1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
|
/*
Copyright (c) 2005-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB__flow_graph_join_impl_H
#define __TBB__flow_graph_join_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
// included into namespace tbb::detail::d2
struct forwarding_base : no_assign {
forwarding_base(graph &g) : graph_ref(g) {}
virtual ~forwarding_base() {}
graph& graph_ref;
};
struct queueing_forwarding_base : forwarding_base {
using forwarding_base::forwarding_base;
// decrement_port_count may create a forwarding task. If we cannot handle the task
// ourselves, ask decrement_port_count to deal with it.
virtual graph_task* decrement_port_count(bool handle_task) = 0;
};
struct reserving_forwarding_base : forwarding_base {
using forwarding_base::forwarding_base;
// decrement_port_count may create a forwarding task. If we cannot handle the task
// ourselves, ask decrement_port_count to deal with it.
virtual graph_task* decrement_port_count() = 0;
virtual void increment_port_count() = 0;
};
// specialization that lets us keep a copy of the current_key for building results.
// KeyType can be a reference type.
template<typename KeyType>
struct matching_forwarding_base : public forwarding_base {
typedef typename std::decay<KeyType>::type current_key_type;
matching_forwarding_base(graph &g) : forwarding_base(g) { }
virtual graph_task* increment_key_count(current_key_type const & /*t*/) = 0;
current_key_type current_key; // so ports can refer to FE's desired items
};
template< int N >
struct join_helper {
template< typename TupleType, typename PortType >
static inline void set_join_node_pointer(TupleType &my_input, PortType *port) {
std::get<N-1>( my_input ).set_join_node_pointer(port);
join_helper<N-1>::set_join_node_pointer( my_input, port );
}
template< typename TupleType >
static inline void consume_reservations( TupleType &my_input ) {
std::get<N-1>( my_input ).consume();
join_helper<N-1>::consume_reservations( my_input );
}
template< typename TupleType >
static inline void release_my_reservation( TupleType &my_input ) {
std::get<N-1>( my_input ).release();
}
template <typename TupleType>
static inline void release_reservations( TupleType &my_input) {
join_helper<N-1>::release_reservations(my_input);
release_my_reservation(my_input);
}
template< typename InputTuple, typename OutputTuple >
static inline bool reserve( InputTuple &my_input, OutputTuple &out) {
if ( !std::get<N-1>( my_input ).reserve( std::get<N-1>( out ) ) ) return false;
if ( !join_helper<N-1>::reserve( my_input, out ) ) {
release_my_reservation( my_input );
return false;
}
return true;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool reserve(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
message_metainfo element_metainfo;
if (!std::get<N - 1>(my_input).reserve(std::get<N - 1>(out), element_metainfo)) return false;
if (!join_helper<N - 1>::reserve(my_input, out, metainfo)) {
release_my_reservation(my_input);
return false;
}
metainfo.merge(element_metainfo);
return true;
}
#endif
template<typename InputTuple, typename OutputTuple>
static inline bool get_my_item( InputTuple &my_input, OutputTuple &out) {
bool res = std::get<N-1>(my_input).get_item(std::get<N-1>(out) ); // may fail
return join_helper<N-1>::get_my_item(my_input, out) && res; // do get on other inputs before returning
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool get_my_item(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
message_metainfo element_metainfo;
bool res = std::get<N-1>(my_input).get_item(std::get<N-1>(out), element_metainfo);
metainfo.merge(element_metainfo);
return join_helper<N-1>::get_my_item(my_input, out, metainfo) && res;
}
#endif
template<typename InputTuple, typename OutputTuple>
static inline bool get_items(InputTuple &my_input, OutputTuple &out) {
return get_my_item(my_input, out);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool get_items(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
return get_my_item(my_input, out, metainfo);
}
#endif
template<typename InputTuple>
static inline void reset_my_port(InputTuple &my_input) {
join_helper<N-1>::reset_my_port(my_input);
std::get<N-1>(my_input).reset_port();
}
template<typename InputTuple>
static inline void reset_ports(InputTuple& my_input) {
reset_my_port(my_input);
}
template<typename InputTuple, typename KeyFuncTuple>
static inline void set_key_functors(InputTuple &my_input, KeyFuncTuple &my_key_funcs) {
std::get<N-1>(my_input).set_my_key_func(std::get<N-1>(my_key_funcs));
std::get<N-1>(my_key_funcs) = nullptr;
join_helper<N-1>::set_key_functors(my_input, my_key_funcs);
}
template< typename KeyFuncTuple>
static inline void copy_key_functors(KeyFuncTuple &my_inputs, KeyFuncTuple &other_inputs) {
__TBB_ASSERT(
std::get<N-1>(other_inputs).get_my_key_func(),
"key matching join node should not be instantiated without functors."
);
std::get<N-1>(my_inputs).set_my_key_func(std::get<N-1>(other_inputs).get_my_key_func()->clone());
join_helper<N-1>::copy_key_functors(my_inputs, other_inputs);
}
template<typename InputTuple>
static inline void reset_inputs(InputTuple &my_input, reset_flags f) {
join_helper<N-1>::reset_inputs(my_input, f);
std::get<N-1>(my_input).reset_receiver(f);
}
}; // join_helper<N>
template< >
struct join_helper<1> {
template< typename TupleType, typename PortType >
static inline void set_join_node_pointer(TupleType &my_input, PortType *port) {
std::get<0>( my_input ).set_join_node_pointer(port);
}
template< typename TupleType >
static inline void consume_reservations( TupleType &my_input ) {
std::get<0>( my_input ).consume();
}
template< typename TupleType >
static inline void release_my_reservation( TupleType &my_input ) {
std::get<0>( my_input ).release();
}
template<typename TupleType>
static inline void release_reservations( TupleType &my_input) {
release_my_reservation(my_input);
}
template< typename InputTuple, typename OutputTuple >
static inline bool reserve( InputTuple &my_input, OutputTuple &out) {
return std::get<0>( my_input ).reserve( std::get<0>( out ) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool reserve(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
message_metainfo element_metainfo;
bool result = std::get<0>(my_input).reserve(std::get<0>(out), element_metainfo);
metainfo.merge(element_metainfo);
return result;
}
#endif
template<typename InputTuple, typename OutputTuple>
static inline bool get_my_item( InputTuple &my_input, OutputTuple &out) {
return std::get<0>(my_input).get_item(std::get<0>(out));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool get_my_item(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
message_metainfo element_metainfo;
bool res = std::get<0>(my_input).get_item(std::get<0>(out), element_metainfo);
metainfo.merge(element_metainfo);
return res;
}
#endif
template<typename InputTuple, typename OutputTuple>
static inline bool get_items(InputTuple &my_input, OutputTuple &out) {
return get_my_item(my_input, out);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename InputTuple, typename OutputTuple>
static inline bool get_items(InputTuple& my_input, OutputTuple& out, message_metainfo& metainfo) {
return get_my_item(my_input, out, metainfo);
}
#endif
template<typename InputTuple>
static inline void reset_my_port(InputTuple &my_input) {
std::get<0>(my_input).reset_port();
}
template<typename InputTuple>
static inline void reset_ports(InputTuple& my_input) {
reset_my_port(my_input);
}
template<typename InputTuple, typename KeyFuncTuple>
static inline void set_key_functors(InputTuple &my_input, KeyFuncTuple &my_key_funcs) {
std::get<0>(my_input).set_my_key_func(std::get<0>(my_key_funcs));
std::get<0>(my_key_funcs) = nullptr;
}
template< typename KeyFuncTuple>
static inline void copy_key_functors(KeyFuncTuple &my_inputs, KeyFuncTuple &other_inputs) {
__TBB_ASSERT(
std::get<0>(other_inputs).get_my_key_func(),
"key matching join node should not be instantiated without functors."
