File: flow_graph.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (3726 lines) | stat: -rw-r--r-- 143,313 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
/*
    Copyright (c) 2005-2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_flow_graph_H
#define __TBB_flow_graph_H

#include <atomic>
#include <memory>
#include <type_traits>

#include "detail/_config.h"
#include "detail/_namespace_injection.h"
#include "spin_mutex.h"
#include "null_mutex.h"
#include "spin_rw_mutex.h"
#include "null_rw_mutex.h"
#include "detail/_pipeline_filters.h"
#include "detail/_task.h"
#include "detail/_small_object_pool.h"
#include "cache_aligned_allocator.h"
#include "detail/_exception.h"
#include "detail/_template_helpers.h"
#include "detail/_aggregator.h"
#include "detail/_allocator_traits.h"
#include "detail/_utils.h"
#include "profiling.h"
#include "task_arena.h"

#if TBB_USE_PROFILING_TOOLS && ( __unix__ || __APPLE__ )
   #if __INTEL_COMPILER
       // Disabled warning "routine is both inline and noinline"
       #pragma warning (push)
       #pragma warning( disable: 2196 )
   #endif
   #define __TBB_NOINLINE_SYM __attribute__((noinline))
#else
   #define __TBB_NOINLINE_SYM
#endif

#include <tuple>
#include <list>
#include <forward_list>
#include <queue>
#if __TBB_CPP20_CONCEPTS_PRESENT
#include <concepts>
#endif

/** @file
  \brief The graph related classes and functions

  There are some applications that best express dependencies as messages
  passed between nodes in a graph.  These messages may contain data or
  simply act as signals that a predecessors has completed. The graph
  class and its associated node classes can be used to express such
  applications.
*/

namespace tbb {
namespace detail {

namespace d2 {

//! An enumeration the provides the two most common concurrency levels: unlimited and serial
enum concurrency { unlimited = 0, serial = 1 };

//! A generic null type
struct null_type {};

//! An empty class used for messages that mean "I'm done"
class continue_msg {};

} // namespace d2

#if __TBB_CPP20_CONCEPTS_PRESENT
inline namespace d0 {

template <typename ReturnType, typename OutputType>
concept node_body_return_type = std::same_as<OutputType, tbb::detail::d2::continue_msg> ||
                                std::convertible_to<OutputType, ReturnType>;

// TODO: consider using std::invocable here
template <typename Body, typename Output>
concept continue_node_body = std::copy_constructible<Body> &&
                             requires( Body& body, const tbb::detail::d2::continue_msg& v ) {
                                 { body(v) } -> node_body_return_type<Output>;
                             };

template <typename Body, typename Input, typename Output>
concept function_node_body = std::copy_constructible<Body> &&
                             std::invocable<Body&, const Input&> &&
                             node_body_return_type<std::invoke_result_t<Body&, const Input&>, Output>;

template <typename FunctionObject, typename Input, typename Key>
concept join_node_function_object = std::copy_constructible<FunctionObject> &&
                                    std::invocable<FunctionObject&, const Input&> &&
                                    std::convertible_to<std::invoke_result_t<FunctionObject&, const Input&>, Key>;

template <typename Body, typename Output>
concept input_node_body = std::copy_constructible<Body> &&
                          requires( Body& body, tbb::detail::d1::flow_control& fc ) {
                              { body(fc) } -> adaptive_same_as<Output>;
                          };

template <typename Body, typename Input, typename OutputPortsType>
concept multifunction_node_body = std::copy_constructible<Body> &&
                                  std::invocable<Body&, const Input&, OutputPortsType&>;

template <typename Sequencer, typename Value>
concept sequencer = std::copy_constructible<Sequencer> &&
                    std::invocable<Sequencer&, const Value&> &&
                    std::convertible_to<std::invoke_result_t<Sequencer&, const Value&>, std::size_t>;

template <typename Body, typename Input, typename GatewayType>
concept async_node_body = std::copy_constructible<Body> &&
                          std::invocable<Body&, const Input&, GatewayType&>;

} // inline namespace d0
#endif // __TBB_CPP20_CONCEPTS_PRESENT

namespace d2 {

//! Forward declaration section
template< typename T > class sender;
template< typename T > class receiver;
class continue_receiver;

template< typename T, typename U > class limiter_node;  // needed for resetting decrementer
template< typename T > class overwrite_node; // needed for the forward friend declaration to work in GCC < 8

template<typename T, typename M> class successor_cache;
template<typename T, typename M> class broadcast_cache;
template<typename T, typename M> class round_robin_cache;
template<typename T, typename M> class predecessor_cache;
template<typename T, typename M> class reservable_predecessor_cache;

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
namespace order {
struct following;
struct preceding;
}
template<typename Order, typename... Args> struct node_set;
#endif


} // namespace d2
} // namespace detail
} // namespace tbb

//! The graph class
#include "detail/_flow_graph_impl.h"

namespace tbb {
namespace detail {
namespace d2 {

static inline std::pair<graph_task*, graph_task*> order_tasks(graph_task* first, graph_task* second) {
    if (second->priority > first->priority)
        return std::make_pair(second, first);
    return std::make_pair(first, second);
}

// submit task if necessary. Returns the non-enqueued task if there is one.
static inline graph_task* combine_tasks(graph& g, graph_task* left, graph_task* right) {
    // if no RHS task, don't change left.
    if (right == nullptr) return left;
    // right != nullptr
    if (left == nullptr) return right;
    if (left == SUCCESSFULLY_ENQUEUED) return right;
    // left contains a task
    if (right != SUCCESSFULLY_ENQUEUED) {
        // both are valid tasks
        auto tasks_pair = order_tasks(left, right);
        spawn_in_graph_arena(g, *tasks_pair.first);
        return tasks_pair.second;
    }
    return left;
}

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
class message_metainfo {
public:
    using waiters_type = std::forward_list<d1::wait_context_vertex*>;

    message_metainfo() = default;

    message_metainfo(const waiters_type& waiters) : my_waiters(waiters) {}
    message_metainfo(waiters_type&& waiters) : my_waiters(std::move(waiters)) {}

    const waiters_type& waiters() const & { return my_waiters; }
    waiters_type&& waiters() && { return std::move(my_waiters); }

    bool empty() const { return my_waiters.empty(); }

    void merge(const message_metainfo& other) {
        // TODO: should we avoid duplications on merging
        my_waiters.insert_after(my_waiters.before_begin(),
                                other.waiters().begin(),
                                other.waiters().end());
    }
private:
    waiters_type my_waiters;
}; // class message_metainfo

#define __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo) , metainfo

#else
#define __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo)
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT

//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender {
public:
    virtual ~sender() {}

    //! Request an item from the sender
    virtual bool try_get( T & ) { return false; }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    virtual bool try_get( T &, message_metainfo& ) { return false; }
#endif

    //! Reserves an item in the sender
    virtual bool try_reserve( T & ) { return false; }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    virtual bool try_reserve( T &, message_metainfo& ) { return false; }
#endif

    //! Releases the reserved item
    virtual bool try_release( ) { return false; }

    //! Consumes the reserved item
    virtual bool try_consume( ) { return false; }

protected:
    //! The output type of this sender
    typedef T output_type;

    //! The successor type for this node
    typedef receiver<T> successor_type;

    //! Add a new successor to this node
    virtual bool register_successor( successor_type &r ) = 0;

    //! Removes a successor from this node
    virtual bool remove_successor( successor_type &r ) = 0;

    template<typename C>
    friend bool register_successor(sender<C>& s, receiver<C>& r);

    template<typename C>
    friend bool remove_successor  (sender<C>& s, receiver<C>& r);
};  // class sender<T>

template<typename C>
bool register_successor(sender<C>& s, receiver<C>& r) {
    return s.register_successor(r);
}

template<typename C>
bool remove_successor(sender<C>& s, receiver<C>& r) {
    return s.remove_successor(r);
}

//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver {
private:
    template <typename... TryPutTaskArgs>
    bool internal_try_put(const T& t, TryPutTaskArgs&&... args) {
        graph_task* res = try_put_task(t, std::forward<TryPutTaskArgs>(args)...);
        if (!res) return false;
        if (res != SUCCESSFULLY_ENQUEUED) spawn_in_graph_arena(graph_reference(), *res);
        return true;
    }

public:
    //! Destructor
    virtual ~receiver() {}

    //! Put an item to the receiver
    bool try_put( const T& t ) {
        return internal_try_put(t);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    //! Put an item to the receiver and wait for completion
    bool try_put_and_wait( const T& t ) {
        // Since try_put_and_wait is a blocking call, it is safe to create wait_context on stack
        d1::wait_context_vertex msg_wait_vertex{};

        bool res = internal_try_put(t, message_metainfo{message_metainfo::waiters_type{&msg_wait_vertex}});
        if (res) {
            __TBB_ASSERT(graph_reference().my_context != nullptr, "No wait_context associated with the Flow Graph");
            d1::wait(msg_wait_vertex.get_context(), *graph_reference().my_context);
        }
        return res;
    }
#endif

    //! put item to successor; return task to run the successor if possible.
protected:
    //! The input type of this receiver
    typedef T input_type;

    //! The predecessor type for this node
    typedef sender<T> predecessor_type;

    template< typename R, typename B > friend class run_and_put_task;
    template< typename X, typename Y > friend class broadcast_cache;
    template< typename X, typename Y > friend class round_robin_cache;
    virtual graph_task *try_put_task(const T& t) = 0;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    virtual graph_task *try_put_task(const T& t, const message_metainfo&) = 0;
#endif
    virtual graph& graph_reference() const = 0;

    template<typename TT, typename M> friend class successor_cache;
    template< typename TTT > friend class overwrite_node;
    virtual bool is_continue_receiver() { return false; }

    // TODO revamp: reconsider the inheritance and move node priority out of receiver
    virtual node_priority_t priority() const { return no_priority; }

    //! Add a predecessor to the node
    virtual bool register_predecessor( predecessor_type & ) { return false; }

    //! Remove a predecessor from the node
    virtual bool remove_predecessor( predecessor_type & ) { return false; }

    template <typename C>
    friend bool register_predecessor(receiver<C>& r, sender<C>& s);
    template <typename C>
    friend bool remove_predecessor  (receiver<C>& r, sender<C>& s);
}; // class receiver<T>

template <typename C>
bool register_predecessor(receiver<C>& r, sender<C>& s) {
    return r.register_predecessor(s);
}

template <typename C>
bool remove_predecessor(receiver<C>& r, sender<C>& s) {
    return r.remove_predecessor(s);
}

//! Base class for receivers of completion messages
/** These receivers automatically reset, but cannot be explicitly waited on */
class continue_receiver : public receiver< continue_msg > {
protected:

    //! Constructor
    explicit continue_receiver( int number_of_predecessors, node_priority_t a_priority ) {
        my_predecessor_count = my_initial_predecessor_count = number_of_predecessors;
        my_current_count = 0;
        my_priority = a_priority;
    }

    //! Copy constructor
    continue_receiver( const continue_receiver& src ) : receiver<continue_msg>() {
        my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count;
        my_current_count = 0;
        my_priority = src.my_priority;
    }

    //! Increments the trigger threshold
    bool register_predecessor( predecessor_type & ) override {
        spin_mutex::scoped_lock l(my_mutex);
        ++my_predecessor_count;
        return true;
    }

    //! Decrements the trigger threshold
    /** Does not check to see if the removal of the predecessor now makes the current count
        exceed the new threshold.  So removing a predecessor while the graph is active can cause
        unexpected results. */
    bool remove_predecessor( predecessor_type & ) override {
        spin_mutex::scoped_lock l(my_mutex);
        --my_predecessor_count;
        return true;
    }

    //! The input type
    typedef continue_msg input_type;

    //! The predecessor type for this node
    typedef receiver<input_type>::predecessor_type predecessor_type;

