File: enumerable_thread_specific.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (1121 lines) | stat: -rw-r--r-- 42,628 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/*
    Copyright (c) 2005-2024 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_enumerable_thread_specific_H
#define __TBB_enumerable_thread_specific_H

#include "detail/_config.h"
#include "detail/_namespace_injection.h"
#include "detail/_assert.h"
#include "detail/_template_helpers.h"
#include "detail/_aligned_space.h"

#include "concurrent_vector.h"
#include "tbb_allocator.h"
#include "cache_aligned_allocator.h"
#include "profiling.h"

#include <atomic>
#include <thread>
#include <cstring> // memcpy
#include <cstddef> // std::ptrdiff_t

#include "task.h" // for task::suspend_point

#if _WIN32 || _WIN64
#ifndef NOMINMAX
#define NOMINMAX
#define __TBB_DEFINED_NOMINMAX 1
#endif
#include <windows.h>
#if __TBB_DEFINED_NOMINMAX
#undef NOMINMAX
#undef __TBB_DEFINED_NOMINMAX
#endif
#else
#include <pthread.h>
#endif

namespace tbb {
namespace detail {
namespace d1 {

//! enum for selecting between single key and key-per-instance versions
enum ets_key_usage_type {
    ets_key_per_instance
    , ets_no_key
#if __TBB_RESUMABLE_TASKS
    , ets_suspend_aware
#endif
};

// Forward declaration to use in internal classes
template <typename T, typename Allocator, ets_key_usage_type ETS_key_type>
class enumerable_thread_specific;

template <std::size_t ThreadIDSize>
struct internal_ets_key_selector {
    using key_type = std::thread::id;
    static key_type current_key() {
        return std::this_thread::get_id();
    }
};

// Intel Compiler on OSX cannot create atomics objects that instantiated from non-fundamental types
#if __INTEL_COMPILER && __APPLE__
template<>
struct internal_ets_key_selector<sizeof(std::size_t)> {
    using key_type = std::size_t;
    static key_type current_key() {
        auto id = std::this_thread::get_id();
        return reinterpret_cast<key_type&>(id);
    }
};
#endif

template <ets_key_usage_type ETS_key_type>
struct ets_key_selector : internal_ets_key_selector<sizeof(std::thread::id)> {};

#if __TBB_RESUMABLE_TASKS
template <>
struct ets_key_selector<ets_suspend_aware> {
    using key_type = suspend_point;
    static key_type current_key() {
        return r1::current_suspend_point();
    }
};
#endif

template<ets_key_usage_type ETS_key_type>
class ets_base : detail::no_copy {
protected:
    using key_type = typename ets_key_selector<ETS_key_type>::key_type;

public:
    struct slot;
    struct array {
        array* next;
        std::size_t lg_size;
        slot& at( std::size_t k ) {
            return (reinterpret_cast<slot*>(reinterpret_cast<void*>(this+1)))[k];
        }
        std::size_t size() const { return std::size_t(1) << lg_size; }
        std::size_t mask() const { return size() - 1; }
        std::size_t start( std::size_t h ) const {
            return h >> (8 * sizeof(std::size_t) - lg_size);
        }
    };
    struct slot {
        std::atomic<key_type> key;
        void* ptr;
        bool empty() const { return key.load(std::memory_order_relaxed) == key_type(); }
        bool match( key_type k ) const { return key.load(std::memory_order_relaxed) == k; }
        bool claim( key_type k ) {
            // TODO: maybe claim ptr, because key_type is not guaranteed to fit into word size
            key_type expected = key_type();
            return key.compare_exchange_strong(expected, k);
        }
    };

protected:
    //! Root of linked list of arrays of decreasing size.
    /** nullptr if and only if my_count==0.
        Each array in the list is half the size of its predecessor. */
    std::atomic<array*> my_root;
    std::atomic<std::size_t> my_count;

    virtual void* create_local() = 0;
    virtual void* create_array(std::size_t _size) = 0;  // _size in bytes
    virtual void free_array(void* ptr, std::size_t _size) = 0; // _size in bytes

    array* allocate( std::size_t lg_size ) {
        std::size_t n = std::size_t(1) << lg_size;
        array* a = static_cast<array*>(create_array(sizeof(array) + n * sizeof(slot)));
        a->lg_size = lg_size;
        std::memset( a + 1, 0, n * sizeof(slot) );
        return a;
    }
    void deallocate(array* a) {
        std::size_t n = std::size_t(1) << (a->lg_size);
        free_array( static_cast<void*>(a), std::size_t(sizeof(array) + n * sizeof(slot)) );
    }

    ets_base() : my_root{nullptr}, my_count{0} {}
    virtual ~ets_base();  // g++ complains if this is not virtual