);
std::get<0>(my_inputs).set_my_key_func(std::get<0>(other_inputs).get_my_key_func()->clone());
}
template<typename InputTuple>
static inline void reset_inputs(InputTuple &my_input, reset_flags f) {
std::get<0>(my_input).reset_receiver(f);
}
}; // join_helper<1>
//! The two-phase join port
template< typename T >
class reserving_port : public receiver<T> {
public:
typedef T input_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
private:
// ----------- Aggregator ------------
enum op_type { reg_pred, rem_pred, res_item, rel_res, con_res
};
typedef reserving_port<T> class_type;
class reserving_port_operation : public d1::aggregated_operation<reserving_port_operation> {
public:
char type;
union {
T *my_arg;
predecessor_type *my_pred;
};
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo;
#endif
reserving_port_operation(const T& e, op_type t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo& info)) :
type(char(t)), my_arg(const_cast<T*>(&e))
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(&info)) {}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
reserving_port_operation(const T& e, op_type t)
: type(char(t)), my_arg(const_cast<T*>(&e)), metainfo(nullptr) {}
#endif
reserving_port_operation(const predecessor_type &s, op_type t) : type(char(t)),
my_pred(const_cast<predecessor_type *>(&s)) {}
reserving_port_operation(op_type t) : type(char(t)) {}
};
typedef d1::aggregating_functor<class_type, reserving_port_operation> handler_type;
friend class d1::aggregating_functor<class_type, reserving_port_operation>;
d1::aggregator<handler_type, reserving_port_operation> my_aggregator;
void handle_operations(reserving_port_operation* op_list) {
reserving_port_operation *current;
bool was_missing_predecessors = false;
while(op_list) {
current = op_list;
op_list = op_list->next;
switch(current->type) {
case reg_pred:
was_missing_predecessors = my_predecessors.empty();
my_predecessors.add(*(current->my_pred));
if ( was_missing_predecessors ) {
(void) my_join->decrement_port_count(); // may try to forward
}
current->status.store( SUCCEEDED, std::memory_order_release);
break;
case rem_pred:
if ( !my_predecessors.empty() ) {
my_predecessors.remove(*(current->my_pred));
if ( my_predecessors.empty() ) // was the last predecessor
my_join->increment_port_count();
}
// TODO: consider returning failure if there were no predecessors to remove
current->status.store( SUCCEEDED, std::memory_order_release );
break;
case res_item:
if ( reserved ) {
current->status.store( FAILED, std::memory_order_release);
}
else {
bool reserve_result = false;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (current->metainfo) {
reserve_result = my_predecessors.try_reserve(*(current->my_arg),
*(current->metainfo));
} else
#endif
{
reserve_result = my_predecessors.try_reserve(*(current->my_arg));
}
if (reserve_result) {
reserved = true;
current->status.store( SUCCEEDED, std::memory_order_release);
} else {
if ( my_predecessors.empty() ) {
my_join->increment_port_count();
}
current->status.store( FAILED, std::memory_order_release);
}
}
break;
case rel_res:
reserved = false;
my_predecessors.try_release( );
current->status.store( SUCCEEDED, std::memory_order_release);
break;
case con_res:
reserved = false;
my_predecessors.try_consume( );
current->status.store( SUCCEEDED, std::memory_order_release);
break;
}
}
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class broadcast_cache;
template<typename X, typename Y> friend class round_robin_cache;
graph_task* try_put_task( const T & ) override {
return nullptr;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task(const T&, const message_metainfo&) override { return nullptr; }
#endif
graph& graph_reference() const override {
return my_join->graph_ref;
}
public:
//! Constructor
reserving_port() : my_join(nullptr), my_predecessors(this), reserved(false) {
my_aggregator.initialize_handler(handler_type(this));
}
// copy constructor
reserving_port(const reserving_port& /* other */) = delete;
void set_join_node_pointer(reserving_forwarding_base *join) {
my_join = join;
}
//! Add a predecessor
bool register_predecessor( predecessor_type &src ) override {
reserving_port_operation op_data(src, reg_pred);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
//! Remove a predecessor
bool remove_predecessor( predecessor_type &src ) override {
reserving_port_operation op_data(src, rem_pred);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
//! Reserve an item from the port
bool reserve( T &v ) {
reserving_port_operation op_data(v, res_item);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool reserve( T& v, message_metainfo& metainfo ) {
reserving_port_operation op_data(v, res_item, metainfo);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#endif
//! Release the port
void release( ) {
reserving_port_operation op_data(rel_res);
my_aggregator.execute(&op_data);
}
//! Complete use of the port
void consume( ) {
reserving_port_operation op_data(con_res);
my_aggregator.execute(&op_data);
}
void reset_receiver( reset_flags f) {
if(f & rf_clear_edges) my_predecessors.clear();
else
my_predecessors.reset();
reserved = false;
__TBB_ASSERT(!(f&rf_clear_edges) || my_predecessors.empty(), "port edges not removed");
}
private:
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
friend class get_graph_helper;
#endif
reserving_forwarding_base *my_join;
reservable_predecessor_cache< T, null_mutex > my_predecessors;
bool reserved;
}; // reserving_port
//! queueing join_port
template<typename T>
class queueing_port : public receiver<T>, public item_buffer<T> {
public:
typedef T input_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef queueing_port<T> class_type;
// ----------- Aggregator ------------
private:
enum op_type { get__item, res_port, try__put_task
};
class queueing_port_operation : public d1::aggregated_operation<queueing_port_operation> {
public:
char type;
T my_val;
T* my_arg;
graph_task* bypass_t;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo;
#endif
// constructor for value parameter
queueing_port_operation(const T& e, op_type t __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& info))
: type(char(t)), my_val(e), my_arg(nullptr)
, bypass_t(nullptr)
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(const_cast<message_metainfo*>(&info)))
{}
// constructor for pointer parameter
queueing_port_operation(const T* p, op_type t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo& info)) :
type(char(t)), my_arg(const_cast<T*>(p))
, bypass_t(nullptr)
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(&info))
{}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
queueing_port_operation(const T* p, op_type t)
: type(char(t)), my_arg(const_cast<T*>(p)), bypass_t(nullptr), metainfo(nullptr)
{}
#endif
// constructor with no parameter
queueing_port_operation(op_type t) : type(char(t)), my_arg(nullptr)
, bypass_t(nullptr)
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(nullptr))
{}
};
typedef d1::aggregating_functor<class_type, queueing_port_operation> handler_type;
friend class d1::aggregating_functor<class_type, queueing_port_operation>;
d1::aggregator<handler_type, queueing_port_operation> my_aggregator;
void handle_operations(queueing_port_operation* op_list) {
queueing_port_operation *current;
bool was_empty;
while(op_list) {
current = op_list;
op_list = op_list->next;
switch(current->type) {
case try__put_task: {
graph_task* rtask = nullptr;
was_empty = this->buffer_empty();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
__TBB_ASSERT(current->metainfo, nullptr);
this->push_back(current->my_val, *(current->metainfo));
#else
this->push_back(current->my_val);
#endif
if (was_empty) rtask = my_join->decrement_port_count(false);
else
rtask = SUCCESSFULLY_ENQUEUED;
current->bypass_t = rtask;
current->status.store( SUCCEEDED, std::memory_order_release);
}
break;
case get__item:
if(!this->buffer_empty()) {
__TBB_ASSERT(current->my_arg, nullptr);
*(current->my_arg) = this->front();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (current->metainfo) {