    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;

private:
    // execute body is supposed to be too small to create a task for.
    graph_task* try_put_task_impl( const input_type& __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo) ) {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        message_metainfo predecessor_metainfo;
#endif
        {
            spin_mutex::scoped_lock l(my_mutex);
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
            // Prolong the wait and store the metainfo until receiving signals from all the predecessors
            for (auto waiter : metainfo.waiters()) {
                waiter->reserve(1);
            }
            my_current_metainfo.merge(metainfo);
#endif
            if ( ++my_current_count < my_predecessor_count )
                return SUCCESSFULLY_ENQUEUED;
            else {
                my_current_count = 0;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
                predecessor_metainfo = my_current_metainfo;
                my_current_metainfo = message_metainfo{};
#endif
            }
        }
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        graph_task* res = execute(predecessor_metainfo);
        for (auto waiter : predecessor_metainfo.waiters()) {
            waiter->release(1);
        }
#else
        graph_task* res = execute();
#endif
        return res? res : SUCCESSFULLY_ENQUEUED;
    }

protected:
    graph_task* try_put_task( const input_type& input ) override {
        return try_put_task_impl(input __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task( const input_type& input, const message_metainfo& metainfo ) override {
        return try_put_task_impl(input, metainfo);
    }
#endif

    spin_mutex my_mutex;
    int my_predecessor_count;
    int my_current_count;
    int my_initial_predecessor_count;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    message_metainfo my_current_metainfo;
#endif
    node_priority_t my_priority;
    // the friend declaration in the base class did not eliminate the "protected class"
    // error in gcc 4.1.2
    template<typename U, typename V> friend class limiter_node;

    virtual void reset_receiver( reset_flags f ) {
        my_current_count = 0;
        if (f & rf_clear_edges) {
            my_predecessor_count = my_initial_predecessor_count;
        }
    }

    //! Does whatever should happen when the threshold is reached
    /** This should be very fast or else spawn a task.  This is
        called while the sender is blocked in the try_put(). */
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    virtual graph_task* execute(const message_metainfo& metainfo) = 0;
#else
    virtual graph_task* execute() = 0;
#endif
    template<typename TT, typename M> friend class successor_cache;
    bool is_continue_receiver() override { return true; }

    node_priority_t priority() const override { return my_priority; }
}; // class continue_receiver

#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
    template <typename K, typename T>
    K key_from_message( const T &t ) {
        return t.key();
    }
#endif /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */

} // d1
} // detail
} // tbb

#include "detail/_flow_graph_trace_impl.h"
#include "detail/_hash_compare.h"

namespace tbb {
namespace detail {
namespace d2 {

#include "detail/_flow_graph_body_impl.h"
#include "detail/_flow_graph_cache_impl.h"
#include "detail/_flow_graph_types_impl.h"

using namespace graph_policy_namespace;

template <typename C, typename N>
graph_iterator<C,N>::graph_iterator(C *g, bool begin) : my_graph(g), current_node(nullptr)
{
    if (begin) current_node = my_graph->my_nodes;
    //else it is an end iterator by default
}

template <typename C, typename N>
typename graph_iterator<C,N>::reference graph_iterator<C,N>::operator*() const {
    __TBB_ASSERT(current_node, "graph_iterator at end");
    return *operator->();
}

template <typename C, typename N>
typename graph_iterator<C,N>::pointer graph_iterator<C,N>::operator->() const {
    return current_node;
}

template <typename C, typename N>
void graph_iterator<C,N>::internal_forward() {
    if (current_node) current_node = current_node->next;
}

//! Constructs a graph with isolated task_group_context
inline graph::graph() : my_wait_context_vertex(0), my_nodes(nullptr), my_nodes_last(nullptr), my_task_arena(nullptr) {
    prepare_task_arena();
    own_context = true;
    cancelled = false;
    caught_exception = false;
    my_context = new (r1::cache_aligned_allocate(sizeof(task_group_context))) task_group_context(FLOW_TASKS);
    fgt_graph(this);
    my_is_active = true;
}

inline graph::graph(task_group_context& use_this_context) :
    my_wait_context_vertex(0), my_context(&use_this_context), my_nodes(nullptr), my_nodes_last(nullptr), my_task_arena(nullptr) {
    prepare_task_arena();
    own_context = false;
    cancelled = false;
    caught_exception = false;
    fgt_graph(this);
    my_is_active = true;
}

inline graph::~graph() {
    wait_for_all();
    if (own_context) {
        my_context->~task_group_context();
        r1::cache_aligned_deallocate(my_context);
    }
    delete my_task_arena;
}

inline void graph::reserve_wait() {
    my_wait_context_vertex.reserve();
    fgt_reserve_wait(this);
}

inline void graph::release_wait() {
    fgt_release_wait(this);
    my_wait_context_vertex.release();
}

inline void graph::register_node(graph_node *n) {
    n->next = nullptr;
    {
        spin_mutex::scoped_lock lock(nodelist_mutex);
        n->prev = my_nodes_last;
        if (my_nodes_last) my_nodes_last->next = n;
        my_nodes_last = n;
        if (!my_nodes) my_nodes = n;
    }
}

inline void graph::remove_node(graph_node *n) {
    {
        spin_mutex::scoped_lock lock(nodelist_mutex);
        __TBB_ASSERT(my_nodes && my_nodes_last, "graph::remove_node: Error: no registered nodes");
        if (n->prev) n->prev->next = n->next;
        if (n->next) n->next->prev = n->prev;
        if (my_nodes_last == n) my_nodes_last = n->prev;
        if (my_nodes == n) my_nodes = n->next;
    }
    n->prev = n->next = nullptr;
}

inline void graph::reset( reset_flags f ) {
    // reset context
    deactivate_graph(*this);

    my_context->reset();
    cancelled = false;
    caught_exception = false;
    // reset all the nodes comprising the graph
    for(iterator ii = begin(); ii != end(); ++ii) {
        graph_node *my_p = &(*ii);
        my_p->reset_node(f);
    }
    // Reattach the arena. Might be useful to run the graph in a particular task_arena
    // while not limiting graph lifetime to a single task_arena::execute() call.
    prepare_task_arena( /*reinit=*/true );
    activate_graph(*this);
}

inline void graph::cancel() {
    my_context->cancel_group_execution();
}

inline graph::iterator graph::begin() { return iterator(this, true); }

inline graph::iterator graph::end() { return iterator(this, false); }

inline graph::const_iterator graph::begin() const { return const_iterator(this, true); }

inline graph::const_iterator graph::end() const { return const_iterator(this, false); }

inline graph::const_iterator graph::cbegin() const { return const_iterator(this, true); }

inline graph::const_iterator graph::cend() const { return const_iterator(this, false); }

inline graph_node::graph_node(graph& g) : my_graph(g) {
    my_graph.register_node(this);
}

inline graph_node::~graph_node() {
    my_graph.remove_node(this);
}

#include "detail/_flow_graph_node_impl.h"


//! An executable node that acts as a source, i.e. it has no predecessors

template < typename Output >
    __TBB_requires(std::copyable<Output>)
class input_node : public graph_node, public sender< Output > {
public:
    //! The type of the output message, which is complete
    typedef Output output_type;

    //! The type of successors of this node
    typedef typename sender<output_type>::successor_type successor_type;

    // Input node has no input type
    typedef null_type input_type;

    //! Constructor for a node with a successor
    template< typename Body >
        __TBB_requires(input_node_body<Body, Output>)
     __TBB_NOINLINE_SYM input_node( graph &g, Body body )
         : graph_node(g), my_active(false)
         , my_body( new input_body_leaf< output_type, Body>(body) )
         , my_init_body( new input_body_leaf< output_type, Body>(body) )
         , my_successors(this), my_reserved(false), my_has_cached_item(false)
    {
        fgt_node_with_body(CODEPTR(), FLOW_INPUT_NODE, &this->my_graph,
                           static_cast<sender<output_type> *>(this), this->my_body);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Successors>
        __TBB_requires(input_node_body<Body, Output>)
    input_node( const node_set<order::preceding, Successors...>& successors, Body body )
        : input_node(successors.graph_reference(), body)
    {
        make_edges(*this, successors);
    }
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM input_node( const input_node& src )
        : graph_node(src.my_graph), sender<Output>()
        , my_active(false)
        , my_body(src.my_init_body->clone()), my_init_body(src.my_init_body->clone())
        , my_successors(this), my_reserved(false), my_has_cached_item(false)
    {
        fgt_node_with_body(CODEPTR(), FLOW_INPUT_NODE, &this->my_graph,
                           static_cast<sender<output_type> *>(this), this->my_body);
    }

    //! The destructor
    ~input_node() { delete my_body; delete my_init_body; }

    //! Add a new successor to this node
    bool register_successor( successor_type &r ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        my_successors.register_successor(r);
        if ( my_active )
            spawn_put();
        return true;
    }

    //! Removes a successor from this node
    bool remove_successor( successor_type &r ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        my_successors.remove_successor(r);
        return true;
    }

    //! Request an item from the node
    bool try_get( output_type &v ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        if ( my_reserved )
            return false;

        if ( my_has_cached_item ) {
            v = my_cached_item;
            my_has_cached_item = false;
            return true;
        }
        // we've been asked to provide an item, but we have none.  enqueue a task to
        // provide one.
        if ( my_active )
            spawn_put();
        return false;
    }

    //! Reserves an item.
    bool try_reserve( output_type &v ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        if ( my_reserved ) {
            return false;
        }

        if ( my_has_cached_item ) {
            v = my_cached_item;
            my_reserved = true;
            return true;
        } else {
            return false;
        }
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
private:
    bool try_reserve( output_type& v, message_metainfo& ) override {
        return try_reserve(v);
    }

    bool try_get( output_type& v, message_metainfo& ) override {
        return try_get(v);
    }
public:
#endif

    //! Release a reserved item.
    /** true = item has been released and so remains in sender, dest must request or reserve future items */
    bool try_release( ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        __TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
        my_reserved = false;
        if(!my_successors.empty())
            spawn_put();
        return true;
    }

    //! Consumes a reserved item
    bool try_consume( ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        __TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
        my_reserved = false;
        my_has_cached_item = false;
        if ( !my_successors.empty() ) {
            spawn_put();
        }
        return true;
    }

    //! Activates a node that was created in the inactive state
    void activate() {
        spin_mutex::scoped_lock lock(my_mutex);
        my_active = true;
        if (!my_successors.empty())
            spawn_put();
    }

    template<typename Body>
    Body copy_function_object() {
        input_body<output_type> &body_ref = *this->my_body;
        return dynamic_cast< input_body_leaf<output_type, Body> & >(body_ref).get_body();
    }

protected:

    //! resets the input_node to its initial state
    void reset_node( reset_flags f) override {
        my_active = false;
        my_reserved = false;
        my_has_cached_item = false;

        if(f & rf_clear_edges) my_successors.clear();
        if(f & rf_reset_bodies) {
            input_body<output_type> *tmp = my_init_body->clone();
            delete my_body;
            my_body = tmp;
        }
    }

private:
    spin_mutex my_mutex;
    bool my_active;
    input_body<output_type> *my_body;
    input_body<output_type> *my_init_body;
    broadcast_cache< output_type > my_successors;
    bool my_reserved;
    bool my_has_cached_item;
    output_type my_cached_item;

    // used by apply_body_bypass, can invoke body of node.
    bool try_reserve_apply_body(output_type &v) {
        spin_mutex::scoped_lock lock(my_mutex);
        if ( my_reserved ) {
            return false;
        }
        if ( !my_has_cached_item ) {
            d1::flow_control control;

            fgt_begin_body( my_body );

            my_cached_item = (*my_body)(control);
            my_has_cached_item = !control.is_pipeline_stopped;

            fgt_end_body( my_body );
        }
        if ( my_has_cached_item ) {
            v = my_cached_item;
            my_reserved = true;
            return true;
        } else {
            return false;
        }
    }

    graph_task* create_put_task() {
        d1::small_object_allocator allocator{};
        typedef input_node_task_bypass< input_node<output_type> > task_type;
        graph_task* t = allocator.new_object<task_type>(my_graph, allocator, *this);
        return t;
    }

    //! Spawns a task that applies the body
    void spawn_put( ) {
        if(is_graph_active(this->my_graph)) {
            spawn_in_graph_arena(this->my_graph, *create_put_task());
        }
    }

    friend class input_node_task_bypass< input_node<output_type> >;
    //! Applies the body.  Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it.
    graph_task* apply_body_bypass( ) {
        output_type v;
        if ( !try_reserve_apply_body(v) )
            return nullptr;

        graph_task *last_task = my_successors.try_put_task(v);
        if ( last_task )
            try_consume();
        else
            try_release();
        return last_task;
    }
};  // class input_node