    void* table_lookup( bool& exists );
    void  table_clear();
    // The following functions are not used in concurrent context,
    // so we don't need synchronization and ITT annotations there.
    template <ets_key_usage_type E2>
    void table_elementwise_copy( const ets_base& other,
                                 void*(*add_element)(ets_base<E2>&, void*) ) {
        __TBB_ASSERT(!my_root.load(std::memory_order_relaxed), nullptr);
        __TBB_ASSERT(!my_count.load(std::memory_order_relaxed), nullptr);
        if( !other.my_root.load(std::memory_order_relaxed) ) return;
        array* root = allocate(other.my_root.load(std::memory_order_relaxed)->lg_size);
        my_root.store(root, std::memory_order_relaxed);
        root->next = nullptr;
        my_count.store(other.my_count.load(std::memory_order_relaxed), std::memory_order_relaxed);
        std::size_t mask = root->mask();
        for( array* r = other.my_root.load(std::memory_order_relaxed); r; r = r->next ) {
            for( std::size_t i = 0; i < r->size(); ++i ) {
                slot& s1 = r->at(i);
                if( !s1.empty() ) {
                    for( std::size_t j = root->start(std::hash<key_type>{}(s1.key.load(std::memory_order_relaxed))); ; j = (j+1)&mask ) {
                        slot& s2 = root->at(j);
                        if( s2.empty() ) {
                            s2.ptr = add_element(static_cast<ets_base<E2>&>(*this), s1.ptr);
                            s2.key.store(s1.key.load(std::memory_order_relaxed), std::memory_order_relaxed);
                            break;
                        }
                        else if( s2.match(s1.key.load(std::memory_order_relaxed)) )
                            break;
                    }
                }
            }
        }
    }
    void table_swap( ets_base& other ) {
       __TBB_ASSERT(this!=&other, "Don't swap an instance with itself");
       swap_atomics_relaxed(my_root, other.my_root);
       swap_atomics_relaxed(my_count, other.my_count);
    }
};

template<ets_key_usage_type ETS_key_type>
ets_base<ETS_key_type>::~ets_base() {
    __TBB_ASSERT(!my_root.load(std::memory_order_relaxed), nullptr);
}

template<ets_key_usage_type ETS_key_type>
void ets_base<ETS_key_type>::table_clear() {
    while ( array* r = my_root.load(std::memory_order_relaxed) ) {
        my_root.store(r->next, std::memory_order_relaxed);
        deallocate(r);
    }
    my_count.store(0, std::memory_order_relaxed);
}

template<ets_key_usage_type ETS_key_type>
void* ets_base<ETS_key_type>::table_lookup( bool& exists ) {
    const key_type k = ets_key_selector<ETS_key_type>::current_key();

    __TBB_ASSERT(k != key_type(), nullptr);
    void* found;
    std::size_t h = std::hash<key_type>{}(k);
    for( array* r = my_root.load(std::memory_order_acquire); r; r = r->next ) {
        call_itt_notify(acquired,r);
        std::size_t mask=r->mask();
        for(std::size_t i = r->start(h); ;i=(i+1)&mask) {
            slot& s = r->at(i);
            if( s.empty() ) break;
            if( s.match(k) ) {
                if( r == my_root.load(std::memory_order_acquire) ) {
                    // Success at top level
                    exists = true;
                    return s.ptr;
                } else {
                    // Success at some other level.  Need to insert at top level.
                    exists = true;
                    found = s.ptr;
                    goto insert;
                }
            }
        }
    }
    // Key does not yet exist.  The density of slots in the table does not exceed 0.5,
    // for if this will occur a new table is allocated with double the current table
    // size, which is swapped in as the new root table.  So an empty slot is guaranteed.
    exists = false;
    found = create_local();
    {
        std::size_t c = ++my_count;
        array* r = my_root.load(std::memory_order_acquire);
        call_itt_notify(acquired,r);
        if( !r || c > r->size()/2 ) {
            std::size_t s = r ? r->lg_size : 2;
            while( c > std::size_t(1)<<(s-1) ) ++s;
            array* a = allocate(s);
            for(;;) {
                a->next = r;
                call_itt_notify(releasing,a);
                array* new_r = r;
                if( my_root.compare_exchange_strong(new_r, a) ) break;
                call_itt_notify(acquired, new_r);
                __TBB_ASSERT(new_r != nullptr, nullptr);
                if( new_r->lg_size >= s ) {
                    // Another thread inserted an equal or  bigger array, so our array is superfluous.
                    deallocate(a);
                    break;
                }
                r = new_r;
            }
        }
    }
    insert:
    // Whether a slot has been found in an older table, or if it has been inserted at this level,
    // it has already been accounted for in the total.  Guaranteed to be room for it, and it is
    // not present, so search for empty slot and use it.
    array* ir = my_root.load(std::memory_order_acquire);
    call_itt_notify(acquired, ir);
    std::size_t mask = ir->mask();
    for(std::size_t i = ir->start(h);; i = (i+1)&mask) {
        slot& s = ir->at(i);
        if( s.empty() ) {
            if( s.claim(k) ) {
                s.ptr = found;
                return found;
            }
        }
    }
}

