File: _flow_graph_impl.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (556 lines) | stat: -rw-r--r-- 19,414 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/*
    Copyright (c) 2005-2025 Intel Corporation
    Copyright (c) 2025 UXL Foundation Contributors

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_flow_graph_impl_H
#define __TBB_flow_graph_impl_H

// #include "../config.h"
#include "_task.h"
#include "../task_group.h"
#include "../task_arena.h"
#include "../flow_graph_abstractions.h"

#include "../concurrent_priority_queue.h"

#include <list>

namespace tbb {
namespace detail {

namespace d2 {

class graph_task;
static graph_task* const SUCCESSFULLY_ENQUEUED = (graph_task*)-1;
typedef unsigned int node_priority_t;
static const node_priority_t no_priority = node_priority_t(0);

class graph;
class graph_node;

template <typename GraphContainerType, typename GraphNodeType>
class graph_iterator {
    friend class graph;
    friend class graph_node;
public:
    typedef size_t size_type;
    typedef GraphNodeType value_type;
    typedef GraphNodeType* pointer;
    typedef GraphNodeType& reference;
    typedef const GraphNodeType& const_reference;
    typedef std::forward_iterator_tag iterator_category;

    //! Copy constructor
    graph_iterator(const graph_iterator& other) :
        my_graph(other.my_graph), current_node(other.current_node)
    {}

    //! Assignment
    graph_iterator& operator=(const graph_iterator& other) {
        if (this != &other) {
            my_graph = other.my_graph;
            current_node = other.current_node;
        }
        return *this;
    }

    //! Dereference
    reference operator*() const;

    //! Dereference
    pointer operator->() const;

    //! Equality
    bool operator==(const graph_iterator& other) const {
        return ((my_graph == other.my_graph) && (current_node == other.current_node));
    }

#if !__TBB_CPP20_COMPARISONS_PRESENT
    //! Inequality
    bool operator!=(const graph_iterator& other) const { return !(operator==(other)); }
#endif

    //! Pre-increment
    graph_iterator& operator++() {
        internal_forward();
        return *this;
    }

    //! Post-increment
    graph_iterator operator++(int) {
        graph_iterator result = *this;
        operator++();
        return result;
    }

private:
    // the graph over which we are iterating
    GraphContainerType *my_graph;
    // pointer into my_graph's my_nodes list
    pointer current_node;

    //! Private initializing constructor for begin() and end() iterators
    graph_iterator(GraphContainerType *g, bool begin);
    void internal_forward();
};  // class graph_iterator

// flags to modify the behavior of the graph reset().  Can be combined.
enum reset_flags {
    rf_reset_protocol = 0,
    rf_reset_bodies = 1 << 0,  // delete the current node body, reset to a copy of the initial node body.
    rf_clear_edges = 1 << 1   // delete edges
};

void activate_graph(graph& g);
void deactivate_graph(graph& g);
bool is_graph_active(graph& g);
graph_task* prioritize_task(graph& g, graph_task& arena_task);
void spawn_in_graph_arena(graph& g, graph_task& arena_task);
void enqueue_in_graph_arena(graph &g, graph_task& arena_task);

class graph;

//! Base class for tasks generated by graph nodes.
class graph_task : public d1::task {
public:
    graph_task(graph& g, d1::small_object_allocator& allocator,
               node_priority_t node_priority = no_priority);

    graph& my_graph; // graph instance the task belongs to
    // TODO revamp: rename to my_priority
    node_priority_t priority;
    template <typename DerivedType>
    void destruct_and_deallocate(const d1::execution_data& ed);
protected:
    template <typename DerivedType>
    void finalize(const d1::execution_data& ed);
private:
    // To organize task_list
    graph_task* my_next{ nullptr };
    d1::small_object_allocator my_allocator;
    d1::wait_tree_vertex_interface* my_reference_vertex;
    // TODO revamp: elaborate internal interfaces to avoid friends declarations
    friend class graph_task_list;
    friend graph_task* prioritize_task(graph& g, graph_task& gt);
};

