
} else
#endif
{
successful_reserve = pred->try_reserve( v );
}
if (successful_reserve == false) {
typename mutex_type::scoped_lock lock(this->my_mutex);
// Relinquish ownership of the edge
register_successor( *pred, *this->my_owner );
reserved_src.store(nullptr, std::memory_order_relaxed);
} else {
// Retain ownership of the edge
this->add( *pred);
}
} while ( successful_reserve == false );
return successful_reserve;
}
public:
bool try_reserve( output_type& v ) {
return try_reserve_impl(v __TBB_FLOW_GRAPH_METAINFO_ARG(nullptr));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool try_reserve( output_type& v, message_metainfo& metainfo ) {
return try_reserve_impl(v, &metainfo);
}
#endif
bool try_release() {
reserved_src.load(std::memory_order_relaxed)->try_release();
reserved_src.store(nullptr, std::memory_order_relaxed);
return true;
}
bool try_consume() {
reserved_src.load(std::memory_order_relaxed)->try_consume();
reserved_src.store(nullptr, std::memory_order_relaxed);
return true;
}
void reset() {
reserved_src.store(nullptr, std::memory_order_relaxed);
predecessor_cache<T, M>::reset();
}
void clear() {
reserved_src.store(nullptr, std::memory_order_relaxed);
predecessor_cache<T, M>::clear();
}
private:
std::atomic<predecessor_type*> reserved_src;
};
//! An abstract cache of successors
template<typename T, typename M=spin_rw_mutex >
class successor_cache : no_copy {
protected:
typedef M mutex_type;
mutex_type my_mutex;
typedef receiver<T> successor_type;
typedef receiver<T>* pointer_type;
typedef sender<T> owner_type;
// TODO revamp: introduce heapified collection of successors for strict priorities
typedef std::list< pointer_type > successors_type;
successors_type my_successors;
owner_type* my_owner;
public:
successor_cache( owner_type* owner ) : my_owner(owner) {
// Do not work with the passed pointer here as it may not be fully initialized yet
}
virtual ~successor_cache() {}
void register_successor( successor_type& r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
if( r.priority() != no_priority )
my_successors.push_front( &r );
else
my_successors.push_back( &r );
}
void remove_successor( successor_type& r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
for ( typename successors_type::iterator i = my_successors.begin();
i != my_successors.end(); ++i ) {
if ( *i == & r ) {
my_successors.erase(i);
break;
}
}
}
bool empty() {
typename mutex_type::scoped_lock l(my_mutex, false);
return my_successors.empty();
}
void clear() {
my_successors.clear();
}
virtual graph_task* try_put_task( const T& t ) = 0;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
virtual graph_task* try_put_task( const T& t, const message_metainfo& metainfo ) = 0;
#endif
}; // successor_cache<T>
//! An abstract cache of successors, specialized to continue_msg
template<typename M>
class successor_cache< continue_msg, M > : no_copy {
protected:
typedef M mutex_type;
mutex_type my_mutex;
typedef receiver<continue_msg> successor_type;
typedef receiver<continue_msg>* pointer_type;
typedef sender<continue_msg> owner_type;
typedef std::list< pointer_type > successors_type;
successors_type my_successors;
owner_type* my_owner;
public:
successor_cache( sender<continue_msg>* owner ) : my_owner(owner) {
// Do not work with the passed pointer here as it may not be fully initialized yet
}
virtual ~successor_cache() {}
void register_successor( successor_type& r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
if( r.priority() != no_priority )
my_successors.push_front( &r );
else
my_successors.push_back( &r );
__TBB_ASSERT( my_owner, "Cache of successors must have an owner." );
if ( r.is_continue_receiver() ) {
r.register_predecessor( *my_owner );
}
}
void remove_successor( successor_type& r ) {
typename mutex_type::scoped_lock l(my_mutex, true);
for ( successors_type::iterator i = my_successors.begin(); i != my_successors.end(); ++i ) {
if ( *i == &r ) {
__TBB_ASSERT(my_owner, "Cache of successors must have an owner.");
// TODO: check if we need to test for continue_receiver before removing from r.