//! Specialization that exploits native TLS
template <>
class ets_base<ets_key_per_instance>: public ets_base<ets_no_key> {
    using super = ets_base<ets_no_key>;
#if _WIN32||_WIN64
#if __TBB_WIN8UI_SUPPORT
    using tls_key_t = DWORD;
    void create_key() { my_key = FlsAlloc(nullptr); }
    void destroy_key() { FlsFree(my_key); }
    void set_tls(void * value) { FlsSetValue(my_key, (LPVOID)value); }
    void* get_tls() { return (void *)FlsGetValue(my_key); }
#else
    using tls_key_t = DWORD;
    void create_key() { my_key = TlsAlloc(); }
    void destroy_key() { TlsFree(my_key); }
    void set_tls(void * value) { TlsSetValue(my_key, (LPVOID)value); }
    void* get_tls() { return (void *)TlsGetValue(my_key); }
#endif
#else
    using tls_key_t = pthread_key_t;
    void create_key() { pthread_key_create(&my_key, nullptr); }
    void destroy_key() { pthread_key_delete(my_key); }
    void set_tls( void * value ) const { pthread_setspecific(my_key, value); }
    void* get_tls() const { return pthread_getspecific(my_key); }
#endif
    tls_key_t my_key;
    virtual void* create_local() override = 0;
    virtual void* create_array(std::size_t _size) override = 0;  // _size in bytes
    virtual void free_array(void* ptr, std::size_t _size) override = 0; // size in bytes
protected:
    ets_base() {create_key();}
    ~ets_base() {destroy_key();}
    void* table_lookup( bool& exists ) {
        void* found = get_tls();
        if( found ) {
            exists=true;
        } else {
            found = super::table_lookup(exists);
            set_tls(found);
        }
        return found;
    }
    void table_clear() {
        destroy_key();
        create_key();
        super::table_clear();
    }
    void table_swap( ets_base& other ) {
       using std::swap;
       __TBB_ASSERT(this!=&other, "Don't swap an instance with itself");
       swap(my_key, other.my_key);
       super::table_swap(other);
    }
};

//! Random access iterator for traversing the thread local copies.
template< typename Container, typename Value >
class enumerable_thread_specific_iterator
{
    //! current position in the concurrent_vector

    Container *my_container;
    typename Container::size_type my_index;
    mutable Value *my_value;

    template<typename C, typename T, typename U>
    friend bool operator==( const enumerable_thread_specific_iterator<C, T>& i,
                     const enumerable_thread_specific_iterator<C, U>& j );

    template<typename C, typename T, typename U>
    friend bool operator<( const enumerable_thread_specific_iterator<C,T>& i,
                           const enumerable_thread_specific_iterator<C,U>& j );

    template<typename C, typename T, typename U>
    friend std::ptrdiff_t operator-( const enumerable_thread_specific_iterator<C,T>& i,
                                const enumerable_thread_specific_iterator<C,U>& j );

    template<typename C, typename U>
    friend class enumerable_thread_specific_iterator;

public:
    //! STL support
    using difference_type = std::ptrdiff_t;
    using value_type = Value;
    using pointer = Value*;
    using reference = Value&;
    using iterator_category = std::random_access_iterator_tag;

    enumerable_thread_specific_iterator( const Container &container, typename Container::size_type index ) :
        my_container(&const_cast<Container &>(container)), my_index(index), my_value(nullptr) {}

    //! Default constructor
    enumerable_thread_specific_iterator() : my_container(nullptr), my_index(0), my_value(nullptr) {}

    template<typename U>
    enumerable_thread_specific_iterator( const enumerable_thread_specific_iterator<Container, U>& other ) :
            my_container( other.my_container ), my_index( other.my_index), my_value( const_cast<Value *>(other.my_value) ) {}

    enumerable_thread_specific_iterator operator+( std::ptrdiff_t offset ) const {
        return enumerable_thread_specific_iterator(*my_container, my_index + offset);
    }

    friend enumerable_thread_specific_iterator operator+( std::ptrdiff_t offset, enumerable_thread_specific_iterator v ) {
        return enumerable_thread_specific_iterator(*v.my_container, v.my_index + offset);
    }

    enumerable_thread_specific_iterator &operator+=( std::ptrdiff_t offset ) {
        my_index += offset;
        my_value = nullptr;
        return *this;
    }

    enumerable_thread_specific_iterator operator-( std::ptrdiff_t offset ) const {
        return enumerable_thread_specific_iterator( *my_container, my_index-offset );
    }

    enumerable_thread_specific_iterator &operator-=( std::ptrdiff_t offset ) {
        my_index -= offset;
        my_value = nullptr;
        return *this;
    }

    Value& operator*() const {
        Value* value = my_value;
        if( !value ) {
            value = my_value = (*my_container)[my_index].value();
        }
        __TBB_ASSERT( value==(*my_container)[my_index].value(), "corrupt cache" );
        return *value;
    }

    Value& operator[]( std::ptrdiff_t k ) const {
       return *(*my_container)[my_index + k].value();
    }

    Value* operator->() const {return &operator*();}

    enumerable_thread_specific_iterator& operator++() {
        ++my_index;
        my_value = nullptr;
        return *this;
    }

    enumerable_thread_specific_iterator& operator--() {
        --my_index;
        my_value = nullptr;
        return *this;
    }