//! Implements a function node that supports Input -> Output
template<typename Input, typename Output = continue_msg, typename Policy = queueing>
    __TBB_requires(std::default_initializable<Input> &&
                   std::copy_constructible<Input> &&
                   std::copy_constructible<Output>)
class function_node
    : public graph_node
    , public function_input< Input, Output, Policy, cache_aligned_allocator<Input> >
    , public function_output<Output>
{
    typedef cache_aligned_allocator<Input> internals_allocator;

public:
    typedef Input input_type;
    typedef Output output_type;
    typedef function_input<input_type,output_type,Policy,internals_allocator> input_impl_type;
    typedef function_input_queue<input_type, internals_allocator> input_queue_type;
    typedef function_output<output_type> fOutput_type;
    typedef typename input_impl_type::predecessor_type predecessor_type;
    typedef typename fOutput_type::successor_type successor_type;

    using input_impl_type::my_predecessors;

    //! Constructor
    // input_queue_type is allocated here, but destroyed in the function_input_base.
    // TODO: pass the graph_buffer_policy to the function_input_base so it can all
    // be done in one place.  This would be an interface-breaking change.
    template< typename Body >
        __TBB_requires(function_node_body<Body, Input, Output>)
     __TBB_NOINLINE_SYM function_node( graph &g, size_t concurrency,
                   Body body, Policy = Policy(), node_priority_t a_priority = no_priority )
        : graph_node(g), input_impl_type(g, concurrency, body, a_priority),
          fOutput_type(g) {
        fgt_node_with_body( CODEPTR(), FLOW_FUNCTION_NODE, &this->my_graph,
                static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
    }

    template <typename Body>
        __TBB_requires(function_node_body<Body, Input, Output>)
    function_node( graph& g, size_t concurrency, Body body, node_priority_t a_priority )
        : function_node(g, concurrency, body, Policy(), a_priority) {}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Args>
        __TBB_requires(function_node_body<Body, Input, Output>)
    function_node( const node_set<Args...>& nodes, size_t concurrency, Body body,
                   Policy p = Policy(), node_priority_t a_priority = no_priority )
        : function_node(nodes.graph_reference(), concurrency, body, p, a_priority) {
        make_edges_in_order(nodes, *this);
    }

    template <typename Body, typename... Args>
        __TBB_requires(function_node_body<Body, Input, Output>)
    function_node( const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t a_priority )
        : function_node(nodes, concurrency, body, Policy(), a_priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

    //! Copy constructor
    __TBB_NOINLINE_SYM function_node( const function_node& src ) :
        graph_node(src.my_graph),
        input_impl_type(src),
        fOutput_type(src.my_graph) {
        fgt_node_with_body( CODEPTR(), FLOW_FUNCTION_NODE, &this->my_graph,
                static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this), this->my_body );
    }

protected:
    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    using input_impl_type::try_put_task;

    broadcast_cache<output_type> &successors () override { return fOutput_type::my_successors; }

    void reset_node(reset_flags f) override {
        input_impl_type::reset_function_input(f);
        // TODO: use clear() instead.
        if(f & rf_clear_edges) {
            successors().clear();
            my_predecessors.clear();
        }
        __TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "function_node successors not empty");
        __TBB_ASSERT(this->my_predecessors.empty(), "function_node predecessors not empty");
    }

};  // class function_node

//! implements a function node that supports Input -> (set of outputs)
// Output is a tuple of output types.
template<typename Input, typename Output, typename Policy = queueing>
    __TBB_requires(std::default_initializable<Input> &&
                   std::copy_constructible<Input>)
class multifunction_node :
    public graph_node,
    public multifunction_input
    <
        Input,
        typename wrap_tuple_elements<
            std::tuple_size<Output>::value,  // #elements in tuple
            multifunction_output,  // wrap this around each element
            Output // the tuple providing the types
        >::type,
        Policy,
        cache_aligned_allocator<Input>
    >
{
    typedef cache_aligned_allocator<Input> internals_allocator;

protected:
    static const int N = std::tuple_size<Output>::value;
public:
    typedef Input input_type;
    typedef null_type output_type;
    typedef typename wrap_tuple_elements<N,multifunction_output, Output>::type output_ports_type;
    typedef multifunction_input<
        input_type, output_ports_type, Policy, internals_allocator> input_impl_type;
    typedef function_input_queue<input_type, internals_allocator> input_queue_type;
private:
    using input_impl_type::my_predecessors;
public:
    template<typename Body>
        __TBB_requires(multifunction_node_body<Body, Input, output_ports_type>)
    __TBB_NOINLINE_SYM multifunction_node(
        graph &g, size_t concurrency,
        Body body, Policy = Policy(), node_priority_t a_priority = no_priority
    ) : graph_node(g), input_impl_type(g, concurrency, body, a_priority) {
        fgt_multioutput_node_with_body<N>(
            CODEPTR(), FLOW_MULTIFUNCTION_NODE,
            &this->my_graph, static_cast<receiver<input_type> *>(this),
            this->output_ports(), this->my_body
        );
    }

    template <typename Body>
        __TBB_requires(multifunction_node_body<Body, Input, output_ports_type>)
    __TBB_NOINLINE_SYM multifunction_node(graph& g, size_t concurrency, Body body, node_priority_t a_priority)
        : multifunction_node(g, concurrency, body, Policy(), a_priority) {}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Args>
        __TBB_requires(multifunction_node_body<Body, Input, output_ports_type>)
    __TBB_NOINLINE_SYM multifunction_node(const node_set<Args...>& nodes, size_t concurrency, Body body,
                       Policy p = Policy(), node_priority_t a_priority = no_priority)
        : multifunction_node(nodes.graph_reference(), concurrency, body, p, a_priority) {
        make_edges_in_order(nodes, *this);
    }

    template <typename Body, typename... Args>
        __TBB_requires(multifunction_node_body<Body, Input, output_ports_type>)
    __TBB_NOINLINE_SYM multifunction_node(const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t a_priority)
        : multifunction_node(nodes, concurrency, body, Policy(), a_priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

    __TBB_NOINLINE_SYM multifunction_node( const multifunction_node &other) :
        graph_node(other.my_graph), input_impl_type(other) {
        fgt_multioutput_node_with_body<N>( CODEPTR(), FLOW_MULTIFUNCTION_NODE,
                &this->my_graph, static_cast<receiver<input_type> *>(this),
                this->output_ports(), this->my_body );
    }

    // all the guts are in multifunction_input...
protected:
    void reset_node(reset_flags f) override { input_impl_type::reset(f); }
};  // multifunction_node

//! split_node: accepts a tuple as input, forwards each element of the tuple to its
//  successors.  The node has unlimited concurrency, so it does not reject inputs.
template<typename TupleType>
class split_node : public graph_node, public receiver<TupleType> {
    static const int N = std::tuple_size<TupleType>::value;
    typedef receiver<TupleType> base_type;
public:
    typedef TupleType input_type;
    typedef typename wrap_tuple_elements<
            N,  // #elements in tuple
            multifunction_output,  // wrap this around each element
            TupleType // the tuple providing the types
        >::type  output_ports_type;

    __TBB_NOINLINE_SYM explicit split_node(graph &g)
        : graph_node(g),
          my_output_ports(init_output_ports<output_ports_type>::call(g, my_output_ports))
    {
        fgt_multioutput_node<N>(CODEPTR(), FLOW_SPLIT_NODE, &this->my_graph,
            static_cast<receiver<input_type> *>(this), this->output_ports());
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    __TBB_NOINLINE_SYM split_node(const node_set<Args...>& nodes) : split_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    __TBB_NOINLINE_SYM split_node(const split_node& other)
        : graph_node(other.my_graph), base_type(other),
          my_output_ports(init_output_ports<output_ports_type>::call(other.my_graph, my_output_ports))
    {
        fgt_multioutput_node<N>(CODEPTR(), FLOW_SPLIT_NODE, &this->my_graph,
            static_cast<receiver<input_type> *>(this), this->output_ports());
    }

    output_ports_type &output_ports() { return my_output_ports; }

protected:
    graph_task *try_put_task(const TupleType& t) override {
        // Sending split messages in parallel is not justified, as overheads would prevail.
        // Also, we do not have successors here. So we just tell the task returned here is successful.
        return emit_element<N>::emit_this(this->my_graph, t, output_ports());
    }
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const TupleType& t, const message_metainfo& metainfo) override {
        // Sending split messages in parallel is not justified, as overheads would prevail.
        // Also, we do not have successors here. So we just tell the task returned here is successful.
        return emit_element<N>::emit_this(this->my_graph, t, output_ports(), metainfo);
    }
#endif

    void reset_node(reset_flags f) override {
        if (f & rf_clear_edges)
            clear_element<N>::clear_this(my_output_ports);

        __TBB_ASSERT(!(f & rf_clear_edges) || clear_element<N>::this_empty(my_output_ports), "split_node reset failed");
    }
    graph& graph_reference() const override {
        return my_graph;
    }

private:
    output_ports_type my_output_ports;
};

//! Implements an executable node that supports continue_msg -> Output
template <typename Output, typename Policy = Policy<void> >
    __TBB_requires(std::copy_constructible<Output>)
class continue_node : public graph_node, public continue_input<Output, Policy>,
                      public function_output<Output> {
public:
    typedef continue_msg input_type;
    typedef Output output_type;
    typedef continue_input<Output, Policy> input_impl_type;
    typedef function_output<output_type> fOutput_type;
    typedef typename input_impl_type::predecessor_type predecessor_type;
    typedef typename fOutput_type::successor_type successor_type;

    //! Constructor for executable node with continue_msg -> Output
    template <typename Body >
        __TBB_requires(continue_node_body<Body, Output>)
    __TBB_NOINLINE_SYM continue_node(
        graph &g,
        Body body, Policy = Policy(), node_priority_t a_priority = no_priority
    ) : graph_node(g), input_impl_type( g, body, a_priority ),
        fOutput_type(g) {
        fgt_node_with_body( CODEPTR(), FLOW_CONTINUE_NODE, &this->my_graph,

                                           static_cast<receiver<input_type> *>(this),
                                           static_cast<sender<output_type> *>(this), this->my_body );
    }

    template <typename Body>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( graph& g, Body body, node_priority_t a_priority )
        : continue_node(g, body, Policy(), a_priority) {}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Args>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( const node_set<Args...>& nodes, Body body,
                   Policy p = Policy(), node_priority_t a_priority = no_priority )
        : continue_node(nodes.graph_reference(), body, p, a_priority ) {
        make_edges_in_order(nodes, *this);
    }
    template <typename Body, typename... Args>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( const node_set<Args...>& nodes, Body body, node_priority_t a_priority)
        : continue_node(nodes, body, Policy(), a_priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

    //! Constructor for executable node with continue_msg -> Output
    template <typename Body >
        __TBB_requires(continue_node_body<Body, Output>)
    __TBB_NOINLINE_SYM continue_node(
        graph &g, int number_of_predecessors,
        Body body, Policy = Policy(), node_priority_t a_priority = no_priority
    ) : graph_node(g)
      , input_impl_type(g, number_of_predecessors, body, a_priority),
        fOutput_type(g) {
        fgt_node_with_body( CODEPTR(), FLOW_CONTINUE_NODE, &this->my_graph,
                                           static_cast<receiver<input_type> *>(this),
                                           static_cast<sender<output_type> *>(this), this->my_body );
    }

    template <typename Body>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( graph& g, int number_of_predecessors, Body body, node_priority_t a_priority)
        : continue_node(g, number_of_predecessors, body, Policy(), a_priority) {}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Args>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( const node_set<Args...>& nodes, int number_of_predecessors,
                   Body body, Policy p = Policy(), node_priority_t a_priority = no_priority )
        : continue_node(nodes.graph_reference(), number_of_predecessors, body, p, a_priority) {
        make_edges_in_order(nodes, *this);
    }

    template <typename Body, typename... Args>
        __TBB_requires(continue_node_body<Body, Output>)
    continue_node( const node_set<Args...>& nodes, int number_of_predecessors,
                   Body body, node_priority_t a_priority )
        : continue_node(nodes, number_of_predecessors, body, Policy(), a_priority) {}
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM continue_node( const continue_node& src ) :
        graph_node(src.my_graph), input_impl_type(src),
        function_output<Output>(src.my_graph) {
        fgt_node_with_body( CODEPTR(), FLOW_CONTINUE_NODE, &this->my_graph,
                                           static_cast<receiver<input_type> *>(this),
                                           static_cast<sender<output_type> *>(this), this->my_body );
    }

protected:
    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    using input_impl_type::try_put_task;
    broadcast_cache<output_type> &successors () override { return fOutput_type::my_successors; }

    void reset_node(reset_flags f) override {
        input_impl_type::reset_receiver(f);
        if(f & rf_clear_edges)successors().clear();
        __TBB_ASSERT(!(f & rf_clear_edges) || successors().empty(), "continue_node not reset");
    }
};  // continue_node