*(current->metainfo) = this->front_metainfo();
}
#endif
current->status.store( SUCCEEDED, std::memory_order_release);
}
else {
current->status.store( FAILED, std::memory_order_release);
}
break;
case res_port:
__TBB_ASSERT(this->my_item_valid(this->my_head), "No item to reset");
this->destroy_front();
if(this->my_item_valid(this->my_head)) {
(void)my_join->decrement_port_count(true);
}
current->status.store( SUCCEEDED, std::memory_order_release);
break;
}
}
}
// ------------ End Aggregator ---------------
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class broadcast_cache;
template<typename X, typename Y> friend class round_robin_cache;
private:
graph_task* try_put_task_impl(const T& v __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
queueing_port_operation op_data(v, try__put_task __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
my_aggregator.execute(&op_data);
__TBB_ASSERT(op_data.status == SUCCEEDED || !op_data.bypass_t, "inconsistent return from aggregator");
if(!op_data.bypass_t) return SUCCESSFULLY_ENQUEUED;
return op_data.bypass_t;
}
protected:
graph_task* try_put_task(const T &v) override {
return try_put_task_impl(v __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task(const T& v, const message_metainfo& metainfo) override {
return try_put_task_impl(v, metainfo);
}
#endif
graph& graph_reference() const override {
return my_join->graph_ref;
}
public:
//! Constructor
queueing_port() : item_buffer<T>() {
my_join = nullptr;
my_aggregator.initialize_handler(handler_type(this));
}
//! copy constructor
queueing_port(const queueing_port& /* other */) = delete;
//! record parent for tallying available items
void set_join_node_pointer(queueing_forwarding_base *join) {
my_join = join;
}
bool get_item( T &v ) {
queueing_port_operation op_data(&v, get__item);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool get_item( T& v, message_metainfo& metainfo ) {
queueing_port_operation op_data(&v, get__item, metainfo);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#endif
// reset_port is called when item is accepted by successor, but
// is initiated by join_node.
void reset_port() {
queueing_port_operation op_data(res_port);
my_aggregator.execute(&op_data);
return;
}
void reset_receiver(reset_flags) {
item_buffer<T>::reset();
}
private:
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
friend class get_graph_helper;
#endif
queueing_forwarding_base *my_join;
}; // queueing_port
#include "_flow_graph_tagged_buffer_impl.h"
template<typename K>
struct count_element {
K my_key;
size_t my_value;
};
// method to access the key in the counting table
// the ref has already been removed from K
template< typename K >
struct key_to_count_functor {
typedef count_element<K> table_item_type;
const K& operator()(const table_item_type& v) { return v.my_key; }
};
template <typename K, typename T, typename TtoK, typename KHash>
struct key_matching_port_base {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
using type = metainfo_hash_buffer<K, T, TtoK, KHash>;
#else
using type = hash_buffer<K, T, TtoK, KHash>;
#endif
};
// the ports can have only one template parameter. We wrap the types needed in
// a traits type
template< class TraitsType >
class key_matching_port :
public receiver<typename TraitsType::T>,
public key_matching_port_base< typename TraitsType::K, typename TraitsType::T, typename TraitsType::TtoK,
typename TraitsType::KHash >::type
{
public:
typedef TraitsType traits;
typedef key_matching_port<traits> class_type;
typedef typename TraitsType::T input_type;
typedef typename TraitsType::K key_type;
typedef typename std::decay<key_type>::type noref_key_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef typename TraitsType::TtoK type_to_key_func_type;
typedef typename TraitsType::KHash hash_compare_type;
typedef typename key_matching_port_base<key_type, input_type, type_to_key_func_type, hash_compare_type>::type buffer_type;
private:
// ----------- Aggregator ------------
private:
enum op_type { try__put, get__item, res_port
};
class key_matching_port_operation : public d1::aggregated_operation<key_matching_port_operation> {
public:
char type;
input_type my_val;
input_type *my_arg;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo = nullptr;
#endif
// constructor for value parameter
key_matching_port_operation(const input_type& e, op_type t
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& info))
: type(char(t)), my_val(e), my_arg(nullptr)
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(const_cast<message_metainfo*>(&info))) {}
// constructor for pointer parameter
key_matching_port_operation(const input_type* p, op_type t
__TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo& info))
: type(char(t)), my_arg(const_cast<input_type*>(p))
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(&info)) {}
// constructor with no parameter
key_matching_port_operation(op_type t) : type(char(t)), my_arg(nullptr) {}
};
typedef d1::aggregating_functor<class_type, key_matching_port_operation> handler_type;
friend class d1::aggregating_functor<class_type, key_matching_port_operation>;
d1::aggregator<handler_type, key_matching_port_operation> my_aggregator;
void handle_operations(key_matching_port_operation* op_list) {
key_matching_port_operation *current;
while(op_list) {
current = op_list;
op_list = op_list->next;
switch(current->type) {
case try__put: {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
__TBB_ASSERT(current->metainfo, nullptr);
bool was_inserted = this->insert_with_key(current->my_val, *(current->metainfo));
#else
bool was_inserted = this->insert_with_key(current->my_val);
#endif
// return failure if a duplicate insertion occurs
current->status.store( was_inserted ? SUCCEEDED : FAILED, std::memory_order_release);
}
break;
case get__item: {
// use current_key from FE for item
__TBB_ASSERT(current->my_arg, nullptr);
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
__TBB_ASSERT(current->metainfo, nullptr);
bool find_result = this->find_with_key(my_join->current_key, *(current->my_arg),
*(current->metainfo));
#else
bool find_result = this->find_with_key(my_join->current_key, *(current->my_arg));
#endif
#if TBB_USE_DEBUG
if (!find_result) {
__TBB_ASSERT(false, "Failed to find item corresponding to current_key.");
}
#else
tbb::detail::suppress_unused_warning(find_result);
#endif
current->status.store( SUCCEEDED, std::memory_order_release);
}
break;
case res_port:
// use current_key from FE for item
this->delete_with_key(my_join->current_key);
current->status.store( SUCCEEDED, std::memory_order_release);
break;
}
}
}
// ------------ End Aggregator ---------------
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class broadcast_cache;
template<typename X, typename Y> friend class round_robin_cache;
private:
graph_task* try_put_task_impl(const input_type& v __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
key_matching_port_operation op_data(v, try__put __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
graph_task* rtask = nullptr;
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED) {
rtask = my_join->increment_key_count((*(this->get_key_func()))(v)); // may spawn
// rtask has to reflect the return status of the try_put
if(!rtask) rtask = SUCCESSFULLY_ENQUEUED;
}
return rtask;
}
protected:
graph_task* try_put_task(const input_type& v) override {
return try_put_task_impl(v __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task(const input_type& v, const message_metainfo& metainfo) override {
return try_put_task_impl(v, metainfo);
}
#endif
graph& graph_reference() const override {
return my_join->graph_ref;
}
public:
key_matching_port() : receiver<input_type>(), buffer_type() {
my_join = nullptr;
my_aggregator.initialize_handler(handler_type(this));
}
// copy constructor
key_matching_port(const key_matching_port& /*other*/) = delete;
#if __INTEL_COMPILER <= 2021
// Suppress superfluous diagnostic about virtual keyword absence in a destructor of an inherited
// class while the parent class has the virtual keyword for the destrocutor.