    //! Post increment
    enumerable_thread_specific_iterator operator++(int) {
        enumerable_thread_specific_iterator result = *this;
        ++my_index;
        my_value = nullptr;
        return result;
    }

    //! Post decrement
    enumerable_thread_specific_iterator operator--(int) {
        enumerable_thread_specific_iterator result = *this;
        --my_index;
        my_value = nullptr;
        return result;
    }
};

template<typename Container, typename T, typename U>
bool operator==( const enumerable_thread_specific_iterator<Container, T>& i,
                 const enumerable_thread_specific_iterator<Container, U>& j ) {
    return i.my_index == j.my_index && i.my_container == j.my_container;
}

template<typename Container, typename T, typename U>
bool operator!=( const enumerable_thread_specific_iterator<Container,T>& i,
                 const enumerable_thread_specific_iterator<Container,U>& j ) {
    return !(i==j);
}

template<typename Container, typename T, typename U>
bool operator<( const enumerable_thread_specific_iterator<Container,T>& i,
                const enumerable_thread_specific_iterator<Container,U>& j ) {
    return i.my_index<j.my_index;
}

template<typename Container, typename T, typename U>
bool operator>( const enumerable_thread_specific_iterator<Container,T>& i,
                const enumerable_thread_specific_iterator<Container,U>& j ) {
    return j<i;
}

template<typename Container, typename T, typename U>
bool operator>=( const enumerable_thread_specific_iterator<Container,T>& i,
                 const enumerable_thread_specific_iterator<Container,U>& j ) {
    return !(i<j);
}

template<typename Container, typename T, typename U>
bool operator<=( const enumerable_thread_specific_iterator<Container,T>& i,
                 const enumerable_thread_specific_iterator<Container,U>& j ) {
    return !(j<i);
}

template<typename Container, typename T, typename U>
std::ptrdiff_t operator-( const enumerable_thread_specific_iterator<Container,T>& i,
                     const enumerable_thread_specific_iterator<Container,U>& j ) {
    return i.my_index-j.my_index;
}

template<typename SegmentedContainer, typename Value >
class segmented_iterator
{
    template<typename C, typename T, typename U>
    friend bool operator==(const segmented_iterator<C,T>& i, const segmented_iterator<C,U>& j);

    template<typename C, typename T, typename U>
    friend bool operator!=(const segmented_iterator<C,T>& i, const segmented_iterator<C,U>& j);

    template<typename C, typename U>
    friend class segmented_iterator;

public:
    segmented_iterator() {my_segcont = nullptr;}

    segmented_iterator( const SegmentedContainer& _segmented_container ) :
        my_segcont(const_cast<SegmentedContainer*>(&_segmented_container)),
        outer_iter(my_segcont->end()) { }

    ~segmented_iterator() {}

    using InnerContainer = typename SegmentedContainer::value_type;
    using inner_iterator = typename InnerContainer::iterator;
    using outer_iterator = typename SegmentedContainer::iterator;

    // STL support
    // TODO: inherit all types from segmented container?
    using difference_type = std::ptrdiff_t;
    using value_type = Value;
    using size_type = typename SegmentedContainer::size_type;
    using pointer = Value*;
    using reference = Value&;
    using iterator_category = std::input_iterator_tag;

    // Copy Constructor
    template<typename U>
    segmented_iterator(const segmented_iterator<SegmentedContainer, U>& other) :
        my_segcont(other.my_segcont),
        outer_iter(other.outer_iter),
        // can we assign a default-constructed iterator to inner if we're at the end?
        inner_iter(other.inner_iter)
    {}

    // assignment
    template<typename U>
    segmented_iterator& operator=( const segmented_iterator<SegmentedContainer, U>& other) {
        my_segcont = other.my_segcont;
        outer_iter = other.outer_iter;
        if(outer_iter != my_segcont->end()) inner_iter = other.inner_iter;
        return *this;
    }

    // allow assignment of outer iterator to segmented iterator.  Once it is
    // assigned, move forward until a non-empty inner container is found or
    // the end of the outer container is reached.
    segmented_iterator& operator=(const outer_iterator& new_outer_iter) {
        __TBB_ASSERT(my_segcont != nullptr, nullptr);
        // check that this iterator points to something inside the segmented container
        for(outer_iter = new_outer_iter ;outer_iter!=my_segcont->end(); ++outer_iter) {
            if( !outer_iter->empty() ) {
                inner_iter = outer_iter->begin();
                break;
            }
        }
        return *this;
    }

    // pre-increment
    segmented_iterator& operator++() {
        advance_me();
        return *this;
    }

    // post-increment
    segmented_iterator operator++(int) {
        segmented_iterator tmp = *this;
        operator++();
        return tmp;
    }

    bool operator==(const outer_iterator& other_outer) const {
        __TBB_ASSERT(my_segcont != nullptr, nullptr);
        return (outer_iter == other_outer &&
                (outer_iter == my_segcont->end() || inner_iter == outer_iter->begin()));
    }

    bool operator!=(const outer_iterator& other_outer) const {
        return !operator==(other_outer);