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
class trackable_messages_graph_task : public graph_task {
public:
    trackable_messages_graph_task(graph& g, d1::small_object_allocator& allocator,
                                  node_priority_t node_priority,
                                  const std::forward_list<d1::wait_context_vertex*>& msg_waiters)
        : graph_task(g, allocator, node_priority)
        , my_msg_wait_context_vertices(msg_waiters)
    {
        auto last_iterator = my_msg_reference_vertices.cbefore_begin();

        for (auto& msg_waiter : my_msg_wait_context_vertices) {
            d1::wait_tree_vertex_interface* ref_vertex = r1::get_thread_reference_vertex(msg_waiter);
            last_iterator = my_msg_reference_vertices.emplace_after(last_iterator,
                                                                    ref_vertex);
            ref_vertex->reserve(1);
        }
    }

    trackable_messages_graph_task(graph& g, d1::small_object_allocator& allocator,
                                  node_priority_t node_priority,
                                  std::forward_list<d1::wait_context_vertex*>&& msg_waiters)
        : graph_task(g, allocator, node_priority)
        , my_msg_wait_context_vertices(std::move(msg_waiters))
    {
    }

    const std::forward_list<d1::wait_context_vertex*> get_msg_wait_context_vertices() const {
        return my_msg_wait_context_vertices;
    }

protected:
    template <typename DerivedType>
    void finalize(const d1::execution_data& ed) {
        auto wait_context_vertices = std::move(my_msg_wait_context_vertices);
        auto msg_reference_vertices = std::move(my_msg_reference_vertices);
        graph_task::finalize<DerivedType>(ed);

        // If there is no thread reference vertices associated with the task
        // then this task was created by transferring the ownership from other metainfo
        // instance (e.g. while taking from the buffer)
        if (msg_reference_vertices.empty()) {
            for (auto& msg_waiter : wait_context_vertices) {
                msg_waiter->release(1);
            }
        } else {
            for (auto& msg_waiter : msg_reference_vertices) {
                msg_waiter->release(1);
            }
        }
    }
private:
    // Each task that holds information about single message wait_contexts should hold two lists
    // The first one is wait_contexts associated with the message itself. They are needed
    // to be able to broadcast the list of wait_contexts to the node successors while executing the task.
    // The second list is a list of reference vertices for each wait_context_vertex in the first list
    // to support the distributed reference counting schema
    std::forward_list<d1::wait_context_vertex*> my_msg_wait_context_vertices;
    std::forward_list<d1::wait_tree_vertex_interface*> my_msg_reference_vertices;
}; // class trackable_messages_graph_task
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT

struct graph_task_comparator {
    bool operator()(const graph_task* left, const graph_task* right) {
        return left->priority < right->priority;
    }
};

typedef tbb::concurrent_priority_queue<graph_task*, graph_task_comparator> graph_task_priority_queue_t;

class priority_task_selector : public d1::task {
public:
    priority_task_selector(graph_task_priority_queue_t& priority_queue, d1::small_object_allocator& allocator)
        : my_priority_queue(priority_queue), my_allocator(allocator), my_task() {}
    task* execute(d1::execution_data& ed) override {
        next_task();
        __TBB_ASSERT(my_task, nullptr);
        task* t_next = my_task->execute(ed);
        my_allocator.delete_object(this, ed);
        return t_next;
    }
    task* cancel(d1::execution_data& ed) override {
        if (!my_task) {
            next_task();
        }
        __TBB_ASSERT(my_task, nullptr);
        task* t_next = my_task->cancel(ed);
        my_allocator.delete_object(this, ed);
        return t_next;
    }
private:
    void next_task() {
        // TODO revamp: hold functors in priority queue instead of real tasks
        bool result = my_priority_queue.try_pop(my_task);
        __TBB_ASSERT_EX(result, "Number of critical tasks for scheduler and tasks"
            " in graph's priority queue mismatched");
        __TBB_ASSERT(my_task && my_task != SUCCESSFULLY_ENQUEUED,
            "Incorrect task submitted to graph priority queue");
        __TBB_ASSERT(my_task->priority != no_priority,
            "Tasks from graph's priority queue must have priority");
    }

    graph_task_priority_queue_t& my_priority_queue;
    d1::small_object_allocator my_allocator;
    graph_task* my_task;
};

template <typename Receiver, typename Body> class run_and_put_task;
template <typename Body> class run_task;

//********************************************************************************
// graph tasks helpers
//********************************************************************************

//! The list of graph tasks
class graph_task_list : no_copy {
private:
    graph_task* my_first;
    graph_task** my_next_ptr;
public:
    //! Construct empty list
    graph_task_list() : my_first(nullptr), my_next_ptr(&my_first) {}

    //! True if list is empty; false otherwise.
    bool empty() const { return !my_first; }

    //! Push task onto back of list.
    void push_back(graph_task& task) {
        task.my_next = nullptr;
        *my_next_ptr = &task;
        my_next_ptr = &task.my_next;
    }