r.remove_predecessor( *my_owner );
my_successors.erase(i);
break;
}
}
}
bool empty() {
typename mutex_type::scoped_lock l(my_mutex, false);
return my_successors.empty();
}
void clear() {
my_successors.clear();
}
virtual graph_task* try_put_task( const continue_msg& t ) = 0;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
virtual graph_task* try_put_task( const continue_msg& t, const message_metainfo& metainfo ) = 0;
#endif
}; // successor_cache< continue_msg >
//! A cache of successors that are broadcast to
template<typename T, typename M=spin_rw_mutex>
class broadcast_cache : public successor_cache<T, M> {
typedef successor_cache<T, M> base_type;
typedef M mutex_type;
typedef typename successor_cache<T,M>::successors_type successors_type;
graph_task* try_put_task_impl( const T& t __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo) ) {
graph_task * last_task = nullptr;
typename mutex_type::scoped_lock l(this->my_mutex, /*write=*/true);
typename successors_type::iterator i = this->my_successors.begin();
while ( i != this->my_successors.end() ) {
graph_task *new_task = (*i)->try_put_task(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
// workaround for icc bug
graph& graph_ref = (*i)->graph_reference();
last_task = combine_tasks(graph_ref, last_task, new_task); // enqueue if necessary
if(new_task) {
++i;
}
else { // failed
if ( (*i)->register_predecessor(*this->my_owner) ) {
i = this->my_successors.erase(i);
} else {
++i;
}
}
}
return last_task;
}
public:
broadcast_cache( typename base_type::owner_type* owner ): base_type(owner) {
// Do not work with the passed pointer here as it may not be fully initialized yet
}
graph_task* try_put_task( const T &t ) override {
return try_put_task_impl(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task( const T &t, const message_metainfo& metainfo ) override {
return try_put_task_impl(t, metainfo);
}
#endif
// call try_put_task and return list of received tasks
bool gather_successful_try_puts( const T &t, graph_task_list& tasks ) {
bool is_at_least_one_put_successful = false;
typename mutex_type::scoped_lock l(this->my_mutex, /*write=*/true);
typename successors_type::iterator i = this->my_successors.begin();
while ( i != this->my_successors.end() ) {
graph_task * new_task = (*i)->try_put_task(t);
if(new_task) {
++i;
if(new_task != SUCCESSFULLY_ENQUEUED) {
tasks.push_back(*new_task);
}
is_at_least_one_put_successful = true;
}
else { // failed
if ( (*i)->register_predecessor(*this->my_owner) ) {
i = this->my_successors.erase(i);
} else {
++i;
}
}
}
return is_at_least_one_put_successful;
}
};
//! A cache of successors that are put in a round-robin fashion
template<typename T, typename M=spin_rw_mutex >
class round_robin_cache : public successor_cache<T, M> {
typedef successor_cache<T, M> base_type;
typedef size_t size_type;
typedef M mutex_type;
typedef typename successor_cache<T,M>::successors_type successors_type;
public:
round_robin_cache( typename base_type::owner_type* owner ): base_type(owner) {
// Do not work with the passed pointer here as it may not be fully initialized yet
}
size_type size() {
typename mutex_type::scoped_lock l(this->my_mutex, false);
return this->my_successors.size();
}
private:
graph_task* try_put_task_impl( const T &t
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo) )
{
typename mutex_type::scoped_lock l(this->my_mutex, /*write=*/true);
typename successors_type::iterator i = this->my_successors.begin();
while ( i != this->my_successors.end() ) {
graph_task* new_task = (*i)->try_put_task(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
if ( new_task ) {
return new_task;
} else {
if ( (*i)->register_predecessor(*this->my_owner) ) {
i = this->my_successors.erase(i);
}
else {
++i;
}
}
}
return nullptr;
}
public:
graph_task* try_put_task(const T& t) override {
return try_put_task_impl(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task( const T& t, const message_metainfo& metainfo ) override {
return try_put_task_impl(t, metainfo);
}
#endif
};
#endif // __TBB__flow_graph_cache_impl_H
|