    }

    // (i)* RHS
    reference operator*() const {
        __TBB_ASSERT(my_segcont != nullptr, nullptr);
        __TBB_ASSERT(outer_iter != my_segcont->end(), "Dereferencing a pointer at end of container");
        __TBB_ASSERT(inner_iter != outer_iter->end(), nullptr); // should never happen
        return *inner_iter;
    }

    // i->
    pointer operator->() const { return &operator*();}

private:
    SegmentedContainer* my_segcont;
    outer_iterator outer_iter;
    inner_iterator inner_iter;

    void advance_me() {
        __TBB_ASSERT(my_segcont != nullptr, nullptr);
        __TBB_ASSERT(outer_iter != my_segcont->end(), nullptr); // not true if there are no inner containers
        __TBB_ASSERT(inner_iter != outer_iter->end(), nullptr); // not true if the inner containers are all empty.
        ++inner_iter;
        while(inner_iter == outer_iter->end() && ++outer_iter != my_segcont->end()) {
            inner_iter = outer_iter->begin();
        }
    }
};    // segmented_iterator

template<typename SegmentedContainer, typename T, typename U>
bool operator==( const segmented_iterator<SegmentedContainer,T>& i,
                 const segmented_iterator<SegmentedContainer,U>& j ) {
    if(i.my_segcont != j.my_segcont) return false;
    if(i.my_segcont == nullptr) return true;
    if(i.outer_iter != j.outer_iter) return false;
    if(i.outer_iter == i.my_segcont->end()) return true;
    return i.inner_iter == j.inner_iter;
}

// !=
template<typename SegmentedContainer, typename T, typename U>
bool operator!=( const segmented_iterator<SegmentedContainer,T>& i,
                 const segmented_iterator<SegmentedContainer,U>& j ) {
    return !(i==j);
}

template<typename T>
struct construct_by_default: no_assign {
    void construct(void*where) {new(where) T();} // C++ note: the () in T() ensure zero initialization.
    construct_by_default( int ) {}
};

template<typename T>
struct construct_by_exemplar: no_assign {
    const T exemplar;
    void construct(void*where) {new(where) T(exemplar);}
    construct_by_exemplar( const T& t ) : exemplar(t) {}
    construct_by_exemplar( T&& t ) : exemplar(std::move(t)) {}
};

template<typename T, typename Finit>
struct construct_by_finit: no_assign {
    Finit f;
    void construct(void* where) {new(where) T(f());}
    construct_by_finit( Finit&& f_ ) : f(std::move(f_)) {}
};

template<typename T, typename... P>
struct construct_by_args: no_assign {
    stored_pack<P...> pack;
    void construct(void* where) {
        call( [where](const typename std::decay<P>::type&... args ){
           new(where) T(args...);
        }, pack );
    }
    construct_by_args( P&& ... args ) : pack(std::forward<P>(args)...) {}
};

// storage for initialization function pointer
// TODO: consider removing the template parameter T here and in callback_leaf
class callback_base {
public:
    // Clone *this
    virtual callback_base* clone() const = 0;
    // Destruct and free *this
    virtual void destroy() = 0;
    // Need virtual destructor to satisfy GCC compiler warning
    virtual ~callback_base() { }
    // Construct T at where
    virtual void construct(void* where) = 0;
};

template <typename Constructor>
class callback_leaf: public callback_base, Constructor {
    template<typename... P> callback_leaf( P&& ... params ) : Constructor(std::forward<P>(params)...) {}
    // TODO: make the construction/destruction consistent (use allocator.construct/destroy)
    using my_allocator_type = typename tbb::tbb_allocator<callback_leaf>;

    callback_base* clone() const override {
        return make(*this);
    }

    void destroy() override {
        my_allocator_type alloc;
        tbb::detail::allocator_traits<my_allocator_type>::destroy(alloc, this);
        tbb::detail::allocator_traits<my_allocator_type>::deallocate(alloc, this, 1);
    }

    void construct(void* where) override {
        Constructor::construct(where);
    }

public:
    template<typename... P>
    static callback_base* make( P&& ... params ) {
        void* where = my_allocator_type().allocate(1);
        return new(where) callback_leaf( std::forward<P>(params)... );
    }
};

//! Template for recording construction of objects in table
/** All maintenance of the space will be done explicitly on push_back,
    and all thread local copies must be destroyed before the concurrent
    vector is deleted.

