1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
|
/*
Copyright (c) 2005-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB__flow_graph_node_impl_H
#define __TBB__flow_graph_node_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
#include "_flow_graph_item_buffer_impl.h"
template< typename T, typename A >
class function_input_queue : public item_buffer<T,A> {
public:
bool empty() const {
return this->buffer_empty();
}
const T& front() const {
return this->item_buffer<T, A>::front();
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
const message_metainfo& front_metainfo() const {
return this->item_buffer<T,A>::front_metainfo();
}
#endif
void pop() {
this->destroy_front();
}
bool push( T& t ) {
return this->push_back( t );
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
bool push( T& t, const message_metainfo& metainfo ) {
return this->push_back(t, metainfo);
}
#endif
};
//! Input and scheduling for a function node that takes a type Input as input
// The only up-ref is apply_body_impl, which should implement the function
// call and any handling of the result.
template< typename Input, typename Policy, typename A, typename ImplType >
class function_input_base : public receiver<Input>, no_assign {
enum op_type {reg_pred, rem_pred, try_fwd, tryput_bypass, app_body_bypass, occupy_concurrency
};
typedef function_input_base<Input, Policy, A, ImplType> class_type;
public:
//! The input type of this receiver
typedef Input input_type;
typedef typename receiver<input_type>::predecessor_type predecessor_type;
typedef predecessor_cache<input_type, null_mutex > predecessor_cache_type;
typedef function_input_queue<input_type, A> input_queue_type;
typedef typename allocator_traits<A>::template rebind_alloc<input_queue_type> allocator_type;
static_assert(!has_policy<queueing, Policy>::value || !has_policy<rejecting, Policy>::value, "");
//! Constructor for function_input_base
function_input_base( graph &g, size_t max_concurrency, node_priority_t a_priority, bool is_no_throw )
: my_graph_ref(g), my_max_concurrency(max_concurrency)
, my_concurrency(0), my_priority(a_priority), my_is_no_throw(is_no_throw)
, my_queue(!has_policy<rejecting, Policy>::value ? new input_queue_type() : nullptr)
, my_predecessors(this)
, forwarder_busy(false)
{
my_aggregator.initialize_handler(handler_type(this));
}
//! Copy constructor
function_input_base( const function_input_base& src )
: function_input_base(src.my_graph_ref, src.my_max_concurrency, src.my_priority, src.my_is_no_throw) {}
//! Destructor
// The queue is allocated by the constructor for {multi}function_node.
// TODO: pass the graph_buffer_policy to the base so it can allocate the queue instead.
// This would be an interface-breaking change.
virtual ~function_input_base() {
delete my_queue;
my_queue = nullptr;
}
graph_task* try_put_task( const input_type& t) override {
return try_put_task_base(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task( const input_type& t, const message_metainfo& metainfo ) override {
return try_put_task_base(t, metainfo);
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! Adds src to the list of cached predecessors.
bool register_predecessor( predecessor_type &src ) override {
operation_type op_data(reg_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
//! Removes src from the list of cached predecessors.
bool remove_predecessor( predecessor_type &src ) override {
operation_type op_data(rem_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
protected:
void reset_function_input_base( reset_flags f) {
my_concurrency = 0;
if(my_queue) {
my_queue->reset();
}
reset_receiver(f);
forwarder_busy = false;
}
graph& my_graph_ref;
const size_t my_max_concurrency;
size_t my_concurrency;
node_priority_t my_priority;
const bool my_is_no_throw;
input_queue_type *my_queue;
predecessor_cache<input_type, null_mutex > my_predecessors;
void reset_receiver( reset_flags f) {
if( f & rf_clear_edges) my_predecessors.clear();
else
my_predecessors.reset();
__TBB_ASSERT(!(f & rf_clear_edges) || my_predecessors.empty(), "function_input_base reset failed");
}
graph& graph_reference() const override {
return my_graph_ref;
}
graph_task* try_get_postponed_task(const input_type& i) {
operation_type op_data(i, app_body_bypass); // tries to pop an item or get_item
my_aggregator.execute(&op_data);
return op_data.bypass_t;
}
private:
friend class apply_body_task_bypass< class_type, input_type >;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