//! Forwards messages of type T to all successors
template <typename T>
class broadcast_node : public graph_node, public receiver<T>, public sender<T> {
public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;
private:
    broadcast_cache<input_type> my_successors;
public:

    __TBB_NOINLINE_SYM explicit broadcast_node(graph& g) : graph_node(g), my_successors(this) {
        fgt_node( CODEPTR(), FLOW_BROADCAST_NODE, &this->my_graph,
                  static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    broadcast_node(const node_set<Args...>& nodes) : broadcast_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM broadcast_node( const broadcast_node& src ) : broadcast_node(src.my_graph) {}

    //! Adds a successor
    bool register_successor( successor_type &r ) override {
        my_successors.register_successor( r );
        return true;
    }

    //! Removes s as a successor
    bool remove_successor( successor_type &r ) override {
        my_successors.remove_successor( r );
        return true;
    }

private:
    graph_task* try_put_task_impl(const T& t __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
        graph_task* new_task = my_successors.try_put_task(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
        if (!new_task) new_task = SUCCESSFULLY_ENQUEUED;
        return new_task;
    }

protected:
    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    //! build a task to run the successor if possible.  Default is old behavior.
    graph_task* try_put_task(const T& t) override {
        return try_put_task_impl(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const T& t, const message_metainfo& metainfo) override {
        return try_put_task_impl(t, metainfo);
    }
#endif

    graph& graph_reference() const override {
        return my_graph;
    }

    void reset_node(reset_flags f) override {
        if (f&rf_clear_edges) {
           my_successors.clear();
        }
        __TBB_ASSERT(!(f & rf_clear_edges) || my_successors.empty(), "Error resetting broadcast_node");
    }
};  // broadcast_node

//! Forwards messages in arbitrary order
template <typename T>
class buffer_node
    : public graph_node
    , public reservable_item_buffer< T, cache_aligned_allocator<T> >
    , public receiver<T>, public sender<T>
{
    typedef cache_aligned_allocator<T> internals_allocator;

public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;
    typedef buffer_node<T> class_type;

protected:
    typedef size_t size_type;
    round_robin_cache< T, null_rw_mutex > my_successors;

    friend class forward_task_bypass< class_type >;

    enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd_task
    };

    // implements the aggregator_operation concept
    class buffer_operation : public d1::aggregated_operation< buffer_operation > {
    public:
        char type;
        T* elem;
        graph_task* ltask;
        successor_type *r;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        message_metainfo* metainfo{ nullptr };
#endif

        buffer_operation(const T& e, op_type t) : type(char(t))
                                                  , elem(const_cast<T*>(&e)) , ltask(nullptr)
                                                  , r(nullptr)
        {}

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        buffer_operation(const T& e, op_type t, const message_metainfo& info)
            : type(char(t)), elem(const_cast<T*>(&e)), ltask(nullptr), r(nullptr)
            , metainfo(const_cast<message_metainfo*>(&info))
        {}

        buffer_operation(op_type t, message_metainfo& info)
            : type(char(t)), elem(nullptr), ltask(nullptr), r(nullptr), metainfo(&info) {}
#endif
        buffer_operation(op_type t) : type(char(t)), elem(nullptr), ltask(nullptr), r(nullptr) {}
    };

    bool forwarder_busy;
    typedef d1::aggregating_functor<class_type, buffer_operation> handler_type;
    friend class d1::aggregating_functor<class_type, buffer_operation>;
    d1::aggregator< handler_type, buffer_operation> my_aggregator;

    virtual void handle_operations(buffer_operation *op_list) {
        handle_operations_impl(op_list, this);
    }

    template<typename derived_type>
    void handle_operations_impl(buffer_operation *op_list, derived_type* derived) {
        __TBB_ASSERT(static_cast<class_type*>(derived) == this, "'this' is not a base class for derived");

        buffer_operation *tmp = nullptr;
        bool try_forwarding = false;
        while (op_list) {
            tmp = op_list;
            op_list = op_list->next;
            switch (tmp->type) {
            case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break;
            case rem_succ: internal_rem_succ(tmp); break;
            case req_item: internal_pop(tmp); break;
            case res_item: internal_reserve(tmp); break;
            case rel_res:  internal_release(tmp); try_forwarding = true; break;
            case con_res:  internal_consume(tmp); try_forwarding = true; break;
            case put_item: try_forwarding = internal_push(tmp); break;
            case try_fwd_task: internal_forward_task(tmp); break;
            }
        }

        derived->order();

        if (try_forwarding && !forwarder_busy) {
            if(is_graph_active(this->my_graph)) {
                forwarder_busy = true;
                typedef forward_task_bypass<class_type> task_type;
                d1::small_object_allocator allocator{};
                graph_task* new_task = allocator.new_object<task_type>(graph_reference(), allocator, *this);
                // tmp should point to the last item handled by the aggregator.  This is the operation
                // the handling thread enqueued.  So modifying that record will be okay.
                // TODO revamp: check that the issue is still present
                // workaround for icc bug  (at least 12.0 and 13.0)
                // error: function "tbb::flow::interfaceX::combine_tasks" cannot be called with the given argument list
                //        argument types are: (graph, graph_task *, graph_task *)
                graph_task *z = tmp->ltask;
                graph &g = this->my_graph;
                tmp->ltask = combine_tasks(g, z, new_task);  // in case the op generated a task
            }
        }
    }  // handle_operations

    inline graph_task *grab_forwarding_task( buffer_operation &op_data) {
        return op_data.ltask;
    }

    inline bool enqueue_forwarding_task(buffer_operation &op_data) {
        graph_task *ft = grab_forwarding_task(op_data);
        if(ft) {
            spawn_in_graph_arena(graph_reference(), *ft);
            return true;
        }
        return false;
    }

    //! This is executed by an enqueued task, the "forwarder"
    virtual graph_task *forward_task() {
        buffer_operation op_data(try_fwd_task);
        graph_task *last_task = nullptr;
        do {
            op_data.status = WAIT;
            op_data.ltask = nullptr;
            my_aggregator.execute(&op_data);

            // workaround for icc bug
            graph_task *xtask = op_data.ltask;
            graph& g = this->my_graph;
            last_task = combine_tasks(g, last_task, xtask);
        } while (op_data.status ==SUCCEEDED);
        return last_task;
    }

    //! Register successor
    virtual void internal_reg_succ(buffer_operation *op) {
        __TBB_ASSERT(op->r, nullptr);
        my_successors.register_successor(*(op->r));
        op->status.store(SUCCEEDED, std::memory_order_release);
    }

    //! Remove successor
    virtual void internal_rem_succ(buffer_operation *op) {
        __TBB_ASSERT(op->r, nullptr);
        my_successors.remove_successor(*(op->r));
        op->status.store(SUCCEEDED, std::memory_order_release);
    }

private:
    void order() {}

    bool is_item_valid() {
        return this->my_item_valid(this->my_tail - 1);
    }

    void try_put_and_add_task(graph_task*& last_task) {
        graph_task* new_task = my_successors.try_put_task(this->back()
                                                          __TBB_FLOW_GRAPH_METAINFO_ARG(this->back_metainfo()));
        if (new_task) {
            // workaround for icc bug
            graph& g = this->my_graph;
            last_task = combine_tasks(g, last_task, new_task);
            this->destroy_back();
        }
    }

protected:
    //! Tries to forward valid items to successors
    virtual void internal_forward_task(buffer_operation *op) {
        internal_forward_task_impl(op, this);
    }

    template<typename derived_type>
    void internal_forward_task_impl(buffer_operation *op, derived_type* derived) {
        __TBB_ASSERT(static_cast<class_type*>(derived) == this, "'this' is not a base class for derived");

        if (this->my_reserved || !derived->is_item_valid()) {
            op->status.store(FAILED, std::memory_order_release);
            this->forwarder_busy = false;
            return;
        }
        // Try forwarding, giving each successor a chance
        graph_task* last_task = nullptr;
        size_type counter = my_successors.size();
        for (; counter > 0 && derived->is_item_valid(); --counter)
            derived->try_put_and_add_task(last_task);

        op->ltask = last_task;  // return task
        if (last_task && !counter) {
            op->status.store(SUCCEEDED, std::memory_order_release);
        }
        else {
            op->status.store(FAILED, std::memory_order_release);
            forwarder_busy = false;
        }
    }

    virtual bool internal_push(buffer_operation *op) {
        __TBB_ASSERT(op->elem, nullptr);
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        __TBB_ASSERT(op->metainfo, nullptr);
        this->push_back(*(op->elem), (*op->metainfo));
#else
        this->push_back(*(op->elem));
#endif
        op->status.store(SUCCEEDED, std::memory_order_release);
        return true;
    }

    virtual void internal_pop(buffer_operation *op) {
        __TBB_ASSERT(op->elem, nullptr);
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        bool pop_result = op->metainfo ? this->pop_back(*(op->elem), *(op->metainfo))
                                       : this->pop_back(*(op->elem));
#else
        bool pop_result = this->pop_back(*(op->elem));
#endif
        if (pop_result) {
            op->status.store(SUCCEEDED, std::memory_order_release);
        }
        else {
            op->status.store(FAILED, std::memory_order_release);
        }
    }

    virtual void internal_reserve(buffer_operation *op) {
        __TBB_ASSERT(op->elem, nullptr);
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        bool reserve_result = op->metainfo ? this->reserve_front(*(op->elem), *(op->metainfo))
                                           : this->reserve_front(*(op->elem));
#else
        bool reserve_result = this->reserve_front(*(op->elem));
#endif
        if (reserve_result) {
            op->status.store(SUCCEEDED, std::memory_order_release);
        }
        else {
            op->status.store(FAILED, std::memory_order_release);
        }
    }

    virtual void internal_consume(buffer_operation *op) {
        this->consume_front();
        op->status.store(SUCCEEDED, std::memory_order_release);
    }

    virtual void internal_release(buffer_operation *op) {
        this->release_front();
        op->status.store(SUCCEEDED, std::memory_order_release);
    }

public:
    //! Constructor
    __TBB_NOINLINE_SYM explicit buffer_node( graph &g )
        : graph_node(g), reservable_item_buffer<T, internals_allocator>(), receiver<T>(),
          sender<T>(), my_successors(this), forwarder_busy(false)
    {
        my_aggregator.initialize_handler(handler_type(this));
        fgt_node( CODEPTR(), FLOW_BUFFER_NODE, &this->my_graph,
                                 static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    buffer_node(const node_set<Args...>& nodes) : buffer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM buffer_node( const buffer_node& src ) : buffer_node(src.my_graph) {}

    //
    // message sender implementation
    //

    //! Adds a new successor.
    /** Adds successor r to the list of successors; may forward tasks.  */
    bool register_successor( successor_type &r ) override {
        buffer_operation op_data(reg_succ);
        op_data.r = &r;
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return true;
    }

    //! Removes a successor.
    /** Removes successor r from the list of successors.
        It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */
    bool remove_successor( successor_type &r ) override {
        // TODO revamp: investigate why full qualification is necessary here
        tbb::detail::d2::remove_predecessor(r, *this);
        buffer_operation op_data(rem_succ);
        op_data.r = &r;
        my_aggregator.execute(&op_data);
        // even though this operation does not cause a forward, if we are the handler, and
        // a forward is scheduled, we may be the first to reach this point after the aggregator,
        // and so should check for the task.
        (void)enqueue_forwarding_task(op_data);
        return true;
    }

    //! Request an item from the buffer_node
    /**  true = v contains the returned item<BR>
         false = no item has been returned */
    bool try_get( T &v ) override {
        buffer_operation op_data(req_item);
        op_data.elem = &v;
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return (op_data.status==SUCCEEDED);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    bool try_get( T &v, message_metainfo& metainfo ) override {
        buffer_operation op_data(req_item, metainfo);
        op_data.elem = &v;
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return (op_data.status==SUCCEEDED);
    }
#endif