virtual
#endif
~key_matching_port() { }
void set_join_node_pointer(forwarding_base *join) {
my_join = dynamic_cast<matching_forwarding_base<key_type>*>(join);
}
void set_my_key_func(type_to_key_func_type *f) { this->set_key_func(f); }
type_to_key_func_type* get_my_key_func() { return this->get_key_func(); }
bool get_item( input_type &v ) {
// aggregator uses current_key from FE for Key
key_matching_port_operation op_data(&v, get__item);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool get_item( input_type& v, message_metainfo& metainfo ) {
// aggregator uses current_key from FE for Key
key_matching_port_operation op_data(&v, get__item, metainfo);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#endif
// reset_port is called when item is accepted by successor, but
// is initiated by join_node.
void reset_port() {
key_matching_port_operation op_data(res_port);
my_aggregator.execute(&op_data);
return;
}
void reset_receiver(reset_flags ) {
buffer_type::reset();
}
private:
// my_join forwarding base used to count number of inputs that
// received key.
matching_forwarding_base<key_type> *my_join;
}; // key_matching_port
using namespace graph_policy_namespace;
template<typename JP, typename InputTuple, typename OutputTuple>
class join_node_base;
//! join_node_FE : implements input port policy
template<typename JP, typename InputTuple, typename OutputTuple>
class join_node_FE;
template<typename InputTuple, typename OutputTuple>
class join_node_FE<reserving, InputTuple, OutputTuple> : public reserving_forwarding_base {
private:
static const int N = std::tuple_size<OutputTuple>::value;
typedef OutputTuple output_type;
typedef InputTuple input_type;
typedef join_node_base<reserving, InputTuple, OutputTuple> base_node_type; // for forwarding
public:
join_node_FE(graph &g) : reserving_forwarding_base(g), my_node(nullptr) {
ports_with_no_inputs = N;
join_helper<N>::set_join_node_pointer(my_inputs, this);
}
join_node_FE(const join_node_FE& other) : reserving_forwarding_base((other.reserving_forwarding_base::graph_ref)), my_node(nullptr) {
ports_with_no_inputs = N;
join_helper<N>::set_join_node_pointer(my_inputs, this);
}
void set_my_node(base_node_type *new_my_node) { my_node = new_my_node; }
void increment_port_count() override {
++ports_with_no_inputs;
}
// if all input_ports have predecessors, spawn forward to try and consume tuples
graph_task* decrement_port_count() override {
if(ports_with_no_inputs.fetch_sub(1) == 1) {
if(is_graph_active(this->graph_ref)) {
d1::small_object_allocator allocator{};
typedef forward_task_bypass<base_node_type> task_type;
graph_task* t = allocator.new_object<task_type>(graph_ref, allocator, *my_node);
spawn_in_graph_arena(this->graph_ref, *t);
}
}
return nullptr;
}
input_type &input_ports() { return my_inputs; }
protected:
void reset( reset_flags f) {
// called outside of parallel contexts
ports_with_no_inputs = N;
join_helper<N>::reset_inputs(my_inputs, f);
}
// all methods on input ports should be called under mutual exclusion from join_node_base.
bool tuple_build_may_succeed() {
return !ports_with_no_inputs;
}
bool try_to_make_tuple(output_type &out) {
if(ports_with_no_inputs) return false;
return join_helper<N>::reserve(my_inputs, out);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool try_to_make_tuple(output_type &out, message_metainfo& metainfo) {
if (ports_with_no_inputs) return false;
return join_helper<N>::reserve(my_inputs, out, metainfo);
}
#endif
void tuple_accepted() {
join_helper<N>::consume_reservations(my_inputs);
}
void tuple_rejected() {
join_helper<N>::release_reservations(my_inputs);
}
input_type my_inputs;
base_node_type *my_node;
std::atomic<std::size_t> ports_with_no_inputs;
}; // join_node_FE<reserving, ... >
template<typename InputTuple, typename OutputTuple>
class join_node_FE<queueing, InputTuple, OutputTuple> : public queueing_forwarding_base {
public:
static const int N = std::tuple_size<OutputTuple>::value;
typedef OutputTuple output_type;
typedef InputTuple input_type;
typedef join_node_base<queueing, InputTuple, OutputTuple> base_node_type; // for forwarding
join_node_FE(graph &g) : queueing_forwarding_base(g), my_node(nullptr) {
ports_with_no_items = N;
join_helper<N>::set_join_node_pointer(my_inputs, this);
}
join_node_FE(const join_node_FE& other) : queueing_forwarding_base((other.queueing_forwarding_base::graph_ref)), my_node(nullptr) {
ports_with_no_items = N;
join_helper<N>::set_join_node_pointer(my_inputs, this);
}
// needed for forwarding
void set_my_node(base_node_type *new_my_node) { my_node = new_my_node; }
void reset_port_count() {
ports_with_no_items = N;
}
// if all input_ports have items, spawn forward to try and consume tuples
graph_task* decrement_port_count(bool handle_task) override
{
if(ports_with_no_items.fetch_sub(1) == 1) {
if(is_graph_active(this->graph_ref)) {
d1::small_object_allocator allocator{};
typedef forward_task_bypass<base_node_type> task_type;
graph_task* t = allocator.new_object<task_type>(graph_ref, allocator, *my_node);
if( !handle_task )
return t;
spawn_in_graph_arena(this->graph_ref, *t);
}
}
return nullptr;
}
input_type &input_ports() { return my_inputs; }
protected:
void reset( reset_flags f) {
reset_port_count();
join_helper<N>::reset_inputs(my_inputs, f );
}
// all methods on input ports should be called under mutual exclusion from join_node_base.
bool tuple_build_may_succeed() {
return !ports_with_no_items;
}
bool try_to_make_tuple(output_type &out) {
if(ports_with_no_items) return false;
return join_helper<N>::get_items(my_inputs, out);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool try_to_make_tuple(output_type &out, message_metainfo& metainfo) {
if(ports_with_no_items) return false;
return join_helper<N>::get_items(my_inputs, out, metainfo);
}
#endif
void tuple_accepted() {
reset_port_count();
join_helper<N>::reset_ports(my_inputs);
}
void tuple_rejected() {
// nothing to do.