friend class apply_body_task_bypass< class_type, input_type, trackable_messages_graph_task >;
#endif
friend class forward_task_bypass< class_type >;
class operation_type : public d1::aggregated_operation< operation_type > {
public:
char type;
union {
input_type *elem;
predecessor_type *r;
};
graph_task* bypass_t;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo* metainfo;
#endif
operation_type(const input_type& e, op_type t) :
type(char(t)), elem(const_cast<input_type*>(&e)), bypass_t(nullptr)
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
, metainfo(nullptr)
#endif
{}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
operation_type(const input_type& e, op_type t, const message_metainfo& info) :
type(char(t)), elem(const_cast<input_type*>(&e)), bypass_t(nullptr),
metainfo(const_cast<message_metainfo*>(&info)) {}
#endif
operation_type(op_type t) : type(char(t)), r(nullptr), bypass_t(nullptr) {}
};
bool forwarder_busy;
typedef d1::aggregating_functor<class_type, operation_type> handler_type;
friend class d1::aggregating_functor<class_type, operation_type>;
d1::aggregator< handler_type, operation_type > my_aggregator;
graph_task* perform_queued_requests() {
graph_task* new_task = nullptr;
if(my_queue) {
if(!my_queue->empty()) {
++my_concurrency;
// TODO: consider removing metainfo from the queue using move semantics to avoid
// ref counter increase
new_task = create_body_task(my_queue->front()
__TBB_FLOW_GRAPH_METAINFO_ARG(my_queue->front_metainfo()));
my_queue->pop();
}
}
else {
input_type i;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
message_metainfo metainfo;
#endif
if(my_predecessors.get_item(i __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo))) {
++my_concurrency;
new_task = create_body_task(i __TBB_FLOW_GRAPH_METAINFO_ARG(std::move(metainfo)));
}
}
return new_task;
}
void handle_operations(operation_type *op_list) {
operation_type* tmp;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_pred:
my_predecessors.add(*(tmp->r));
tmp->status.store(SUCCEEDED, std::memory_order_release);
if (!forwarder_busy) {
forwarder_busy = true;
spawn_forward_task();
}
break;
case rem_pred:
my_predecessors.remove(*(tmp->r));
tmp->status.store(SUCCEEDED, std::memory_order_release);
break;
case app_body_bypass: {
tmp->bypass_t = nullptr;
__TBB_ASSERT(my_max_concurrency != 0, nullptr);
--my_concurrency;
if(my_concurrency<my_max_concurrency)
tmp->bypass_t = perform_queued_requests();
tmp->status.store(SUCCEEDED, std::memory_order_release);
}
break;
case tryput_bypass: internal_try_put_task(tmp); break;
case try_fwd: internal_forward(tmp); break;
case occupy_concurrency:
if (my_concurrency < my_max_concurrency) {
++my_concurrency;
tmp->status.store(SUCCEEDED, std::memory_order_release);
} else {
tmp->status.store(FAILED, std::memory_order_release);
}
break;
}
}
}
//! Put to the node, but return the task instead of enqueueing it
void internal_try_put_task(operation_type *op) {
__TBB_ASSERT(my_max_concurrency != 0, nullptr);
if (my_concurrency < my_max_concurrency) {
++my_concurrency;
graph_task* new_task = create_body_task(*(op->elem)
__TBB_FLOW_GRAPH_METAINFO_ARG(*(op->metainfo)));
op->bypass_t = new_task;
op->status.store(SUCCEEDED, std::memory_order_release);
} else if ( my_queue && my_queue->push(*(op->elem)
__TBB_FLOW_GRAPH_METAINFO_ARG(*(op->metainfo))) )
{
op->bypass_t = SUCCESSFULLY_ENQUEUED;
op->status.store(SUCCEEDED, std::memory_order_release);
} else {
op->bypass_t = nullptr;
op->status.store(FAILED, std::memory_order_release);
}
}
//! Creates tasks for postponed messages if available and if concurrency allows
void internal_forward(operation_type *op) {
op->bypass_t = nullptr;
if (my_concurrency < my_max_concurrency)
op->bypass_t = perform_queued_requests();
if(op->bypass_t)
op->status.store(SUCCEEDED, std::memory_order_release);
else {
forwarder_busy = false;
op->status.store(FAILED, std::memory_order_release);
}
}
graph_task* internal_try_put_bypass( const input_type& t
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
operation_type op_data(t, tryput_bypass __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
my_aggregator.execute(&op_data);
if( op_data.status == SUCCEEDED ) {
return op_data.bypass_t;
}
return nullptr;
}
graph_task* try_put_task_base(const input_type& t
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
if ( my_is_no_throw )
return try_put_task_impl(t, has_policy<lightweight, Policy>()
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
else
return try_put_task_impl(t, std::false_type()
__TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
}
graph_task* try_put_task_impl( const input_type& t, /*lightweight=*/std::true_type
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
if( my_max_concurrency == 0 ) {
return apply_body_bypass(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
} else {
operation_type check_op(t, occupy_concurrency);
my_aggregator.execute(&check_op);
if( check_op.status == SUCCEEDED ) {
return apply_body_bypass(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
}
return internal_try_put_bypass(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
}
}
graph_task* try_put_task_impl( const input_type& t, /*lightweight=*/std::false_type
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
if( my_max_concurrency == 0 ) {
return create_body_task(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
} else {
return internal_try_put_bypass(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
}
}
//! Applies the body to the provided input
// then decides if more work is available
graph_task* apply_body_bypass( const input_type &i
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
return static_cast<ImplType *>(this)->apply_body_impl_bypass(i __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
}
//! allocates a task to apply a body
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename Metainfo>
graph_task* create_body_task( const input_type &input, Metainfo&& metainfo )
#else
graph_task* create_body_task( const input_type &input )
#endif
{
if (!is_graph_active(my_graph_ref)) {
return nullptr;
}
// TODO revamp: extract helper for common graph task allocation part
d1::small_object_allocator allocator{};
graph_task* t = nullptr;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (!metainfo.empty()) {
using task_type = apply_body_task_bypass<class_type, input_type, trackable_messages_graph_task>;
t = allocator.new_object<task_type>(my_graph_ref, allocator, *this, input, my_priority, std::forward<Metainfo>(metainfo));
} else
#endif
{
using task_type = apply_body_task_bypass<class_type, input_type>;
t = allocator.new_object<task_type>(my_graph_ref, allocator, *this, input, my_priority);
}
return t;
}
//! This is executed by an enqueued task, the "forwarder"
graph_task* forward_task() {
operation_type op_data(try_fwd);
graph_task* rval = nullptr;
do {
op_data.status = WAIT;
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED) {
graph_task* ttask = op_data.bypass_t;
__TBB_ASSERT( ttask && ttask != SUCCESSFULLY_ENQUEUED, nullptr);
rval = combine_tasks(my_graph_ref, rval, ttask);
}
} while (op_data.status == SUCCEEDED);
return rval;
}
inline graph_task* create_forward_task() {
if (!is_graph_active(my_graph_ref)) {
return nullptr;
}
d1::small_object_allocator allocator{};
typedef forward_task_bypass<class_type> task_type;
graph_task* t = allocator.new_object<task_type>( graph_reference(), allocator, *this, my_priority );
return t;
}
//! Spawns a task that calls forward()
inline void spawn_forward_task() {
graph_task* tp = create_forward_task();
if(tp) {
spawn_in_graph_arena(graph_reference(), *tp);
}
}
node_priority_t priority() const override { return my_priority; }
}; // function_input_base
//! Implements methods for a function node that takes a type Input as input and sends
// a type Output to its successors.
template< typename Input, typename Output, typename Policy, typename A>
class function_input : public function_input_base<Input, Policy, A, function_input<Input,Output,Policy,A> > {
public:
typedef Input input_type;
typedef Output output_type;
typedef function_body<input_type, output_type> function_body_type;
typedef function_input<Input, Output, Policy,A> my_class;
typedef function_input_base<Input, Policy, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
function_input(
graph &g, size_t max_concurrency, Body& body, node_priority_t a_priority )
: base_type(g, max_concurrency, a_priority, noexcept(tbb::detail::invoke(body, input_type())))
, my_body( new function_body_leaf< input_type, output_type, Body>(body) )
, my_init_body( new function_body_leaf< input_type, output_type, Body>(body) ) {
}
//! Copy constructor
function_input( const function_input& src ) :
base_type(src),
my_body( src.my_init_body->clone() ),
my_init_body(src.my_init_body->clone() ) {
}
#if __INTEL_COMPILER <= 2021
// Suppress superfluous diagnostic about virtual keyword absence in a destructor of an inherited
// class while the parent class has the virtual keyword for the destrocutor.