    //! Reserves an item.
    /**  false = no item can be reserved<BR>
         true = an item is reserved */
    bool try_reserve( T &v ) override {
        buffer_operation op_data(res_item);
        op_data.elem = &v;
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return (op_data.status==SUCCEEDED);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    bool try_reserve( output_type& v, message_metainfo& metainfo ) override {
        buffer_operation op_data(res_item, metainfo);
        op_data.elem = &v;
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return op_data.status==SUCCEEDED;
    }
#endif

    //! Release a reserved item.
    /**  true = item has been released and so remains in sender */
    bool try_release() override {
        buffer_operation op_data(rel_res);
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return true;
    }

    //! Consumes a reserved item.
    /** true = item is removed from sender and reservation removed */
    bool try_consume() override {
        buffer_operation op_data(con_res);
        my_aggregator.execute(&op_data);
        (void)enqueue_forwarding_task(op_data);
        return true;
    }

private:
    graph_task* try_put_task_impl(const T& t __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
        buffer_operation op_data(t, put_item __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
        my_aggregator.execute(&op_data);
        graph_task *ft = grab_forwarding_task(op_data);
        // sequencer_nodes can return failure (if an item has been previously inserted)
        // We have to spawn the returned task if our own operation fails.

        if(ft && op_data.status ==FAILED) {
            // we haven't succeeded queueing the item, but for some reason the
            // call returned a task (if another request resulted in a successful
            // forward this could happen.)  Queue the task and reset the pointer.
            spawn_in_graph_arena(graph_reference(), *ft); ft = nullptr;
        }
        else if(!ft && op_data.status ==SUCCEEDED) {
            ft = SUCCESSFULLY_ENQUEUED;
        }
        return ft;
    }

protected:

    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    //! receive an item, return a task *if possible
    graph_task *try_put_task(const T &t) override {
        return try_put_task_impl(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const T& t, const message_metainfo& metainfo) override {
        return try_put_task_impl(t, metainfo);
    }
#endif

    graph& graph_reference() const override {
        return my_graph;
    }

protected:
    void reset_node( reset_flags f) override {
        reservable_item_buffer<T, internals_allocator>::reset();
        // TODO: just clear structures
        if (f&rf_clear_edges) {
            my_successors.clear();
        }
        forwarder_busy = false;
    }
};  // buffer_node

//! Forwards messages in FIFO order
template <typename T>
class queue_node : public buffer_node<T> {
protected:
    typedef buffer_node<T> base_type;
    typedef typename base_type::size_type size_type;
    typedef typename base_type::buffer_operation queue_operation;
    typedef queue_node class_type;

private:
    template<typename> friend class buffer_node;

    bool is_item_valid() {
        return this->my_item_valid(this->my_head);
    }

    void try_put_and_add_task(graph_task*& last_task) {
        graph_task* new_task = this->my_successors.try_put_task(this->front()
                                                                __TBB_FLOW_GRAPH_METAINFO_ARG(this->front_metainfo()));

        if (new_task) {
            // workaround for icc bug
            graph& graph_ref = this->graph_reference();
            last_task = combine_tasks(graph_ref, last_task, new_task);
            this->destroy_front();
        }
    }

protected:
    void internal_forward_task(queue_operation *op) override {
        this->internal_forward_task_impl(op, this);
    }

    void internal_pop(queue_operation *op) override {
        if ( this->my_reserved || !this->my_item_valid(this->my_head)){
            op->status.store(FAILED, std::memory_order_release);
        }
        else {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
            if (op->metainfo) {
                this->pop_front(*(op->elem), *(op->metainfo));
            } else
#endif
            {
                this->pop_front(*(op->elem));
            }
            op->status.store(SUCCEEDED, std::memory_order_release);
        }
    }
    void internal_reserve(queue_operation *op) override {
        if (this->my_reserved || !this->my_item_valid(this->my_head)) {
            op->status.store(FAILED, std::memory_order_release);
        }
        else {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
            if (op->metainfo) {
                this->reserve_front(*(op->elem), *(op->metainfo));
            }
            else
#endif
            {
                this->reserve_front(*(op->elem));
            }
            op->status.store(SUCCEEDED, std::memory_order_release);
        }
    }
    void internal_consume(queue_operation *op) override {
        this->consume_front();
        op->status.store(SUCCEEDED, std::memory_order_release);
    }

public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;

    //! Constructor
    __TBB_NOINLINE_SYM explicit queue_node( graph &g ) : base_type(g) {
        fgt_node( CODEPTR(), FLOW_QUEUE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    queue_node( const node_set<Args...>& nodes) : queue_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM queue_node( const queue_node& src) : base_type(src) {
        fgt_node( CODEPTR(), FLOW_QUEUE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }


protected:
    void reset_node( reset_flags f) override {
        base_type::reset_node(f);
    }
};  // queue_node

//! Forwards messages in sequence order
template <typename T>
    __TBB_requires(std::copyable<T>)
class sequencer_node : public queue_node<T> {
    function_body< T, size_t > *my_sequencer;
    // my_sequencer should be a benign function and must be callable
    // from a parallel context.  Does this mean it needn't be reset?
public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;

    //! Constructor
    template< typename Sequencer >
        __TBB_requires(sequencer<Sequencer, T>)
    __TBB_NOINLINE_SYM sequencer_node( graph &g, const Sequencer& s ) : queue_node<T>(g),
        my_sequencer(new function_body_leaf< T, size_t, Sequencer>(s) ) {
        fgt_node( CODEPTR(), FLOW_SEQUENCER_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Sequencer, typename... Args>
        __TBB_requires(sequencer<Sequencer, T>)
    sequencer_node( const node_set<Args...>& nodes, const Sequencer& s)
        : sequencer_node(nodes.graph_reference(), s) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM sequencer_node( const sequencer_node& src ) : queue_node<T>(src),
        my_sequencer( src.my_sequencer->clone() ) {
        fgt_node( CODEPTR(), FLOW_SEQUENCER_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

    //! Destructor
    ~sequencer_node() { delete my_sequencer; }

protected:
    typedef typename buffer_node<T>::size_type size_type;
    typedef typename buffer_node<T>::buffer_operation sequencer_operation;

private:
    bool internal_push(sequencer_operation *op) override {
        size_type tag = (*my_sequencer)(*(op->elem));
#if !TBB_DEPRECATED_SEQUENCER_DUPLICATES
        if (tag < this->my_head) {
            // have already emitted a message with this tag
            op->status.store(FAILED, std::memory_order_release);
            return false;
        }
#endif
        // cannot modify this->my_tail now; the buffer would be inconsistent.
        size_t new_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail;

        if (this->size(new_tail) > this->capacity()) {
            this->grow_my_array(this->size(new_tail));
        }
        this->my_tail = new_tail;

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        __TBB_ASSERT(op->metainfo, nullptr);
        bool place_item_result = this->place_item(tag, *(op->elem), *(op->metainfo));
        const op_stat res = place_item_result ? SUCCEEDED : FAILED;
#else
        const op_stat res = this->place_item(tag, *(op->elem)) ? SUCCEEDED : FAILED;
#endif
        op->status.store(res, std::memory_order_release);
        return res ==SUCCEEDED;
    }
};  // sequencer_node

//! Forwards messages in priority order
template<typename T, typename Compare = std::less<T>>
class priority_queue_node : public buffer_node<T> {
public:
    typedef T input_type;
    typedef T output_type;
    typedef buffer_node<T> base_type;
    typedef priority_queue_node class_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;

    //! Constructor
    __TBB_NOINLINE_SYM explicit priority_queue_node( graph &g, const Compare& comp = Compare() )
        : buffer_node<T>(g), compare(comp), mark(0) {
        fgt_node( CODEPTR(), FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    priority_queue_node(const node_set<Args...>& nodes, const Compare& comp = Compare())
        : priority_queue_node(nodes.graph_reference(), comp) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor
    __TBB_NOINLINE_SYM priority_queue_node( const priority_queue_node &src )
        : buffer_node<T>(src), mark(0)
    {
        fgt_node( CODEPTR(), FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

protected:

    void reset_node( reset_flags f) override {
        mark = 0;
        base_type::reset_node(f);
    }

    typedef typename buffer_node<T>::size_type size_type;
    typedef typename buffer_node<T>::item_type item_type;
    typedef typename buffer_node<T>::buffer_operation prio_operation;

    //! Tries to forward valid items to successors
    void internal_forward_task(prio_operation *op) override {
        this->internal_forward_task_impl(op, this);
    }

    void handle_operations(prio_operation *op_list) override {
        this->handle_operations_impl(op_list, this);
    }

    bool internal_push(prio_operation *op) override {
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        __TBB_ASSERT(op->metainfo, nullptr);
        prio_push(*(op->elem), *(op->metainfo));
#else
        prio_push(*(op->elem));
#endif
        op->status.store(SUCCEEDED, std::memory_order_release);
        return true;
    }

    void internal_pop(prio_operation *op) override {
        // if empty or already reserved, don't pop
        if ( this->my_reserved == true || this->my_tail == 0 ) {
            op->status.store(FAILED, std::memory_order_release);
            return;
        }

        *(op->elem) = prio();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        if (op->metainfo) {
            *(op->metainfo) = std::move(prio_metainfo());
        }
#endif
        op->status.store(SUCCEEDED, std::memory_order_release);
        prio_pop();

    }

    // pops the highest-priority item, saves copy
    void internal_reserve(prio_operation *op) override {
        if (this->my_reserved == true || this->my_tail == 0) {
            op->status.store(FAILED, std::memory_order_release);
            return;
        }
        this->my_reserved = true;
        *(op->elem) = prio();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        if (op->metainfo) {
            *(op->metainfo) = std::move(prio_metainfo());
            reserved_metainfo = *(op->metainfo);
        }
#endif
        reserved_item = *(op->elem);
        op->status.store(SUCCEEDED, std::memory_order_release);
        prio_pop();
    }

    void internal_consume(prio_operation *op) override {
        op->status.store(SUCCEEDED, std::memory_order_release);
        this->my_reserved = false;
        reserved_item = input_type();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        for (auto waiter : reserved_metainfo.waiters()) {
            waiter->release(1);
        }

        reserved_metainfo = message_metainfo{};
#endif
    }

    void internal_release(prio_operation *op) override {
        op->status.store(SUCCEEDED, std::memory_order_release);
        prio_push(reserved_item __TBB_FLOW_GRAPH_METAINFO_ARG(reserved_metainfo));
        this->my_reserved = false;
        reserved_item = input_type();
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        for (auto waiter : reserved_metainfo.waiters()) {
            waiter->release(1);
        }

        reserved_metainfo = message_metainfo{};
#endif
    }

private:
    template<typename> friend class buffer_node;

    void order() {
        if (mark < this->my_tail) heapify();
        __TBB_ASSERT(mark == this->my_tail, "mark unequal after heapify");
    }

    bool is_item_valid() {
        return this->my_tail > 0;
    }

    void try_put_and_add_task(graph_task*& last_task) {
        graph_task* new_task = this->my_successors.try_put_task(this->prio()
                                                                __TBB_FLOW_GRAPH_METAINFO_ARG(this->prio_metainfo()));
        if (new_task) {
            // workaround for icc bug
            graph& graph_ref = this->graph_reference();
            last_task = combine_tasks(graph_ref, last_task, new_task);
            prio_pop();
        }
    }

private:
    Compare compare;
    size_type mark;

    input_type reserved_item;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    message_metainfo reserved_metainfo;
#endif

    // in case a reheap has not been done after a push, check if the mark item is higher than the 0'th item
    bool prio_use_tail() {
        __TBB_ASSERT(mark <= this->my_tail, "mark outside bounds before test");
        return mark < this->my_tail && compare(this->get_my_item(0), this->get_my_item(this->my_tail - 1));
    }

    // prio_push: checks that the item will fit, expand array if necessary, put at end
    void prio_push(const T &src __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
        if ( this->my_tail >= this->my_array_size )
            this->grow_my_array( this->my_tail + 1 );
        (void) this->place_item(this->my_tail, src __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
        ++(this->my_tail);
        __TBB_ASSERT(mark < this->my_tail, "mark outside bounds after push");
    }