    The flag is_built is initialized to false.  When the local is
    successfully-constructed, set the flag to true or call value_committed().
    If the constructor throws, the flag will be false.
*/
template<typename U>
struct ets_element {
    detail::aligned_space<U> my_space;
    bool is_built;
    ets_element() { is_built = false; }  // not currently-built
    U* value() { return my_space.begin(); }
    U* value_committed() { is_built = true; return my_space.begin(); }
    ~ets_element() {
        if(is_built) {
            my_space.begin()->~U();
            is_built = false;
        }
    }
};

// A predicate that can be used for a compile-time compatibility check of ETS instances
// Ideally, it should have been declared inside the ETS class, but unfortunately
// in that case VS2013 does not enable the variadic constructor.
template<typename T, typename ETS> struct is_compatible_ets : std::false_type {};
template<typename T, typename U, typename A, ets_key_usage_type C>
struct is_compatible_ets< T, enumerable_thread_specific<U,A,C> > : std::is_same<T, U> {};

// A predicate that checks whether, for a variable 'foo' of type T, foo() is a valid expression
template <typename T> using has_empty_braces_operator = decltype(std::declval<T>()());
template <typename T> using is_callable_no_args = supports<T, has_empty_braces_operator>;

//! The enumerable_thread_specific container
/** enumerable_thread_specific has the following properties:
    - thread-local copies are lazily created, with default, exemplar or function initialization.
    - thread-local copies do not move (during lifetime, and excepting clear()) so the address of a copy is invariant.
    - the contained objects need not have operator=() defined if combine is not used.
    - enumerable_thread_specific containers may be copy-constructed or assigned.
    - thread-local copies can be managed by hash-table, or can be accessed via TLS storage for speed.
    - outside of parallel contexts, the contents of all thread-local copies are accessible by iterator or using combine or combine_each methods

@par Segmented iterator
    When the thread-local objects are containers with input_iterators defined, a segmented iterator may
    be used to iterate over all the elements of all thread-local copies.

@par combine and combine_each
    - Both methods are defined for enumerable_thread_specific.
    - combine() requires the type T have operator=() defined.
    - neither method modifies the contents of the object (though there is no guarantee that the applied methods do not modify the object.)
    - Both are evaluated in serial context (the methods are assumed to be non-benign.)

@ingroup containers */
template <typename T, typename Allocator=cache_aligned_allocator<T>,
          ets_key_usage_type ETS_key_type=ets_no_key >
class enumerable_thread_specific: ets_base<ETS_key_type> {

    template<typename U, typename A, ets_key_usage_type C> friend class enumerable_thread_specific;

    using padded_element = padded<ets_element<T>>;

    //! A generic range, used to create range objects from the iterators
    template<typename I>
    class generic_range_type: public blocked_range<I> {
    public:
        using value_type = T;
        using reference = T&;
        using const_reference = const T&;
        using iterator = I;
        using difference_type = std::ptrdiff_t;

        generic_range_type( I begin_, I end_, std::size_t grainsize_ = 1) : blocked_range<I>(begin_,end_,grainsize_) {}
        template<typename U>
        generic_range_type( const generic_range_type<U>& r) : blocked_range<I>(r.begin(),r.end(),r.grainsize()) {}
        generic_range_type( generic_range_type& r, split ) : blocked_range<I>(r,split()) {}
    };

    using allocator_traits_type = tbb::detail::allocator_traits<Allocator>;

    using padded_allocator_type = typename allocator_traits_type::template rebind_alloc<padded_element>;
    using internal_collection_type = tbb::concurrent_vector< padded_element, padded_allocator_type >;

    callback_base *my_construct_callback;

    internal_collection_type my_locals;

    // TODO: consider unifying the callback mechanism for all create_local* methods below
    //   (likely non-compatible and requires interface version increase)
    void* create_local() override {
        padded_element& lref = *my_locals.grow_by(1);
        my_construct_callback->construct(lref.value());
        return lref.value_committed();
    }

    static void* create_local_by_copy( ets_base<ETS_key_type>& base, void* p ) {
        enumerable_thread_specific& ets = static_cast<enumerable_thread_specific&>(base);
        padded_element& lref = *ets.my_locals.grow_by(1);
        new(lref.value()) T(*static_cast<T*>(p));
        return lref.value_committed();
    }

    static void* create_local_by_move( ets_base<ETS_key_type>& base, void* p ) {
        enumerable_thread_specific& ets = static_cast<enumerable_thread_specific&>(base);
        padded_element& lref = *ets.my_locals.grow_by(1);
        new(lref.value()) T(std::move(*static_cast<T*>(p)));
        return lref.value_committed();
    }

    using array_allocator_type = typename allocator_traits_type::template rebind_alloc<uintptr_t>;

    // _size is in bytes
    void* create_array(std::size_t _size) override {
        std::size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t);
        return array_allocator_type().allocate(nelements);
    }

    void free_array( void* _ptr, std::size_t _size) override {
        std::size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t);
        array_allocator_type().deallocate( reinterpret_cast<uintptr_t *>(_ptr),nelements);
    }

public:

    //! Basic types
    using value_type = T;
    using allocator_type = Allocator;
    using size_type = typename internal_collection_type::size_type;
    using difference_type = typename internal_collection_type::difference_type;
    using reference = value_type&;
    using const_reference = const value_type&;

    using pointer = typename allocator_traits_type::pointer;
    using const_pointer = typename allocator_traits_type::const_pointer;

    // Iterator types
    using iterator = enumerable_thread_specific_iterator<internal_collection_type, value_type>;
    using const_iterator = enumerable_thread_specific_iterator<internal_collection_type, const value_type>;

    // Parallel range types
    using range_type = generic_range_type<iterator>;
    using const_range_type = generic_range_type<const_iterator>;