}
input_type my_inputs;
base_node_type *my_node;
std::atomic<std::size_t> ports_with_no_items;
}; // join_node_FE<queueing, ...>
// key_matching join front-end.
template<typename InputTuple, typename OutputTuple, typename K, typename KHash>
class join_node_FE<key_matching<K,KHash>, InputTuple, OutputTuple> : public matching_forwarding_base<K>,
// buffer of key value counts
public hash_buffer< // typedefed below to key_to_count_buffer_type
typename std::decay<K>::type&, // force ref type on K
count_element<typename std::decay<K>::type>,
type_to_key_function_body<
count_element<typename std::decay<K>::type>,
typename std::decay<K>::type& >,
KHash >,
// buffer of output items
public item_buffer<OutputTuple> {
public:
static const int N = std::tuple_size<OutputTuple>::value;
typedef OutputTuple output_type;
typedef InputTuple input_type;
typedef K key_type;
typedef typename std::decay<key_type>::type unref_key_type;
typedef KHash key_hash_compare;
// must use K without ref.
typedef count_element<unref_key_type> count_element_type;
// method that lets us refer to the key of this type.
typedef key_to_count_functor<unref_key_type> key_to_count_func;
typedef type_to_key_function_body< count_element_type, unref_key_type&> TtoK_function_body_type;
typedef type_to_key_function_body_leaf<count_element_type, unref_key_type&, key_to_count_func> TtoK_function_body_leaf_type;
// this is the type of the special table that keeps track of the number of discrete
// elements corresponding to each key that we've seen.
typedef hash_buffer< unref_key_type&, count_element_type, TtoK_function_body_type, key_hash_compare >
key_to_count_buffer_type;
typedef item_buffer<output_type> output_buffer_type;
typedef join_node_base<key_matching<key_type,key_hash_compare>, InputTuple, OutputTuple> base_node_type; // for forwarding
typedef matching_forwarding_base<key_type> forwarding_base_type;
// ----------- Aggregator ------------
// the aggregator is only needed to serialize the access to the hash table.
// and the output_buffer_type base class
private:
enum op_type { res_count, inc_count, may_succeed, try_make };
typedef join_node_FE<key_matching<key_type,key_hash_compare>, InputTuple, OutputTuple> class_type;
class key_matching_FE_operation : public d1::aggregated_operation<key_matching_FE_operation> {
public:
char type;
unref_key_type my_val;
output_type* my_output;
graph_task* bypass_t;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo = nullptr;
#endif
// constructor for value parameter
key_matching_FE_operation(const unref_key_type& e , op_type t) : type(char(t)), my_val(e),
my_output(nullptr), bypass_t(nullptr) {}
key_matching_FE_operation(output_type *p, op_type t) : type(char(t)), my_output(p), bypass_t(nullptr) {}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
key_matching_FE_operation(output_type *p, op_type t, message_metainfo& info)
: type(char(t)), my_output(p), bypass_t(nullptr), metainfo(&info) {}
#endif
// constructor with no parameter
key_matching_FE_operation(op_type t) : type(char(t)), my_output(nullptr), bypass_t(nullptr) {}
};
typedef d1::aggregating_functor<class_type, key_matching_FE_operation> handler_type;
friend class d1::aggregating_functor<class_type, key_matching_FE_operation>;
d1::aggregator<handler_type, key_matching_FE_operation> my_aggregator;
// called from aggregator, so serialized
// returns a task pointer if the a task would have been enqueued but we asked that
// it be returned. Otherwise returns nullptr.
graph_task* fill_output_buffer(unref_key_type &t) {
output_type l_out;
graph_task* rtask = nullptr;
bool do_fwd = this->buffer_empty() && is_graph_active(this->graph_ref);
this->current_key = t;
this->delete_with_key(this->current_key); // remove the key
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo metainfo;
#endif
if(join_helper<N>::get_items(my_inputs, l_out __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo))) { // <== call back
this->push_back(l_out __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
if(do_fwd) { // we enqueue if receiving an item from predecessor, not if successor asks for item
d1::small_object_allocator allocator{};
typedef forward_task_bypass<base_node_type> task_type;
rtask = allocator.new_object<task_type>(this->graph_ref, allocator, *my_node);
do_fwd = false;
}
// retire the input values
join_helper<N>::reset_ports(my_inputs); // <== call back
}
else {
__TBB_ASSERT(false, "should have had something to push");
}
return rtask;
}
void handle_operations(key_matching_FE_operation* op_list) {
key_matching_FE_operation *current;
while(op_list) {
current = op_list;
op_list = op_list->next;
switch(current->type) {
case res_count: // called from BE
{
this->destroy_front();
current->status.store( SUCCEEDED, std::memory_order_release);
}
break;
case inc_count: { // called from input ports
count_element_type *p = nullptr;
unref_key_type &t = current->my_val;
if(!(this->find_ref_with_key(t,p))) {
count_element_type ev;
ev.my_key = t;
ev.my_value = 0;
this->insert_with_key(ev);
bool found = this->find_ref_with_key(t, p);
__TBB_ASSERT_EX(found, "should find key after inserting it");
}
if(++(p->my_value) == size_t(N)) {
current->bypass_t = fill_output_buffer(t);
}
}
current->status.store( SUCCEEDED, std::memory_order_release);
break;
case may_succeed: // called from BE
current->status.store( this->buffer_empty() ? FAILED : SUCCEEDED, std::memory_order_release);
break;
case try_make: // called from BE
if(this->buffer_empty()) {
current->status.store( FAILED, std::memory_order_release);
}
else {
*(current->my_output) = this->front();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (current->metainfo) {
*(current->metainfo) = this->front_metainfo();
}
#endif
current->status.store( SUCCEEDED, std::memory_order_release);
}
break;
}
}
}
// ------------ End Aggregator ---------------
public:
template<typename FunctionTuple>
join_node_FE(graph &g, FunctionTuple &TtoK_funcs) : forwarding_base_type(g), my_node(nullptr) {
join_helper<N>::set_join_node_pointer(my_inputs, this);
join_helper<N>::set_key_functors(my_inputs, TtoK_funcs);
my_aggregator.initialize_handler(handler_type(this));
TtoK_function_body_type *cfb = new TtoK_function_body_leaf_type(key_to_count_func());
this->set_key_func(cfb);
}
join_node_FE(const join_node_FE& other) : forwarding_base_type((other.forwarding_base_type::graph_ref)), key_to_count_buffer_type(),
output_buffer_type() {
my_node = nullptr;
join_helper<N>::set_join_node_pointer(my_inputs, this);
join_helper<N>::copy_key_functors(my_inputs, const_cast<input_type &>(other.my_inputs));
my_aggregator.initialize_handler(handler_type(this));
TtoK_function_body_type *cfb = new TtoK_function_body_leaf_type(key_to_count_func());
this->set_key_func(cfb);
}
// needed for forwarding
void set_my_node(base_node_type *new_my_node) { my_node = new_my_node; }
void reset_port_count() { // called from BE
key_matching_FE_operation op_data(res_count);
my_aggregator.execute(&op_data);
return;
}
// if all input_ports have items, spawn forward to try and consume tuples
// return a task if we are asked and did create one.