    // prio_pop: deletes highest priority item from the array, and if it is item
    // 0, move last item to 0 and reheap.  If end of array, just destroy and decrement tail
    // and mark.  Assumes the array has already been tested for emptiness; no failure.
    void prio_pop()  {
        if (prio_use_tail()) {
            // there are newly pushed elements; last one higher than top
            // copy the data
            this->destroy_item(this->my_tail-1);
            --(this->my_tail);
            __TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
            return;
        }
        this->destroy_item(0);
        if(this->my_tail > 1) {
            // push the last element down heap
            __TBB_ASSERT(this->my_item_valid(this->my_tail - 1), nullptr);
            this->move_item(0,this->my_tail - 1);
        }
        --(this->my_tail);
        if(mark > this->my_tail) --mark;
        if (this->my_tail > 1) // don't reheap for heap of size 1
            reheap();
        __TBB_ASSERT(mark <= this->my_tail, "mark outside bounds after pop");
    }

    const T& prio() {
        return this->get_my_item(prio_use_tail() ? this->my_tail-1 : 0);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    message_metainfo& prio_metainfo() {
        return this->get_my_metainfo(prio_use_tail() ? this->my_tail-1 : 0);
    }
#endif

    // turn array into heap
    void heapify() {
        if(this->my_tail == 0) {
            mark = 0;
            return;
        }
        if (!mark) mark = 1;
        for (; mark<this->my_tail; ++mark) { // for each unheaped element
            size_type cur_pos = mark;
            input_type to_place;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
            message_metainfo metainfo;
#endif
            this->fetch_item(mark, to_place __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
            do { // push to_place up the heap
                size_type parent = (cur_pos-1)>>1;
                if (!compare(this->get_my_item(parent), to_place))
                    break;
                this->move_item(cur_pos, parent);
                cur_pos = parent;
            } while( cur_pos );
            this->place_item(cur_pos, to_place __TBB_FLOW_GRAPH_METAINFO_ARG(std::move(metainfo)));
        }
    }

    // otherwise heapified array with new root element; rearrange to heap
    void reheap() {
        size_type cur_pos=0, child=1;
        while (child < mark) {
            size_type target = child;
            if (child+1<mark &&
                compare(this->get_my_item(child),
                        this->get_my_item(child+1)))
                ++target;
            // target now has the higher priority child
            if (compare(this->get_my_item(target),
                        this->get_my_item(cur_pos)))
                break;
            // swap
            this->swap_items(cur_pos, target);
            cur_pos = target;
            child = (cur_pos<<1)+1;
        }
    }
};  // priority_queue_node

//! Forwards messages only if the threshold has not been reached
/** This node forwards items until its threshold is reached.
    It contains no buffering.  If the downstream node rejects, the
    message is dropped. */
template< typename T, typename DecrementType=continue_msg >
class limiter_node : public graph_node, public receiver< T >, public sender< T > {
public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;
    //TODO: There is a lack of predefined types for its controlling "decrementer" port. It should be fixed later.

private:
    size_t my_threshold;
    size_t my_count; // number of successful puts
    size_t my_tries; // number of active put attempts
    size_t my_future_decrement; // number of active decrement
    reservable_predecessor_cache< T, spin_mutex > my_predecessors;
    spin_mutex my_mutex;
    broadcast_cache< T > my_successors;

    //! The internal receiver< DecrementType > that adjusts the count
    threshold_regulator< limiter_node<T, DecrementType>, DecrementType > decrement;

    graph_task* decrement_counter( long long delta ) {
        if ( delta > 0 && size_t(delta) > my_threshold ) {
            delta = my_threshold;
        }

        {
            spin_mutex::scoped_lock lock(my_mutex);
            if ( delta > 0 && size_t(delta) > my_count ) {
                if( my_tries > 0 ) {
                    my_future_decrement += (size_t(delta) - my_count);
                }
                my_count = 0;
            }
            else if ( delta < 0 && size_t(-delta) > my_threshold - my_count ) {
                my_count = my_threshold;
            }
            else {
                my_count -= size_t(delta); // absolute value of delta is sufficiently small
            }
            __TBB_ASSERT(my_count <= my_threshold, "counter values are truncated to be inside the [0, threshold] interval");
        }
        return forward_task();
    }

    // Let threshold_regulator call decrement_counter()
    friend class threshold_regulator< limiter_node<T, DecrementType>, DecrementType >;

    friend class forward_task_bypass< limiter_node<T,DecrementType> >;

    bool check_conditions() {  // always called under lock
        return ( my_count + my_tries < my_threshold && !my_predecessors.empty() && !my_successors.empty() );
    }

    // only returns a valid task pointer or nullptr, never SUCCESSFULLY_ENQUEUED
    graph_task* forward_task() {
        input_type v;
        graph_task* rval = nullptr;
        bool reserved = false;

        {
            spin_mutex::scoped_lock lock(my_mutex);
            if ( check_conditions() )
                ++my_tries;
            else
                return nullptr;
        }

        //SUCCESS
        // if we can reserve and can put, we consume the reservation
        // we increment the count and decrement the tries
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        message_metainfo metainfo;
#endif
        if ( (my_predecessors.try_reserve(v __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo))) == true ) {
            reserved = true;
            if ( (rval = my_successors.try_put_task(v __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo))) != nullptr ) {
                {
                    spin_mutex::scoped_lock lock(my_mutex);
                    ++my_count;
                    if ( my_future_decrement ) {
                        if ( my_count > my_future_decrement ) {
                            my_count -= my_future_decrement;
                            my_future_decrement = 0;
                        }
                        else {
                            my_future_decrement -= my_count;
                            my_count = 0;
                        }
                    }
                    --my_tries;
                    my_predecessors.try_consume();
                    if ( check_conditions() ) {
                        if ( is_graph_active(this->my_graph) ) {
                            typedef forward_task_bypass<limiter_node<T, DecrementType>> task_type;
                            d1::small_object_allocator allocator{};
                            graph_task* rtask = allocator.new_object<task_type>( my_graph, allocator, *this );
                            spawn_in_graph_arena(graph_reference(), *rtask);
                        }
                    }
                }
                return rval;
            }
        }
        //FAILURE
        //if we can't reserve, we decrement the tries
        //if we can reserve but can't put, we decrement the tries and release the reservation
        {
            spin_mutex::scoped_lock lock(my_mutex);
            --my_tries;
            if (reserved) my_predecessors.try_release();
            if ( check_conditions() ) {
                if ( is_graph_active(this->my_graph) ) {
                    d1::small_object_allocator allocator{};
                    typedef forward_task_bypass<limiter_node<T, DecrementType>> task_type;
                    graph_task* t = allocator.new_object<task_type>(my_graph, allocator, *this);
                    __TBB_ASSERT(!rval, "Have two tasks to handle");
                    return t;
                }
            }
            return rval;
        }
    }

    void initialize() {
        fgt_node(
            CODEPTR(), FLOW_LIMITER_NODE, &this->my_graph,
            static_cast<receiver<input_type> *>(this), static_cast<receiver<DecrementType> *>(&decrement),
            static_cast<sender<output_type> *>(this)
        );
    }

public:
    //! Constructor
    limiter_node(graph &g, size_t threshold)
        : graph_node(g), my_threshold(threshold), my_count(0), my_tries(0), my_future_decrement(0),
        my_predecessors(this), my_successors(this), decrement(this)
    {
        initialize();
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    limiter_node(const node_set<Args...>& nodes, size_t threshold)
        : limiter_node(nodes.graph_reference(), threshold) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor
    limiter_node( const limiter_node& src ) : limiter_node(src.my_graph, src.my_threshold) {}

    //! The interface for accessing internal receiver< DecrementType > that adjusts the count
    receiver<DecrementType>& decrementer() { return decrement; }

    //! Replace the current successor with this new successor
    bool register_successor( successor_type &r ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        bool was_empty = my_successors.empty();
        my_successors.register_successor(r);
        //spawn a forward task if this is the only successor
        if ( was_empty && !my_predecessors.empty() && my_count + my_tries < my_threshold ) {
            if ( is_graph_active(this->my_graph) ) {
                d1::small_object_allocator allocator{};
                typedef forward_task_bypass<limiter_node<T, DecrementType>> task_type;
                graph_task* t = allocator.new_object<task_type>(my_graph, allocator, *this);
                spawn_in_graph_arena(graph_reference(), *t);
            }
        }
        return true;
    }

    //! Removes a successor from this node
    /** r.remove_predecessor(*this) is also called. */
    bool remove_successor( successor_type &r ) override {
        // TODO revamp: investigate why qualification is needed for remove_predecessor() call
        tbb::detail::d2::remove_predecessor(r, *this);
        my_successors.remove_successor(r);
        return true;
    }

    //! Adds src to the list of cached predecessors.
    bool register_predecessor( predecessor_type &src ) override {
        spin_mutex::scoped_lock lock(my_mutex);
        my_predecessors.add( src );
        if ( my_count + my_tries < my_threshold && !my_successors.empty() && is_graph_active(this->my_graph) ) {
            d1::small_object_allocator allocator{};
            typedef forward_task_bypass<limiter_node<T, DecrementType>> task_type;
            graph_task* t = allocator.new_object<task_type>(my_graph, allocator, *this);
            spawn_in_graph_arena(graph_reference(), *t);
        }
        return true;
    }

    //! Removes src from the list of cached predecessors.
    bool remove_predecessor( predecessor_type &src ) override {
        my_predecessors.remove( src );
        return true;
    }

protected:

    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;

private:
    //! Puts an item to this receiver
    graph_task* try_put_task_impl( const T &t __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo) ) {
        {
            spin_mutex::scoped_lock lock(my_mutex);
            if ( my_count + my_tries >= my_threshold )
                return nullptr;
            else
                ++my_tries;
        }

        graph_task* rtask = my_successors.try_put_task(t __TBB_FLOW_GRAPH_METAINFO_ARG(metainfo));
        if ( !rtask ) {  // try_put_task failed.
            spin_mutex::scoped_lock lock(my_mutex);
            --my_tries;
            if (check_conditions() && is_graph_active(this->my_graph)) {
                d1::small_object_allocator allocator{};
                typedef forward_task_bypass<limiter_node<T, DecrementType>> task_type;
                rtask = allocator.new_object<task_type>(my_graph, allocator, *this);
            }
        }
        else {
            spin_mutex::scoped_lock lock(my_mutex);
            ++my_count;
            if ( my_future_decrement ) {
                if ( my_count > my_future_decrement ) {
                    my_count -= my_future_decrement;
                    my_future_decrement = 0;
                }
                else {
                    my_future_decrement -= my_count;
                    my_count = 0;
                }
            }
            --my_tries;
        }
        return rtask;
    }

protected:
    graph_task* try_put_task(const T& t) override {
        return try_put_task_impl(t __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const T& t, const message_metainfo& metainfo) override {
        return try_put_task_impl(t, metainfo);
    }
#endif

    graph& graph_reference() const override { return my_graph; }

    void reset_node( reset_flags f ) override {
        my_count = 0;
        if ( f & rf_clear_edges ) {
            my_predecessors.clear();
            my_successors.clear();
        }
        else {
            my_predecessors.reset();
        }
        decrement.reset_receiver(f);
    }
};  // limiter_node

#include "detail/_flow_graph_join_impl.h"

template<typename OutputTuple, typename JP=queueing> class join_node;

template<typename OutputTuple>
class join_node<OutputTuple,reserving>: public unfolded_join_node<std::tuple_size<OutputTuple>::value, reserving_port, OutputTuple, reserving> {
private:
    static const int N = std::tuple_size<OutputTuple>::value;
    typedef unfolded_join_node<N, reserving_port, OutputTuple, reserving> unfolded_type;
public:
    typedef OutputTuple output_type;
    typedef typename unfolded_type::input_ports_type input_ports_type;
     __TBB_NOINLINE_SYM explicit join_node(graph &g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_RESERVING, &this->my_graph,
                                            this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    __TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, reserving = reserving()) : join_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    __TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_RESERVING, &this->my_graph,
                                            this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

template<typename OutputTuple>
class join_node<OutputTuple,queueing>: public unfolded_join_node<std::tuple_size<OutputTuple>::value, queueing_port, OutputTuple, queueing> {
private:
    static const int N = std::tuple_size<OutputTuple>::value;
    typedef unfolded_join_node<N, queueing_port, OutputTuple, queueing> unfolded_type;
public:
    typedef OutputTuple output_type;
    typedef typename unfolded_type::input_ports_type input_ports_type;
     __TBB_NOINLINE_SYM explicit join_node(graph &g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
                                            this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    __TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, queueing = queueing()) : join_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    __TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
                                            this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