    //! Pop the front task from the list.
    graph_task& pop_front() {
        __TBB_ASSERT(!empty(), "attempt to pop item from empty task_list");
        graph_task* result = my_first;
        my_first = result->my_next;
        if (!my_first) {
            my_next_ptr = &my_first;
        }
        return *result;
    }
};

//! The graph class
/** This class serves as a handle to the graph */
class graph : no_copy, public graph_proxy {
    friend class graph_node;

    void prepare_task_arena(bool reinit = false) {
        if (reinit) {
            __TBB_ASSERT(my_task_arena, "task arena is nullptr");
            my_task_arena->terminate();
            my_task_arena->initialize(task_arena::attach());
        }
        else {
            __TBB_ASSERT(my_task_arena == nullptr, "task arena is not nullptr");
            my_task_arena = new task_arena(task_arena::attach());
        }
        if (!my_task_arena->is_active()) // failed to attach
            my_task_arena->initialize(); // create a new, default-initialized arena
        __TBB_ASSERT(my_task_arena->is_active(), "task arena is not active");
    }

public:
    //! Constructs a graph with isolated task_group_context
    graph();

    //! Constructs a graph with use_this_context as context
    explicit graph(task_group_context& use_this_context);

    //! Destroys the graph.
    /** Calls wait_for_all, then destroys the root task and context. */
    ~graph();

    //! Used to register that an external entity may still interact with the graph.
    /** The graph will not return from wait_for_all until a matching number of release_wait calls is
    made. */
    void reserve_wait() override;

    //! Deregisters an external entity that may have interacted with the graph.
    /** The graph will not return from wait_for_all until all the number of reserve_wait calls
    matches the number of release_wait calls. */
    void release_wait() override;

    //! Wait until graph is idle and the number of release_wait calls equals to the number of
    //! reserve_wait calls.
    /** The waiting thread will go off and steal work while it is blocked in the wait_for_all. */
    void wait_for_all() {
        cancelled = false;
        caught_exception = false;
        try_call([this] {
            my_task_arena->execute([this] {
                d1::wait(my_wait_context_vertex.get_context(), *my_context);
            });
            cancelled = my_context->is_group_execution_cancelled();
        }).on_exception([this] {
            my_context->reset();
            caught_exception = true;
            cancelled = true;
        });
        // TODO: the "if" condition below is just a work-around to support the concurrent wait
        // mode. The cancellation and exception mechanisms are still broken in this mode.
        // Consider using task group not to re-implement the same functionality.
        if (!(my_context->traits() & task_group_context::concurrent_wait)) {
            my_context->reset();  // consistent with behavior in catch()
        }
    }

    // TODO revamp: consider adding getter for task_group_context.

    // ITERATORS
    template<typename C, typename N>
    friend class graph_iterator;

    // Graph iterator typedefs
    typedef graph_iterator<graph, graph_node> iterator;
    typedef graph_iterator<const graph, const graph_node> const_iterator;

    // Graph iterator constructors
    //! start iterator
    iterator begin();
    //! end iterator
    iterator end();
    //! start const iterator
    const_iterator begin() const;
    //! end const iterator
    const_iterator end() const;
    //! start const iterator
    const_iterator cbegin() const;
    //! end const iterator
    const_iterator cend() const;

    // thread-unsafe state reset.
    void reset(reset_flags f = rf_reset_protocol);

    //! cancels execution of the associated task_group_context
    void cancel();

    //! return status of graph execution
    bool is_cancelled() { return cancelled; }
    bool exception_thrown() { return caught_exception; }

private:
    d1::wait_context_vertex my_wait_context_vertex;
    task_group_context *my_context;
    bool own_context;
    bool cancelled;
    bool caught_exception;
    bool my_is_active;

    graph_node *my_nodes, *my_nodes_last;

    tbb::spin_mutex nodelist_mutex;
    void register_node(graph_node *n);
    void remove_node(graph_node *n);

    task_arena* my_task_arena;

    graph_task_priority_queue_t my_priority_queue;

    d1::wait_context_vertex& get_wait_context_vertex() { return my_wait_context_vertex; }

    friend void activate_graph(graph& g);
    friend void deactivate_graph(graph& g);
    friend bool is_graph_active(graph& g);
    friend graph_task* prioritize_task(graph& g, graph_task& arena_task);
    friend void spawn_in_graph_arena(graph& g, graph_task& arena_task);
    friend void enqueue_in_graph_arena(graph &g, graph_task& arena_task);