virtual
#endif
~function_input() {
delete my_body;
delete my_init_body;
}
template< typename Body >
Body copy_function_object() {
function_body_type &body_ref = *this->my_body;
return dynamic_cast< function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
output_type apply_body_impl( const input_type& i) {
// There is an extra copied needed to capture the
// body execution without the try_put
fgt_begin_body( my_body );
output_type v = tbb::detail::invoke(*my_body, i);
fgt_end_body( my_body );
return v;
}
//TODO: consider moving into the base class
graph_task* apply_body_impl_bypass( const input_type &i
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo))
{
output_type v = apply_body_impl(i);
graph_task* postponed_task = nullptr;
if( base_type::my_max_concurrency != 0 ) {
postponed_task = base_type::try_get_postponed_task(i);
__TBB_ASSERT( !postponed_task || postponed_task != SUCCESSFULLY_ENQUEUED, nullptr);
}
if( postponed_task ) {
// make the task available for other workers since we do not know successors'
// execution policy
spawn_in_graph_arena(base_type::graph_reference(), *postponed_task);
}
graph_task* successor_task = successors().try_put_task(v __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (push)
#pragma warning (disable: 4127) /* suppress conditional expression is constant */
#endif
if(has_policy<lightweight, Policy>::value) {
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (pop)
#endif
if(!successor_task) {
// Return confirmative status since current
// node's body has been executed anyway
successor_task = SUCCESSFULLY_ENQUEUED;
}
}
return successor_task;
}
protected:
void reset_function_input(reset_flags f) {
base_type::reset_function_input_base(f);
if(f & rf_reset_bodies) {
function_body_type *tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
}
function_body_type *my_body;
function_body_type *my_init_body;
virtual broadcast_cache<output_type > &successors() = 0;
}; // function_input
// helper templates to clear the successor edges of the output ports of an multifunction_node
template<int N> struct clear_element {
template<typename P> static void clear_this(P &p) {
(void)std::get<N-1>(p).successors().clear();
clear_element<N-1>::clear_this(p);
}
#if TBB_USE_ASSERT
template<typename P> static bool this_empty(P &p) {
if(std::get<N-1>(p).successors().empty())
return clear_element<N-1>::this_empty(p);
return false;
}
#endif
};
template<> struct clear_element<1> {
template<typename P> static void clear_this(P &p) {
(void)std::get<0>(p).successors().clear();
}
#if TBB_USE_ASSERT
template<typename P> static bool this_empty(P &p) {
return std::get<0>(p).successors().empty();
}
#endif
};
template <typename OutputTuple>
struct init_output_ports {
template <typename... Args>
static OutputTuple call(graph& g, const std::tuple<Args...>&) {
return OutputTuple(Args(g)...);
}
}; // struct init_output_ports
//! Implements methods for a function node that takes a type Input as input
// and has a tuple of output ports specified.
template< typename Input, typename OutputPortSet, typename Policy, typename A>
class multifunction_input : public function_input_base<Input, Policy, A, multifunction_input<Input,OutputPortSet,Policy,A> > {
public:
static const int N = std::tuple_size<OutputPortSet>::value;
typedef Input input_type;
typedef OutputPortSet output_ports_type;
typedef multifunction_body<input_type, output_ports_type> multifunction_body_type;
typedef multifunction_input<Input, OutputPortSet, Policy, A> my_class;
typedef function_input_base<Input, Policy, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
multifunction_input(graph &g, size_t max_concurrency,Body& body, node_priority_t a_priority )
: base_type(g, max_concurrency, a_priority, noexcept(tbb::detail::invoke(body, input_type(), my_output_ports)))
, my_body( new multifunction_body_leaf<input_type, output_ports_type, Body>(body) )
, my_init_body( new multifunction_body_leaf<input_type, output_ports_type, Body>(body) )
, my_output_ports(init_output_ports<output_ports_type>::call(g, my_output_ports)){
}
//! Copy constructor
multifunction_input( const multifunction_input& src ) :
base_type(src),
my_body( src.my_init_body->clone() ),
my_init_body(src.my_init_body->clone() ),
my_output_ports( init_output_ports<output_ports_type>::call(src.my_graph_ref, my_output_ports) ) {
}
~multifunction_input() {
delete my_body;
delete my_init_body;
}
template< typename Body >
Body copy_function_object() {
multifunction_body_type &body_ref = *this->my_body;
return *static_cast<Body*>(dynamic_cast< multifunction_body_leaf<input_type, output_ports_type, Body> & >(body_ref).get_body_ptr());
}
// for multifunction nodes we do not have a single successor as such. So we just tell
// the task we were successful.