#if __TBB_CPP20_CONCEPTS_PRESENT
// Helper function which is well-formed only if all of the elements in OutputTuple
// satisfies join_node_function_object<body[i], tuple[i], K>
template <typename OutputTuple, typename K,
          typename... Functions, std::size_t... Idx>
void join_node_function_objects_helper( std::index_sequence<Idx...> )
    requires (std::tuple_size_v<OutputTuple> == sizeof...(Functions)) &&
             (... && join_node_function_object<Functions, std::tuple_element_t<Idx, OutputTuple>, K>);

template <typename OutputTuple, typename K, typename... Functions>
concept join_node_functions = requires {
    join_node_function_objects_helper<OutputTuple, K, Functions...>(std::make_index_sequence<sizeof...(Functions)>{});
};

#endif

// template for key_matching join_node
// tag_matching join_node is a specialization of key_matching, and is source-compatible.
template<typename OutputTuple, typename K, typename KHash>
class join_node<OutputTuple, key_matching<K, KHash> > : public unfolded_join_node<std::tuple_size<OutputTuple>::value,
      key_matching_port, OutputTuple, key_matching<K,KHash> > {
private:
    static const int N = std::tuple_size<OutputTuple>::value;
    typedef unfolded_join_node<N, key_matching_port, OutputTuple, key_matching<K,KHash> > unfolded_type;
public:
    typedef OutputTuple output_type;
    typedef typename unfolded_type::input_ports_type input_ports_type;

#if __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING
    join_node(graph &g) : unfolded_type(g) {}
#endif  /* __TBB_PREVIEW_MESSAGE_BASED_KEY_MATCHING */

    template<typename __TBB_B0, typename __TBB_B1>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1) : unfolded_type(g, b0, b1) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2) : unfolded_type(g, b0, b1, b2) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3) : unfolded_type(g, b0, b1, b2, b3) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4) :
            unfolded_type(g, b0, b1, b2, b3, b4) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#if __TBB_VARIADIC_MAX >= 6
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
        typename __TBB_B5>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4, __TBB_B5>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5) :
            unfolded_type(g, b0, b1, b2, b3, b4, b5) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#endif
#if __TBB_VARIADIC_MAX >= 7
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
        typename __TBB_B5, typename __TBB_B6>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4, __TBB_B5, __TBB_B6>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6) :
            unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#endif
#if __TBB_VARIADIC_MAX >= 8
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
        typename __TBB_B5, typename __TBB_B6, typename __TBB_B7>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4, __TBB_B5, __TBB_B6, __TBB_B7>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
            __TBB_B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#endif
#if __TBB_VARIADIC_MAX >= 9
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
        typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4, __TBB_B5, __TBB_B6, __TBB_B7, __TBB_B8>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
            __TBB_B7 b7, __TBB_B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#endif
#if __TBB_VARIADIC_MAX >= 10
    template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
        typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8, typename __TBB_B9>
        __TBB_requires(join_node_functions<OutputTuple, K, __TBB_B0, __TBB_B1, __TBB_B2, __TBB_B3, __TBB_B4, __TBB_B5, __TBB_B6, __TBB_B7, __TBB_B8, __TBB_B9>)
     __TBB_NOINLINE_SYM join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
            __TBB_B7 b7, __TBB_B8 b8, __TBB_B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
#endif

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <
#if (__clang_major__ == 3 && __clang_minor__ == 4)
        // clang 3.4 misdeduces 'Args...' for 'node_set' while it can cope with template template parameter.
        template<typename...> class node_set,
#endif
        typename... Args, typename... Bodies
    >
    __TBB_requires((sizeof...(Bodies) == 0) || join_node_functions<OutputTuple, K, Bodies...>)
    __TBB_NOINLINE_SYM join_node(const node_set<Args...>& nodes, Bodies... bodies)
        : join_node(nodes.graph_reference(), bodies...) {
        make_edges_in_order(nodes, *this);
    }
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

    __TBB_NOINLINE_SYM join_node(const join_node &other) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
                                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

// indexer node
#include "detail/_flow_graph_indexer_impl.h"

// TODO: Implement interface with variadic template or tuple
template<typename T0, typename T1=null_type, typename T2=null_type, typename T3=null_type,
                      typename T4=null_type, typename T5=null_type, typename T6=null_type,
                      typename T7=null_type, typename T8=null_type, typename T9=null_type> class indexer_node;

//indexer node specializations
template<typename T0>
class indexer_node<T0> : public unfolded_indexer_node<std::tuple<T0> > {
private:
    static const int N = 1;
public:
    typedef std::tuple<T0> InputTuple;
    typedef tagged_msg<size_t, T0> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }
};

template<typename T0, typename T1>
class indexer_node<T0, T1> : public unfolded_indexer_node<std::tuple<T0, T1> > {
private:
    static const int N = 2;
public:
    typedef std::tuple<T0, T1> InputTuple;
    typedef tagged_msg<size_t, T0, T1> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

template<typename T0, typename T1, typename T2>
class indexer_node<T0, T1, T2> : public unfolded_indexer_node<std::tuple<T0, T1, T2> > {
private:
    static const int N = 3;
public:
    typedef std::tuple<T0, T1, T2> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

template<typename T0, typename T1, typename T2, typename T3>
class indexer_node<T0, T1, T2, T3> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3> > {
private:
    static const int N = 4;
public:
    typedef std::tuple<T0, T1, T2, T3> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

template<typename T0, typename T1, typename T2, typename T3, typename T4>
class indexer_node<T0, T1, T2, T3, T4> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4> > {
private:
    static const int N = 5;
public:
    typedef std::tuple<T0, T1, T2, T3, T4> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};

#if __TBB_VARIADIC_MAX >= 6
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
class indexer_node<T0, T1, T2, T3, T4, T5> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4, T5> > {
private:
    static const int N = 6;
public:
    typedef std::tuple<T0, T1, T2, T3, T4, T5> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4, T5> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};
#endif //variadic max 6

#if __TBB_VARIADIC_MAX >= 7
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
         typename T6>
class indexer_node<T0, T1, T2, T3, T4, T5, T6> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4, T5, T6> > {
private:
    static const int N = 7;
public:
    typedef std::tuple<T0, T1, T2, T3, T4, T5, T6> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};
#endif //variadic max 7

#if __TBB_VARIADIC_MAX >= 8
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
         typename T6, typename T7>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
private:
    static const int N = 8;
public:
    typedef std::tuple<T0, T1, T2, T3, T4, T5, T6, T7> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};
#endif //variadic max 8

#if __TBB_VARIADIC_MAX >= 9
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
         typename T6, typename T7, typename T8>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7, T8> : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
private:
    static const int N = 9;
public:
    typedef std::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};
#endif //variadic max 9

#if __TBB_VARIADIC_MAX >= 10
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
         typename T6, typename T7, typename T8, typename T9>
class indexer_node/*default*/ : public unfolded_indexer_node<std::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
private:
    static const int N = 10;
public:
    typedef std::tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> InputTuple;
    typedef tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> output_type;
    typedef unfolded_indexer_node<InputTuple> unfolded_type;
    __TBB_NOINLINE_SYM indexer_node(graph& g) : unfolded_type(g) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    indexer_node(const node_set<Args...>& nodes) : indexer_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    // Copy constructor
    __TBB_NOINLINE_SYM indexer_node( const indexer_node& other ) : unfolded_type(other) {
        fgt_multiinput_node<N>( CODEPTR(), FLOW_INDEXER_NODE, &this->my_graph,
                                           this->input_ports(), static_cast< sender< output_type > *>(this) );
    }

};
#endif //variadic max 10

template< typename T >
inline void internal_make_edge( sender<T> &p, receiver<T> &s ) {
    register_successor(p, s);
    fgt_make_edge( &p, &s );
}

//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void make_edge( sender<T> &p, receiver<T> &s ) {
    internal_make_edge( p, s );
}

//Makes an edge from port 0 of a multi-output predecessor to port 0 of a multi-input successor.
template< typename T, typename V,
          typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void make_edge( T& output, V& input) {
    make_edge(std::get<0>(output.output_ports()), std::get<0>(input.input_ports()));
}

//Makes an edge from port 0 of a multi-output predecessor to a receiver.
template< typename T, typename R,
          typename = typename T::output_ports_type >
inline void make_edge( T& output, receiver<R>& input) {
     make_edge(std::get<0>(output.output_ports()), input);
}

//Makes an edge from a sender to port 0 of a multi-input successor.
template< typename S,  typename V,
          typename = typename V::input_ports_type >
inline void make_edge( sender<S>& output, V& input) {
     make_edge(output, std::get<0>(input.input_ports()));
}

template< typename T >
inline void internal_remove_edge( sender<T> &p, receiver<T> &s ) {
    remove_successor( p, s );
    fgt_remove_edge( &p, &s );
}

//! Removes an edge between a single predecessor and a single successor
template< typename T >
inline void remove_edge( sender<T> &p, receiver<T> &s ) {
    internal_remove_edge( p, s );
}

//Removes an edge between port 0 of a multi-output predecessor and port 0 of a multi-input successor.
template< typename T, typename V,
          typename = typename T::output_ports_type, typename = typename V::input_ports_type >
inline void remove_edge( T& output, V& input) {
    remove_edge(std::get<0>(output.output_ports()), std::get<0>(input.input_ports()));
}

//Removes an edge between port 0 of a multi-output predecessor and a receiver.
template< typename T, typename R,
          typename = typename T::output_ports_type >
inline void remove_edge( T& output, receiver<R>& input) {
     remove_edge(std::get<0>(output.output_ports()), input);
}
//Removes an edge between a sender and port 0 of a multi-input successor.
template< typename S,  typename V,
          typename = typename V::input_ports_type >
inline void remove_edge( sender<S>& output, V& input) {
     remove_edge(output, std::get<0>(input.input_ports()));
}

//! Returns a copy of the body from a function or continue node
template< typename Body, typename Node >
Body copy_body( Node &n ) {
    return n.template copy_function_object<Body>();
}

//composite_node
template< typename InputTuple, typename OutputTuple > class composite_node;

template< typename... InputTypes, typename... OutputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<OutputTypes...> > : public graph_node {

public:
    typedef std::tuple< receiver<InputTypes>&... > input_ports_type;
    typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

private:
    std::unique_ptr<input_ports_type> my_input_ports;
    std::unique_ptr<output_ports_type> my_output_ports;

    static const size_t NUM_INPUTS = sizeof...(InputTypes);
    static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);

protected:
    void reset_node(reset_flags) override {}

public:
    composite_node( graph &g ) : graph_node(g) {
        fgt_multiinput_multioutput_node( CODEPTR(), FLOW_COMPOSITE_NODE, this, &this->my_graph );
    }

    template<typename T1, typename T2>
    void set_external_ports(T1&& input_ports_tuple, T2&& output_ports_tuple) {
        static_assert(NUM_INPUTS == std::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");
        static_assert(NUM_OUTPUTS == std::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");

        fgt_internal_input_alias_helper<T1, NUM_INPUTS>::alias_port( this, input_ports_tuple);
        fgt_internal_output_alias_helper<T2, NUM_OUTPUTS>::alias_port( this, output_ports_tuple);

        my_input_ports.reset( new input_ports_type(std::forward<T1>(input_ports_tuple)) );
        my_output_ports.reset( new output_ports_type(std::forward<T2>(output_ports_tuple)) );
    }

    template< typename... NodeTypes >
    void add_visible_nodes(const NodeTypes&... n) { add_nodes_impl(this, true, n...); }

    template< typename... NodeTypes >
    void add_nodes(const NodeTypes&... n) { add_nodes_impl(this, false, n...); }


    input_ports_type& input_ports() {
         __TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
         return *my_input_ports;
    }

    output_ports_type& output_ports() {
         __TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
         return *my_output_ports;
    }
};  // class composite_node