    friend class d1::task_arena_base;
    friend class graph_task;

    template <typename T>
    friend class receiver;
};  // class graph

template<typename DerivedType>
inline void graph_task::destruct_and_deallocate(const d1::execution_data& ed) {
    auto allocator = my_allocator;
    // TODO: investigate if direct call of derived destructor gives any benefits.
    this->~graph_task();
    allocator.deallocate(static_cast<DerivedType*>(this), ed);
}

template<typename DerivedType>
inline void graph_task::finalize(const d1::execution_data& ed) {
    d1::wait_tree_vertex_interface* reference_vertex = my_reference_vertex;
    destruct_and_deallocate<DerivedType>(ed);
    reference_vertex->release();
}

inline graph_task::graph_task(graph& g, d1::small_object_allocator& allocator,
                              node_priority_t node_priority)
    : my_graph(g)
    , priority(node_priority)
    , my_allocator(allocator)
{
    d1::wait_context_vertex* graph_wait_context_vertex = &my_graph.get_wait_context_vertex();
    my_reference_vertex = r1::get_thread_reference_vertex(graph_wait_context_vertex);
    __TBB_ASSERT(my_reference_vertex, nullptr);
    my_reference_vertex->reserve();
}

//********************************************************************************
// end of graph tasks helpers
//********************************************************************************


#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
class get_graph_helper;
#endif

//! The base of all graph nodes.
class graph_node : no_copy {
    friend class graph;
    template<typename C, typename N>
    friend class graph_iterator;

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    friend class get_graph_helper;
#endif

protected:
    graph& my_graph;
    graph& graph_reference() const {
        // TODO revamp: propagate graph_reference() method to all the reference places.
        return my_graph;
    }
    graph_node* next = nullptr;
    graph_node* prev = nullptr;
public:
    explicit graph_node(graph& g);

    virtual ~graph_node();

protected:
    // performs the reset on an individual node.
    virtual void reset_node(reset_flags f = rf_reset_protocol) = 0;
};  // class graph_node

inline void activate_graph(graph& g) {
    g.my_is_active = true;
}

inline void deactivate_graph(graph& g) {
    g.my_is_active = false;
}

inline bool is_graph_active(graph& g) {
    return g.my_is_active;
}

inline graph_task* prioritize_task(graph& g, graph_task& gt) {
    if( no_priority == gt.priority )
        return &gt;

    //! Non-preemptive priority pattern. The original task is submitted as a work item to the
    //! priority queue, and a new critical task is created to take and execute a work item with
    //! the highest known priority. The reference counting responsibility is transferred to
    //! the new task.
    // A newly created small_object_allocator should be used to allocate the priority_task_selector
    // instead of the allocator, associated with gt since gt can be allocated by another thread
    d1::small_object_allocator allocator;
    d1::task* critical_task = allocator.new_object<priority_task_selector>(g.my_priority_queue, allocator);
    __TBB_ASSERT( critical_task, "bad_alloc?" );
    g.my_priority_queue.push(&gt);
    using tbb::detail::d1::submit;
    submit( *critical_task, *g.my_task_arena, *g.my_context, /*as_critical=*/true );
    return nullptr;
}

//! Spawns a task inside graph arena
inline void spawn_in_graph_arena(graph& g, graph_task& arena_task) {
    if (is_graph_active(g)) {
        d1::task* gt = prioritize_task(g, arena_task);
        if( !gt )
            return;

        __TBB_ASSERT(g.my_task_arena && g.my_task_arena->is_active(), nullptr);
        submit( *gt, *g.my_task_arena, *g.my_context
#if __TBB_CRITICAL_TASKS
                , /*as_critical=*/false
#endif
        );
    }
}

// TODO revamp: unify *_in_graph_arena functions

//! Enqueues a task inside graph arena
inline void enqueue_in_graph_arena(graph &g, graph_task& arena_task) {
    if (is_graph_active(g)) {
        __TBB_ASSERT( g.my_task_arena && g.my_task_arena->is_active(), "Is graph's arena initialized and active?" );

        // TODO revamp: decide on the approach that does not postpone critical task
        if( d1::task* gt = prioritize_task(g, arena_task) )
            submit( *gt, *g.my_task_arena, *g.my_context, /*as_critical=*/false);
    }
}

} // namespace d2
} // namespace detail
} // namespace tbb

#endif // __TBB_flow_graph_impl_H