//TODO: consider moving common parts with implementation in function_input into separate function
graph_task* apply_body_impl_bypass( const input_type &i
__TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo&) )
{
fgt_begin_body( my_body );
(*my_body)(i, my_output_ports);
fgt_end_body( my_body );
graph_task* ttask = nullptr;
if(base_type::my_max_concurrency != 0) {
ttask = base_type::try_get_postponed_task(i);
}
return ttask ? ttask : SUCCESSFULLY_ENQUEUED;
}
output_ports_type &output_ports(){ return my_output_ports; }
protected:
void reset(reset_flags f) {
base_type::reset_function_input_base(f);
if(f & rf_clear_edges)clear_element<N>::clear_this(my_output_ports);
if(f & rf_reset_bodies) {
multifunction_body_type* tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
__TBB_ASSERT(!(f & rf_clear_edges) || clear_element<N>::this_empty(my_output_ports), "multifunction_node reset failed");
}
multifunction_body_type *my_body;
multifunction_body_type *my_init_body;
output_ports_type my_output_ports;
}; // multifunction_input
// template to refer to an output port of a multifunction_node
template<size_t N, typename MOP>
typename std::tuple_element<N, typename MOP::output_ports_type>::type &output_port(MOP &op) {
return std::get<N>(op.output_ports());
}
inline void check_task_and_spawn(graph& g, graph_task* t) {
if (t && t != SUCCESSFULLY_ENQUEUED) {
spawn_in_graph_arena(g, *t);
}
}
// helper structs for split_node
template<int N>
struct emit_element {
template<typename T, typename P>
static graph_task* emit_this(graph& g, const T &t, P &p) {
// TODO: consider to collect all the tasks in task_list and spawn them all at once
graph_task* last_task = std::get<N-1>(p).try_put_task(std::get<N-1>(t));
check_task_and_spawn(g, last_task);
return emit_element<N-1>::emit_this(g,t,p);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename TupleType, typename PortsType>
static graph_task* emit_this(graph& g, const TupleType& t, PortsType& p,
const message_metainfo& metainfo)
{
// TODO: consider to collect all the tasks in task_list and spawn them all at once
graph_task* last_task = std::get<N-1>(p).try_put_task(std::get<N-1>(t), metainfo);
check_task_and_spawn(g, last_task);
return emit_element<N-1>::emit_this(g, t, p, metainfo);
}
#endif
};
template<>
struct emit_element<1> {
template<typename T, typename P>
static graph_task* emit_this(graph& g, const T &t, P &p) {
graph_task* last_task = std::get<0>(p).try_put_task(std::get<0>(t));
check_task_and_spawn(g, last_task);
return SUCCESSFULLY_ENQUEUED;
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
template <typename TupleType, typename PortsType>
static graph_task* emit_this(graph& g, const TupleType& t, PortsType& ports,
const message_metainfo& metainfo)
{
graph_task* last_task = std::get<0>(ports).try_put_task(std::get<0>(t), metainfo);
check_task_and_spawn(g, last_task);
return SUCCESSFULLY_ENQUEUED;
}
#endif
};
//! Implements methods for an executable node that takes continue_msg as input
template< typename Output, typename Policy>
class continue_input : public continue_receiver {
public:
//! The input type of this receiver
typedef continue_msg input_type;
//! The output type of this receiver
typedef Output output_type;
typedef function_body<input_type, output_type> function_body_type;
typedef continue_input<output_type, Policy> class_type;
template< typename Body >
continue_input( graph &g, Body& body, node_priority_t a_priority )
: continue_receiver(/*number_of_predecessors=*/0, a_priority)
, my_graph_ref(g)
, my_body( new function_body_leaf< input_type, output_type, Body>(body) )
, my_init_body( new function_body_leaf< input_type, output_type, Body>(body) )
{ }
template< typename Body >
continue_input( graph &g, int number_of_predecessors,
Body& body, node_priority_t a_priority )
: continue_receiver( number_of_predecessors, a_priority )
, my_graph_ref(g)
, my_body( new function_body_leaf< input_type, output_type, Body>(body) )
, my_init_body( new function_body_leaf< input_type, output_type, Body>(body) )
{ }
continue_input( const continue_input& src ) : continue_receiver(src),
my_graph_ref(src.my_graph_ref),
my_body( src.my_init_body->clone() ),
my_init_body( src.my_init_body->clone() ) {}
~continue_input() {
delete my_body;
delete my_init_body;
}
template< typename Body >
Body copy_function_object() {
function_body_type &body_ref = *my_body;
return dynamic_cast< function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
void reset_receiver( reset_flags f) override {
continue_receiver::reset_receiver(f);
if(f & rf_reset_bodies) {