graph_task *increment_key_count(unref_key_type const & t) override { // called from input_ports
key_matching_FE_operation op_data(t, inc_count);
my_aggregator.execute(&op_data);
return op_data.bypass_t;
}
input_type &input_ports() { return my_inputs; }
protected:
void reset( reset_flags f ) {
// called outside of parallel contexts
join_helper<N>::reset_inputs(my_inputs, f);
key_to_count_buffer_type::reset();
output_buffer_type::reset();
}
// all methods on input ports should be called under mutual exclusion from join_node_base.
bool tuple_build_may_succeed() { // called from back-end
key_matching_FE_operation op_data(may_succeed);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
// cannot lock while calling back to input_ports. current_key will only be set
// and reset under the aggregator, so it will remain consistent.
bool try_to_make_tuple(output_type &out) {
key_matching_FE_operation op_data(&out,try_make);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool try_to_make_tuple(output_type &out, message_metainfo& metainfo) {
key_matching_FE_operation op_data(&out, try_make, metainfo);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#endif
void tuple_accepted() {
reset_port_count(); // reset current_key after ports reset.
}
void tuple_rejected() {
// nothing to do.
}
input_type my_inputs; // input ports
base_node_type *my_node;
}; // join_node_FE<key_matching<K,KHash>, InputTuple, OutputTuple>
//! join_node_base
template<typename JP, typename InputTuple, typename OutputTuple>
class join_node_base : public graph_node, public join_node_FE<JP, InputTuple, OutputTuple>,
public sender<OutputTuple> {
protected:
using graph_node::my_graph;
public:
typedef OutputTuple output_type;
typedef typename sender<output_type>::successor_type successor_type;
typedef join_node_FE<JP, InputTuple, OutputTuple> input_ports_type;
using input_ports_type::tuple_build_may_succeed;
using input_ports_type::try_to_make_tuple;
using input_ports_type::tuple_accepted;
using input_ports_type::tuple_rejected;
private:
// ----------- Aggregator ------------
enum op_type { reg_succ, rem_succ, try__get, do_fwrd, do_fwrd_bypass
};
typedef join_node_base<JP,InputTuple,OutputTuple> class_type;
class join_node_base_operation : public d1::aggregated_operation<join_node_base_operation> {
public:
char type;
union {
output_type *my_arg;
successor_type *my_succ;
};
graph_task* bypass_t;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo;
#endif
join_node_base_operation(const output_type& e, op_type t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo& info))
: type(char(t)), my_arg(const_cast<output_type*>(&e)), bypass_t(nullptr)
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo(&info)) {}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
join_node_base_operation(const output_type& e, op_type t)
: type(char(t)), my_arg(const_cast<output_type*>(&e)), bypass_t(nullptr), metainfo(nullptr) {}
#endif
join_node_base_operation(const successor_type &s, op_type t) : type(char(t)),
my_succ(const_cast<successor_type *>(&s)), bypass_t(nullptr) {}
join_node_base_operation(op_type t) : type(char(t)), bypass_t(nullptr) {}
};
typedef d1::aggregating_functor<class_type, join_node_base_operation> handler_type;
friend class d1::aggregating_functor<class_type, join_node_base_operation>;
bool forwarder_busy;
d1::aggregator<handler_type, join_node_base_operation> my_aggregator;
void handle_operations(join_node_base_operation* op_list) {
join_node_base_operation *current;
while(op_list) {
current = op_list;
op_list = op_list->next;
switch(current->type) {
case reg_succ: {
my_successors.register_successor(*(current->my_succ));
if(tuple_build_may_succeed() && !forwarder_busy && is_graph_active(my_graph)) {
d1::small_object_allocator allocator{};
typedef forward_task_bypass< join_node_base<JP, InputTuple, OutputTuple> > task_type;
graph_task* t = allocator.new_object<task_type>(my_graph, allocator, *this);
spawn_in_graph_arena(my_graph, *t);
forwarder_busy = true;
}
current->status.store( SUCCEEDED, std::memory_order_release);
}
break;
case rem_succ:
my_successors.remove_successor(*(current->my_succ));
current->status.store( SUCCEEDED, std::memory_order_release);
break;
case try__get:
if(tuple_build_may_succeed()) {
bool make_tuple_result = false;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (current->metainfo) {
make_tuple_result = try_to_make_tuple(*(current->my_arg), *(current->metainfo));
} else
#endif
{
make_tuple_result = try_to_make_tuple(*(current->my_arg));
}
if(make_tuple_result) {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (current->metainfo) {
// Since elements would be removed from queues while calling to tuple_accepted
// together with corresponding message_metainfo objects
// we need to prolong the wait until the successor would create a task for removed elements
for (auto waiter : current->metainfo->waiters()) {
waiter->reserve(1);
}
}
#endif
tuple_accepted();
current->status.store( SUCCEEDED, std::memory_order_release);
}
else current->status.store( FAILED, std::memory_order_release);
}
else current->status.store( FAILED, std::memory_order_release);
break;
case do_fwrd_bypass: {
bool build_succeeded;
graph_task *last_task = nullptr;
output_type out;
// forwarding must be exclusive, because try_to_make_tuple and tuple_accepted
// are separate locked methods in the FE. We could conceivably fetch the front
// of the FE queue, then be swapped out, have someone else consume the FE's
// object, then come back, forward, and then try to remove it from the queue
// again. Without reservation of the FE, the methods accessing it must be locked.