    //! Default constructor.  Each local instance of T is default constructed.
    enumerable_thread_specific() : my_construct_callback(
        callback_leaf<construct_by_default<T> >::make(/*dummy argument*/0)
    ){}

    //! Constructor with initializer functor. Each local instance of T is constructed by T(finit()).
    template <typename Finit , typename = typename std::enable_if<is_callable_no_args<typename std::decay<Finit>::type>::value>::type>
    explicit enumerable_thread_specific( Finit finit ) : my_construct_callback(
        callback_leaf<construct_by_finit<T,Finit> >::make( std::move(finit) )
    ){}

    //! Constructor with exemplar. Each local instance of T is copy-constructed from the exemplar.
    explicit enumerable_thread_specific( const T& exemplar ) : my_construct_callback(
        callback_leaf<construct_by_exemplar<T> >::make( exemplar )
    ){}

    explicit enumerable_thread_specific( T&& exemplar ) : my_construct_callback(
        callback_leaf<construct_by_exemplar<T> >::make( std::move(exemplar) )
    ){}

    //! Variadic constructor with initializer arguments.  Each local instance of T is constructed by T(args...)
    template <typename P1, typename... P,
              typename = typename std::enable_if<!is_callable_no_args<typename std::decay<P1>::type>::value
                                                      && !is_compatible_ets<T, typename std::decay<P1>::type>::value
                                                      && !std::is_same<T, typename std::decay<P1>::type>::value
                                                     >::type>
    enumerable_thread_specific( P1&& arg1, P&& ... args ) : my_construct_callback(
        callback_leaf<construct_by_args<T,P1,P...> >::make( std::forward<P1>(arg1), std::forward<P>(args)... )
    ){}

    //! Destructor
    ~enumerable_thread_specific() {
        if(my_construct_callback) my_construct_callback->destroy();
        // Deallocate the hash table before overridden free_array() becomes inaccessible
        this->ets_base<ETS_key_type>::table_clear();
    }

    //! returns reference to local, discarding exists
    reference local() {
        bool exists;
        return local(exists);
    }

    //! Returns reference to calling thread's local copy, creating one if necessary
    reference local(bool& exists)  {
        void* ptr = this->table_lookup(exists);
        return *(T*)ptr;
    }

    //! Get the number of local copies
    size_type size() const { return my_locals.size(); }

    //! true if there have been no local copies created
    bool empty() const { return my_locals.empty(); }

    //! begin iterator
    iterator begin() { return iterator( my_locals, 0 ); }
    //! end iterator
    iterator end() { return iterator(my_locals, my_locals.size() ); }

    //! begin const iterator
    const_iterator begin() const { return const_iterator(my_locals, 0); }

    //! end const iterator
    const_iterator end() const { return const_iterator(my_locals, my_locals.size()); }

    //! Get range for parallel algorithms
    range_type range( std::size_t grainsize=1 ) { return range_type( begin(), end(), grainsize ); }

    //! Get const range for parallel algorithms
    const_range_type range( std::size_t grainsize=1 ) const { return const_range_type( begin(), end(), grainsize ); }

    //! Destroys local copies
    void clear() {
        my_locals.clear();
        this->table_clear();
        // callback is not destroyed
    }

private:
    template<typename A2, ets_key_usage_type C2>
    void internal_copy(const enumerable_thread_specific<T, A2, C2>& other) {
        // this tests is_compatible_ets
        static_assert( (is_compatible_ets<T, typename std::decay<decltype(other)>::type>::value), "is_compatible_ets fails" );
        // Initialize my_construct_callback first, so that it is valid even if rest of this routine throws an exception.
        my_construct_callback = other.my_construct_callback->clone();
        __TBB_ASSERT(my_locals.size()==0, nullptr);
        my_locals.reserve(other.size());
        this->table_elementwise_copy( other, create_local_by_copy );
    }

    void internal_swap(enumerable_thread_specific& other) {
        using std::swap;
        __TBB_ASSERT( this!=&other, nullptr);
        swap(my_construct_callback, other.my_construct_callback);
        // concurrent_vector::swap() preserves storage space,
        // so addresses to the vector kept in ETS hash table remain valid.
        swap(my_locals, other.my_locals);
        this->ets_base<ETS_key_type>::table_swap(other);
    }

    template<typename A2, ets_key_usage_type C2>
    void internal_move(enumerable_thread_specific<T, A2, C2>&& other) {
        static_assert( (is_compatible_ets<T, typename std::decay<decltype(other)>::type>::value), "is_compatible_ets fails" );
        my_construct_callback = other.my_construct_callback;
        other.my_construct_callback = nullptr;
        __TBB_ASSERT(my_locals.size()==0, nullptr);
        my_locals.reserve(other.size());
        this->table_elementwise_copy( other, create_local_by_move );
    }

public:
    enumerable_thread_specific( const enumerable_thread_specific& other )
    : ets_base<ETS_key_type>() /* prevents GCC warnings with -Wextra */
    {
        internal_copy(other);
    }