function_body_type *tmp = my_init_body->clone();
delete my_body;
my_body = tmp;
}
}
protected:
graph& my_graph_ref;
function_body_type *my_body;
function_body_type *my_init_body;
virtual broadcast_cache<output_type > &successors() = 0;
friend class apply_body_task_bypass< class_type, continue_msg >;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
friend class apply_body_task_bypass< class_type, continue_msg, trackable_messages_graph_task >;
#endif
//! Applies the body to the provided input
graph_task* apply_body_bypass( input_type __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo) ) {
// There is an extra copied needed to capture the
// body execution without the try_put
fgt_begin_body( my_body );
output_type v = (*my_body)( continue_msg() );
fgt_end_body( my_body );
return successors().try_put_task( v __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo) );
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* execute(const message_metainfo& metainfo) override {
#else
graph_task* execute() override {
#endif
if(!is_graph_active(my_graph_ref)) {
return nullptr;
}
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (push)
#pragma warning (disable: 4127) /* suppress conditional expression is constant */
#endif
if(has_policy<lightweight, Policy>::value) {
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (pop)
#endif
return apply_body_bypass( continue_msg() __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo) );
}
else {
d1::small_object_allocator allocator{};
graph_task* t = nullptr;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
if (!metainfo.empty()) {
using task_type = apply_body_task_bypass<class_type, continue_msg, trackable_messages_graph_task>;
t = allocator.new_object<task_type>( graph_reference(), allocator, *this, continue_msg(), my_priority, metainfo );
} else
#endif
{
using task_type = apply_body_task_bypass<class_type, continue_msg>;
t = allocator.new_object<task_type>( graph_reference(), allocator, *this, continue_msg(), my_priority );
}
return t;
}
}
graph& graph_reference() const override {
return my_graph_ref;
}
}; // continue_input
//! Implements methods for both executable and function nodes that puts Output to its successors
template< typename Output >
class function_output : public sender<Output> {
public:
template<int N> friend struct clear_element;
typedef Output output_type;
typedef typename sender<output_type>::successor_type successor_type;
typedef broadcast_cache<output_type> broadcast_cache_type;
function_output(graph& g) : my_successors(this), my_graph_ref(g) {}
function_output(const function_output& other) = delete;
//! Adds a new successor to this node
bool register_successor( successor_type &r ) override {
successors().register_successor( r );
return true;
}
//! Removes a successor from this node
bool remove_successor( successor_type &r ) override {
successors().remove_successor( r );
return true;
}
broadcast_cache_type &successors() { return my_successors; }
graph& graph_reference() const { return my_graph_ref; }
protected:
broadcast_cache_type my_successors;
graph& my_graph_ref;
}; // function_output
template< typename Output >
class multifunction_output : public function_output<Output> {
public:
typedef Output output_type;
typedef function_output<output_type> base_type;
using base_type::my_successors;
multifunction_output(graph& g) : base_type(g) {}
multifunction_output(const multifunction_output& other) : base_type(other.my_graph_ref) {}
bool try_put(const output_type &i) {
graph_task *res = try_put_task(i);
if( !res ) return false;
if( res != SUCCESSFULLY_ENQUEUED ) {
// wrapping in task_arena::execute() is not needed since the method is called from
// inside task::execute()
spawn_in_graph_arena(graph_reference(), *res);
}
return true;
}
using base_type::graph_reference;
protected:
graph_task* try_put_task(const output_type &i) {
return my_successors.try_put_task(i);
}
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
graph_task* try_put_task(const output_type& i, const message_metainfo& metainfo) {
return my_successors.try_put_task(i, metainfo);
}
#endif
template <int N> friend struct emit_element;
}; // multifunction_output
//composite_node
template<typename CompositeType>
void add_nodes_impl(CompositeType*, bool) {}
template< typename CompositeType, typename NodeType1, typename... NodeTypes >
void add_nodes_impl(CompositeType *c_node, bool visible, const NodeType1& n1, const NodeTypes&... n) {
void *addr = const_cast<NodeType1 *>(&n1);
fgt_alias_port(c_node, addr, visible);
add_nodes_impl(c_node, visible, n...);
}
#endif // __TBB__flow_graph_node_impl_H
|