// We could remember the keys of the objects we forwarded, and then remove
// them from the input ports after forwarding is complete?
if(tuple_build_may_succeed()) { // checks output queue of FE
do {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo metainfo;
#endif
// fetch front_end of queue
build_succeeded = try_to_make_tuple(out __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
if(build_succeeded) {
graph_task *new_task =
my_successors.try_put_task(out __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
last_task = combine_tasks(my_graph, last_task, new_task);
if(new_task) {
tuple_accepted();
}
else {
tuple_rejected();
build_succeeded = false;
}
}
} while(build_succeeded);
}
current->bypass_t = last_task;
current->status.store( SUCCEEDED, std::memory_order_release);
forwarder_busy = false;
}
break;
}
}
}
// ---------- end aggregator -----------
public:
join_node_base(graph &g)
: graph_node(g), input_ports_type(g), forwarder_busy(false), my_successors(this)
{
input_ports_type::set_my_node(this);
my_aggregator.initialize_handler(handler_type(this));
}
join_node_base(const join_node_base& other) :
graph_node(other.graph_node::my_graph), input_ports_type(other),
sender<OutputTuple>(), forwarder_busy(false), my_successors(this)
{
input_ports_type::set_my_node(this);
my_aggregator.initialize_handler(handler_type(this));
}
template<typename FunctionTuple>
join_node_base(graph &g, FunctionTuple f)
: graph_node(g), input_ports_type(g, f), forwarder_busy(false), my_successors(this)
{
input_ports_type::set_my_node(this);
my_aggregator.initialize_handler(handler_type(this));
}
bool register_successor(successor_type &r) override {
join_node_base_operation op_data(r, reg_succ);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
bool remove_successor( successor_type &r) override {
join_node_base_operation op_data(r, rem_succ);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
bool try_get( output_type &v) override {
join_node_base_operation op_data(v, try__get);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool try_get( output_type &v, message_metainfo& metainfo) override {
join_node_base_operation op_data(v, try__get, metainfo);
my_aggregator.execute(&op_data);
return op_data.status == SUCCEEDED;
}
#endif
protected:
void reset_node(reset_flags f) override {
input_ports_type::reset(f);
if(f & rf_clear_edges) my_successors.clear();
}
private:
broadcast_cache<output_type, null_rw_mutex> my_successors;
friend class forward_task_bypass< join_node_base<JP, InputTuple, OutputTuple> >;
graph_task *forward_task() {
join_node_base_operation op_data(do_fwrd_bypass);
my_aggregator.execute(&op_data);
return op_data.bypass_t;
}
}; // join_node_base
// join base class type generator
template<int N, template<class> class PT, typename OutputTuple, typename JP>
struct join_base {
typedef join_node_base<JP, typename wrap_tuple_elements<N,PT,OutputTuple>::type, OutputTuple> type;
};
template<int N, typename OutputTuple, typename K, typename KHash>
struct join_base<N, key_matching_port, OutputTuple, key_matching<K,KHash> > {
typedef key_matching<K, KHash> key_traits_type;
typedef K key_type;
typedef KHash key_hash_compare;
typedef join_node_base< key_traits_type,
// ports type
typename wrap_key_tuple_elements<N,key_matching_port,key_traits_type,OutputTuple>::type,
OutputTuple > type;
};
//! unfolded_join_node : passes input_ports_type to join_node_base. We build the input port type
// using tuple_element. The class PT is the port type (reserving_port, queueing_port, key_matching_port)
// and should match the typename.
template<int M, template<class> class PT, typename OutputTuple, typename JP>
class unfolded_join_node : public join_base<M,PT,OutputTuple,JP>::type {
public:
typedef typename wrap_tuple_elements<M, PT, OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<JP, input_ports_type, output_type > base_type;
public:
unfolded_join_node(graph &g) : base_type(g) {}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
template <typename K, typename T>
struct key_from_message_body {
K operator()(const T& t) const {
return key_from_message<K>(t);
}
};
// Adds const to reference type
template <typename K, typename T>
struct key_from_message_body<K&,T> {
const K& operator()(const T& t) const {
return key_from_message<const K&>(t);
}
};
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
// key_matching unfolded_join_node. This must be a separate specialization because the constructors
// differ.
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<2,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<2,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
public:
typedef typename wrap_key_tuple_elements<2,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash>, input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef std::tuple< f0_p, f1_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1>
unfolded_join_node(graph &g, Body0 body0, Body1 body1) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 2, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<3,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<3,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
public:
typedef typename wrap_key_tuple_elements<3,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash>, input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef std::tuple< f0_p, f1_p, f2_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 3, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<4,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<4,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
public:
typedef typename wrap_key_tuple_elements<4,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash>, input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 4, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<5,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<5,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
public:
typedef typename wrap_key_tuple_elements<5,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 5, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#if __TBB_VARIADIC_MAX >= 6
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<6,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<6,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
typedef typename std::tuple_element<5, OutputTuple>::type T5;
public:
typedef typename wrap_key_tuple_elements<6,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef type_to_key_function_body<T5, K> *f5_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p, f5_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>()),
new type_to_key_function_body_leaf<T5, K, key_from_message_body<K,T5> >(key_from_message_body<K,T5>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4, typename Body5>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4, Body5 body5)
: base_type(g, func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4),
new type_to_key_function_body_leaf<T5, K, Body5>(body5)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 6, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#endif
#if __TBB_VARIADIC_MAX >= 7
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<7,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<7,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
typedef typename std::tuple_element<5, OutputTuple>::type T5;
typedef typename std::tuple_element<6, OutputTuple>::type T6;
public:
typedef typename wrap_key_tuple_elements<7,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef type_to_key_function_body<T5, K> *f5_p;
typedef type_to_key_function_body<T6, K> *f6_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p, f5_p, f6_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>()),
new type_to_key_function_body_leaf<T5, K, key_from_message_body<K,T5> >(key_from_message_body<K,T5>()),
new type_to_key_function_body_leaf<T6, K, key_from_message_body<K,T6> >(key_from_message_body<K,T6>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4,
typename Body5, typename Body6>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4,
Body5 body5, Body6 body6) : base_type(g, func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4),