    template<typename Alloc, ets_key_usage_type Cachetype>
    enumerable_thread_specific( const enumerable_thread_specific<T, Alloc, Cachetype>& other )
    {
        internal_copy(other);
    }

    enumerable_thread_specific( enumerable_thread_specific&& other ) : my_construct_callback()
    {
        // TODO: use internal_move correctly here
        internal_swap(other);
    }

    template<typename Alloc, ets_key_usage_type Cachetype>
    enumerable_thread_specific( enumerable_thread_specific<T, Alloc, Cachetype>&& other ) : my_construct_callback()
    {
        internal_move(std::move(other));
    }

    enumerable_thread_specific& operator=( const enumerable_thread_specific& other )
    {
        if( this != &other ) {
            this->clear();
            my_construct_callback->destroy();
            internal_copy( other );
        }
        return *this;
    }

    template<typename Alloc, ets_key_usage_type Cachetype>
    enumerable_thread_specific& operator=( const enumerable_thread_specific<T, Alloc, Cachetype>& other )
    {
        __TBB_ASSERT( static_cast<void*>(this)!=static_cast<const void*>(&other), nullptr); // Objects of different types
        this->clear();
        my_construct_callback->destroy();
        internal_copy(other);
        return *this;
    }

    enumerable_thread_specific& operator=( enumerable_thread_specific&& other )
    {
        if( this != &other ) {
            // TODO: use internal_move correctly here
            internal_swap(other);
        }
        return *this;
    }

    template<typename Alloc, ets_key_usage_type Cachetype>
    enumerable_thread_specific& operator=( enumerable_thread_specific<T, Alloc, Cachetype>&& other )
    {
        __TBB_ASSERT( static_cast<void*>(this)!=static_cast<const void*>(&other), nullptr); // Objects of different types
        this->clear();
        my_construct_callback->destroy();
        internal_move(std::move(other));
        return *this;
    }

    // CombineFunc has signature T(T,T) or T(const T&, const T&)
    template <typename CombineFunc>
    T combine(CombineFunc f_combine) {
        if(begin() == end()) {
            ets_element<T> location;
            my_construct_callback->construct(location.value());
            return *location.value_committed();
        }
        const_iterator ci = begin();
        T my_result = *ci;
        while(++ci != end())
            my_result = f_combine( my_result, *ci );
        return my_result;
    }

    // combine_func_t takes T by value or by [const] reference, and returns nothing
    template <typename CombineFunc>
    void combine_each(CombineFunc f_combine) {
        for(iterator ci = begin(); ci != end(); ++ci) {
            f_combine( *ci );
        }
    }

}; // enumerable_thread_specific

template< typename Container >
class flattened2d {
    // This intermediate typedef is to address issues with VC7.1 compilers
    using conval_type = typename Container::value_type;

public:
    //! Basic types
    using size_type = typename conval_type::size_type;
    using difference_type = typename conval_type::difference_type;
    using allocator_type = typename conval_type::allocator_type;
    using value_type = typename conval_type::value_type;
    using reference = typename conval_type::reference;
    using const_reference = typename conval_type::const_reference;
    using pointer = typename conval_type::pointer;
    using const_pointer = typename conval_type::const_pointer;

    using iterator = segmented_iterator<Container, value_type>;
    using const_iterator = segmented_iterator<Container, const value_type>;

    flattened2d( const Container &c, typename Container::const_iterator b, typename Container::const_iterator e ) :
        my_container(const_cast<Container*>(&c)), my_begin(b), my_end(e) { }

    explicit flattened2d( const Container &c ) :
        my_container(const_cast<Container*>(&c)), my_begin(c.begin()), my_end(c.end()) { }

    iterator begin() { return iterator(*my_container) = my_begin; }
    iterator end() { return iterator(*my_container) = my_end; }
    const_iterator begin() const { return const_iterator(*my_container) = my_begin; }
    const_iterator end() const { return const_iterator(*my_container) = my_end; }

    size_type size() const {
        size_type tot_size = 0;
        for(typename Container::const_iterator i = my_begin; i != my_end; ++i) {
            tot_size += i->size();
        }
        return tot_size;
    }

private:
    Container *my_container;
    typename Container::const_iterator my_begin;
    typename Container::const_iterator my_end;
};

template <typename Container>
flattened2d<Container> flatten2d(const Container &c, const typename Container::const_iterator b, const typename Container::const_iterator e) {
    return flattened2d<Container>(c, b, e);
}

template <typename Container>
flattened2d<Container> flatten2d(const Container &c) {
    return flattened2d<Container>(c);
}

} // namespace d1
} // namespace detail

inline namespace v1 {
using detail::d1::enumerable_thread_specific;
using detail::d1::flattened2d;
using detail::d1::flatten2d;
// ets enum keys
using detail::d1::ets_key_usage_type;
using detail::d1::ets_key_per_instance;
using detail::d1::ets_no_key;
#if __TBB_RESUMABLE_TASKS
using detail::d1::ets_suspend_aware;
#endif
} // inline namespace v1

} // namespace tbb

#endif // __TBB_enumerable_thread_specific_H