new type_to_key_function_body_leaf<T5, K, Body5>(body5),
new type_to_key_function_body_leaf<T6, K, Body6>(body6)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 7, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#endif
#if __TBB_VARIADIC_MAX >= 8
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<8,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<8,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
typedef typename std::tuple_element<5, OutputTuple>::type T5;
typedef typename std::tuple_element<6, OutputTuple>::type T6;
typedef typename std::tuple_element<7, OutputTuple>::type T7;
public:
typedef typename wrap_key_tuple_elements<8,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef type_to_key_function_body<T5, K> *f5_p;
typedef type_to_key_function_body<T6, K> *f6_p;
typedef type_to_key_function_body<T7, K> *f7_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p, f5_p, f6_p, f7_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>()),
new type_to_key_function_body_leaf<T5, K, key_from_message_body<K,T5> >(key_from_message_body<K,T5>()),
new type_to_key_function_body_leaf<T6, K, key_from_message_body<K,T6> >(key_from_message_body<K,T6>()),
new type_to_key_function_body_leaf<T7, K, key_from_message_body<K,T7> >(key_from_message_body<K,T7>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4,
typename Body5, typename Body6, typename Body7>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4,
Body5 body5, Body6 body6, Body7 body7) : base_type(g, func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4),
new type_to_key_function_body_leaf<T5, K, Body5>(body5),
new type_to_key_function_body_leaf<T6, K, Body6>(body6),
new type_to_key_function_body_leaf<T7, K, Body7>(body7)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 8, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#endif
#if __TBB_VARIADIC_MAX >= 9
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<9,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<9,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
typedef typename std::tuple_element<5, OutputTuple>::type T5;
typedef typename std::tuple_element<6, OutputTuple>::type T6;
typedef typename std::tuple_element<7, OutputTuple>::type T7;
typedef typename std::tuple_element<8, OutputTuple>::type T8;
public:
typedef typename wrap_key_tuple_elements<9,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef type_to_key_function_body<T5, K> *f5_p;
typedef type_to_key_function_body<T6, K> *f6_p;
typedef type_to_key_function_body<T7, K> *f7_p;
typedef type_to_key_function_body<T8, K> *f8_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p, f5_p, f6_p, f7_p, f8_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>()),
new type_to_key_function_body_leaf<T5, K, key_from_message_body<K,T5> >(key_from_message_body<K,T5>()),
new type_to_key_function_body_leaf<T6, K, key_from_message_body<K,T6> >(key_from_message_body<K,T6>()),
new type_to_key_function_body_leaf<T7, K, key_from_message_body<K,T7> >(key_from_message_body<K,T7>()),
new type_to_key_function_body_leaf<T8, K, key_from_message_body<K,T8> >(key_from_message_body<K,T8>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4,
typename Body5, typename Body6, typename Body7, typename Body8>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4,
Body5 body5, Body6 body6, Body7 body7, Body8 body8) : base_type(g, func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4),
new type_to_key_function_body_leaf<T5, K, Body5>(body5),
new type_to_key_function_body_leaf<T6, K, Body6>(body6),
new type_to_key_function_body_leaf<T7, K, Body7>(body7),
new type_to_key_function_body_leaf<T8, K, Body8>(body8)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 9, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#endif
#if __TBB_VARIADIC_MAX >= 10
template<typename OutputTuple, typename K, typename KHash>
class unfolded_join_node<10,key_matching_port,OutputTuple,key_matching<K,KHash> > : public
join_base<10,key_matching_port,OutputTuple,key_matching<K,KHash> >::type {
typedef typename std::tuple_element<0, OutputTuple>::type T0;
typedef typename std::tuple_element<1, OutputTuple>::type T1;
typedef typename std::tuple_element<2, OutputTuple>::type T2;
typedef typename std::tuple_element<3, OutputTuple>::type T3;
typedef typename std::tuple_element<4, OutputTuple>::type T4;
typedef typename std::tuple_element<5, OutputTuple>::type T5;
typedef typename std::tuple_element<6, OutputTuple>::type T6;
typedef typename std::tuple_element<7, OutputTuple>::type T7;
typedef typename std::tuple_element<8, OutputTuple>::type T8;
typedef typename std::tuple_element<9, OutputTuple>::type T9;
public:
typedef typename wrap_key_tuple_elements<10,key_matching_port,key_matching<K,KHash>,OutputTuple>::type input_ports_type;
typedef OutputTuple output_type;
private:
typedef join_node_base<key_matching<K,KHash> , input_ports_type, output_type > base_type;
typedef type_to_key_function_body<T0, K> *f0_p;
typedef type_to_key_function_body<T1, K> *f1_p;
typedef type_to_key_function_body<T2, K> *f2_p;
typedef type_to_key_function_body<T3, K> *f3_p;
typedef type_to_key_function_body<T4, K> *f4_p;
typedef type_to_key_function_body<T5, K> *f5_p;
typedef type_to_key_function_body<T6, K> *f6_p;
typedef type_to_key_function_body<T7, K> *f7_p;
typedef type_to_key_function_body<T8, K> *f8_p;
typedef type_to_key_function_body<T9, K> *f9_p;
typedef std::tuple< f0_p, f1_p, f2_p, f3_p, f4_p, f5_p, f6_p, f7_p, f8_p, f9_p > func_initializer_type;
public:
#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
unfolded_join_node(graph &g) : base_type(g,
func_initializer_type(
new type_to_key_function_body_leaf<T0, K, key_from_message_body<K,T0> >(key_from_message_body<K,T0>()),
new type_to_key_function_body_leaf<T1, K, key_from_message_body<K,T1> >(key_from_message_body<K,T1>()),
new type_to_key_function_body_leaf<T2, K, key_from_message_body<K,T2> >(key_from_message_body<K,T2>()),
new type_to_key_function_body_leaf<T3, K, key_from_message_body<K,T3> >(key_from_message_body<K,T3>()),
new type_to_key_function_body_leaf<T4, K, key_from_message_body<K,T4> >(key_from_message_body<K,T4>()),
new type_to_key_function_body_leaf<T5, K, key_from_message_body<K,T5> >(key_from_message_body<K,T5>()),
new type_to_key_function_body_leaf<T6, K, key_from_message_body<K,T6> >(key_from_message_body<K,T6>()),
new type_to_key_function_body_leaf<T7, K, key_from_message_body<K,T7> >(key_from_message_body<K,T7>()),
new type_to_key_function_body_leaf<T8, K, key_from_message_body<K,T8> >(key_from_message_body<K,T8>()),
new type_to_key_function_body_leaf<T9, K, key_from_message_body<K,T9> >(key_from_message_body<K,T9>())
) ) {
}
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */
template<typename Body0, typename Body1, typename Body2, typename Body3, typename Body4,
typename Body5, typename Body6, typename Body7, typename Body8, typename Body9>
unfolded_join_node(graph &g, Body0 body0, Body1 body1, Body2 body2, Body3 body3, Body4 body4,
Body5 body5, Body6 body6, Body7 body7, Body8 body8, Body9 body9) : base_type(g, func_initializer_type(
new type_to_key_function_body_leaf<T0, K, Body0>(body0),
new type_to_key_function_body_leaf<T1, K, Body1>(body1),
new type_to_key_function_body_leaf<T2, K, Body2>(body2),
new type_to_key_function_body_leaf<T3, K, Body3>(body3),
new type_to_key_function_body_leaf<T4, K, Body4>(body4),
new type_to_key_function_body_leaf<T5, K, Body5>(body5),
new type_to_key_function_body_leaf<T6, K, Body6>(body6),
new type_to_key_function_body_leaf<T7, K, Body7>(body7),
new type_to_key_function_body_leaf<T8, K, Body8>(body8),
new type_to_key_function_body_leaf<T9, K, Body9>(body9)
) ) {
static_assert(std::tuple_size<OutputTuple>::value == 10, "wrong number of body initializers");
}
unfolded_join_node(const unfolded_join_node &other) : base_type(other) {}
};
#endif
//! templated function to refer to input ports of the join node
template<size_t N, typename JNT>
typename std::tuple_element<N, typename JNT::input_ports_type>::type &input_port(JNT &jn) {
return std::get<N>(jn.input_ports());
}
#endif // __TBB__flow_graph_join_impl_H
|