//composite_node with only input ports
template< typename... InputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<> > : public graph_node {
public:
    typedef std::tuple< receiver<InputTypes>&... > input_ports_type;

private:
    std::unique_ptr<input_ports_type> my_input_ports;
    static const size_t NUM_INPUTS = sizeof...(InputTypes);

protected:
    void reset_node(reset_flags) override {}

public:
    composite_node( graph &g ) : graph_node(g) {
        fgt_composite( CODEPTR(), this, &g );
    }

   template<typename T>
   void set_external_ports(T&& input_ports_tuple) {
       static_assert(NUM_INPUTS == std::tuple_size<input_ports_type>::value, "number of arguments does not match number of input ports");

       fgt_internal_input_alias_helper<T, NUM_INPUTS>::alias_port( this, input_ports_tuple);

       my_input_ports.reset( new input_ports_type(std::forward<T>(input_ports_tuple)) );
   }

    template< typename... NodeTypes >
    void add_visible_nodes(const NodeTypes&... n) { add_nodes_impl(this, true, n...); }

    template< typename... NodeTypes >
    void add_nodes( const NodeTypes&... n) { add_nodes_impl(this, false, n...); }


    input_ports_type& input_ports() {
         __TBB_ASSERT(my_input_ports, "input ports not set, call set_external_ports to set input ports");
         return *my_input_ports;
    }

};  // class composite_node

//composite_nodes with only output_ports
template<typename... OutputTypes>
class composite_node <std::tuple<>, std::tuple<OutputTypes...> > : public graph_node {
public:
    typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

private:
    std::unique_ptr<output_ports_type> my_output_ports;
    static const size_t NUM_OUTPUTS = sizeof...(OutputTypes);

protected:
    void reset_node(reset_flags) override {}

public:
    __TBB_NOINLINE_SYM composite_node( graph &g ) : graph_node(g) {
        fgt_composite( CODEPTR(), this, &g );
    }

   template<typename T>
   void set_external_ports(T&& output_ports_tuple) {
       static_assert(NUM_OUTPUTS == std::tuple_size<output_ports_type>::value, "number of arguments does not match number of output ports");

       fgt_internal_output_alias_helper<T, NUM_OUTPUTS>::alias_port( this, output_ports_tuple);

       my_output_ports.reset( new output_ports_type(std::forward<T>(output_ports_tuple)) );
   }

    template<typename... NodeTypes >
    void add_visible_nodes(const NodeTypes&... n) { add_nodes_impl(this, true, n...); }

    template<typename... NodeTypes >
    void add_nodes(const NodeTypes&... n) { add_nodes_impl(this, false, n...); }


    output_ports_type& output_ports() {
         __TBB_ASSERT(my_output_ports, "output ports not set, call set_external_ports to set output ports");
         return *my_output_ports;
    }

};  // class composite_node

template<typename Gateway>
class async_body_base: no_assign {
public:
    typedef Gateway gateway_type;

    async_body_base(gateway_type *gateway): my_gateway(gateway) { }
    void set_gateway(gateway_type *gateway) {
        my_gateway = gateway;
    }

protected:
    gateway_type *my_gateway;
};

template<typename Input, typename Ports, typename Gateway, typename Body>
class async_body: public async_body_base<Gateway> {
private:
    Body my_body;

public:
    typedef async_body_base<Gateway> base_type;
    typedef Gateway gateway_type;

    async_body(const Body &body, gateway_type *gateway)
        : base_type(gateway), my_body(body) { }

    void operator()( const Input &v, Ports & ) noexcept(noexcept(tbb::detail::invoke(my_body, v, std::declval<gateway_type&>()))) {
        tbb::detail::invoke(my_body, v, *this->my_gateway);
    }

    Body get_body() { return my_body; }
};

//! Implements async node
template < typename Input, typename Output,
           typename Policy = queueing_lightweight >
    __TBB_requires(std::default_initializable<Input> && std::copy_constructible<Input>)
class async_node
    : public multifunction_node< Input, std::tuple< Output >, Policy >, public sender< Output >
{
    typedef multifunction_node< Input, std::tuple< Output >, Policy > base_type;
    typedef multifunction_input<
        Input, typename base_type::output_ports_type, Policy, cache_aligned_allocator<Input>> mfn_input_type;

public:
    typedef Input input_type;
    typedef Output output_type;
    typedef receiver<input_type> receiver_type;
    typedef receiver<output_type> successor_type;
    typedef sender<input_type> predecessor_type;
    typedef receiver_gateway<output_type> gateway_type;
    typedef async_body_base<gateway_type> async_body_base_type;
    typedef typename base_type::output_ports_type output_ports_type;

private:
    class receiver_gateway_impl: public receiver_gateway<Output> {
    public:
        receiver_gateway_impl(async_node* node): my_node(node) {}
        void reserve_wait() override {
            fgt_async_reserve(static_cast<typename async_node::receiver_type *>(my_node), &my_node->my_graph);
            my_node->my_graph.reserve_wait();
        }

        void release_wait() override {
            async_node* n = my_node;
            graph* g = &n->my_graph;
            g->release_wait();
            fgt_async_commit(static_cast<typename async_node::receiver_type *>(n), g);
        }

        //! Implements gateway_type::try_put for an external activity to submit a message to FG
        bool try_put(const Output &i) override {
            return my_node->try_put_impl(i);
        }

    private:
        async_node* my_node;
    } my_gateway;

    //The substitute of 'this' for member construction, to prevent compiler warnings
    async_node* self() { return this; }

    //! Implements gateway_type::try_put for an external activity to submit a message to FG
    bool try_put_impl(const Output &i) {
        multifunction_output<Output> &port_0 = output_port<0>(*this);
        broadcast_cache<output_type>& port_successors = port_0.successors();
        fgt_async_try_put_begin(this, &port_0);
        // TODO revamp: change to std::list<graph_task*>
        graph_task_list tasks;
        bool is_at_least_one_put_successful = port_successors.gather_successful_try_puts(i, tasks);
        __TBB_ASSERT( is_at_least_one_put_successful || tasks.empty(),
                      "Return status is inconsistent with the method operation." );

        while( !tasks.empty() ) {
            enqueue_in_graph_arena(this->my_graph, tasks.pop_front());
        }
        fgt_async_try_put_end(this, &port_0);
        return is_at_least_one_put_successful;
    }

public:
    template<typename Body>
        __TBB_requires(async_node_body<Body, input_type, gateway_type>)
    __TBB_NOINLINE_SYM async_node(
        graph &g, size_t concurrency,
        Body body, Policy = Policy(), node_priority_t a_priority = no_priority
    ) : base_type(
        g, concurrency,
        async_body<Input, typename base_type::output_ports_type, gateway_type, Body>
        (body, &my_gateway), a_priority ), my_gateway(self()) {
        fgt_multioutput_node_with_body<1>(
            CODEPTR(), FLOW_ASYNC_NODE,
            &this->my_graph, static_cast<receiver<input_type> *>(this),
            this->output_ports(), this->my_body
        );
    }

    template <typename Body>
        __TBB_requires(async_node_body<Body, input_type, gateway_type>)
    __TBB_NOINLINE_SYM async_node(graph& g, size_t concurrency, Body body, node_priority_t a_priority)
        : async_node(g, concurrency, body, Policy(), a_priority) {}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename Body, typename... Args>
        __TBB_requires(async_node_body<Body, input_type, gateway_type>)
    __TBB_NOINLINE_SYM async_node(
        const node_set<Args...>& nodes, size_t concurrency, Body body,
        Policy = Policy(), node_priority_t a_priority = no_priority )
        : async_node(nodes.graph_reference(), concurrency, body, a_priority) {
        make_edges_in_order(nodes, *this);
    }

    template <typename Body, typename... Args>
        __TBB_requires(async_node_body<Body, input_type, gateway_type>)
    __TBB_NOINLINE_SYM async_node(const node_set<Args...>& nodes, size_t concurrency, Body body, node_priority_t a_priority)
        : async_node(nodes, concurrency, body, Policy(), a_priority) {}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

    __TBB_NOINLINE_SYM async_node( const async_node &other ) : base_type(other), sender<Output>(), my_gateway(self()) {
        static_cast<async_body_base_type*>(this->my_body->get_body_ptr())->set_gateway(&my_gateway);
        static_cast<async_body_base_type*>(this->my_init_body->get_body_ptr())->set_gateway(&my_gateway);

        fgt_multioutput_node_with_body<1>( CODEPTR(), FLOW_ASYNC_NODE,
                &this->my_graph, static_cast<receiver<input_type> *>(this),
                this->output_ports(), this->my_body );
    }

    gateway_type& gateway() {
        return my_gateway;
    }

    // Define sender< Output >

    //! Add a new successor to this node
    bool register_successor(successor_type&) override {
        __TBB_ASSERT(false, "Successors must be registered only via ports");
        return false;
    }

    //! Removes a successor from this node
    bool remove_successor(successor_type&) override {
        __TBB_ASSERT(false, "Successors must be removed only via ports");
        return false;
    }

    template<typename Body>
    Body copy_function_object() {
        typedef multifunction_body<input_type, typename base_type::output_ports_type> mfn_body_type;
        typedef async_body<Input, typename base_type::output_ports_type, gateway_type, Body> async_body_type;
        mfn_body_type &body_ref = *this->my_body;
        async_body_type ab = *static_cast<async_body_type*>(dynamic_cast< multifunction_body_leaf<input_type, typename base_type::output_ports_type, async_body_type> & >(body_ref).get_body_ptr());
        return ab.get_body();
    }

protected:

    void reset_node( reset_flags f) override {
       base_type::reset_node(f);
    }
};

#include "detail/_flow_graph_node_set_impl.h"

template< typename T >
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
public:
    typedef T input_type;
    typedef T output_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;

    __TBB_NOINLINE_SYM explicit overwrite_node(graph &g)
        : graph_node(g), my_successors(this), my_buffer_is_valid(false)
    {
        fgt_node( CODEPTR(), FLOW_OVERWRITE_NODE, &this->my_graph,
                  static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    overwrite_node(const node_set<Args...>& nodes) : overwrite_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor; doesn't take anything from src; default won't work
    __TBB_NOINLINE_SYM overwrite_node( const overwrite_node& src ) : overwrite_node(src.my_graph) {}

    ~overwrite_node() {}

    bool register_successor( successor_type &s ) override {
        spin_mutex::scoped_lock l( my_mutex );
        if (my_buffer_is_valid && is_graph_active( my_graph )) {
            // We have a valid value that must be forwarded immediately.
            if (s.is_continue_receiver()) {
                // try_put can never fail, since continue_receivers always accept
                my_successors.register_successor( s );
                s.try_put( my_buffer );
                return true;
            }
            bool ret = s.try_put( my_buffer );
            if ( ret ) {
                // We add the successor that accepted our put
                my_successors.register_successor( s );
            } else {
                // In case of reservation a race between the moment of reservation and register_successor can appear,
                // because failed reserve does not mean that register_successor is not ready to put a message immediately.
                // We have some sort of infinite loop: reserving node tries to set pull state for the edge,
                // but overwrite_node tries to return push state back. That is why we have to break this loop with task creation.
                d1::small_object_allocator allocator{};
                typedef register_predecessor_task task_type;
                graph_task* t = allocator.new_object<task_type>(graph_reference(), allocator, *this, s);
                spawn_in_graph_arena( my_graph, *t );
            }
        } else {
            // No valid value yet, just add as successor
            my_successors.register_successor( s );
        }
        return true;
    }

    bool remove_successor( successor_type &s ) override {
        spin_mutex::scoped_lock l( my_mutex );
        my_successors.remove_successor(s);
        return true;
    }

    bool try_get( input_type &v ) override {
        spin_mutex::scoped_lock l( my_mutex );
        if ( my_buffer_is_valid ) {
            v = my_buffer;
            return true;
        }
        return false;
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    bool try_get( input_type &v, message_metainfo& metainfo ) override {
        spin_mutex::scoped_lock l( my_mutex );
        if (my_buffer_is_valid) {
            v = my_buffer;
            metainfo = my_buffered_metainfo;

            // Since the successor of the node will use move semantics while wrapping the metainfo
            // that is designed to transfer the ownership of the value from single-push buffer to the task
            // It is required to reserve one more reference here because the value keeps in the buffer
            // and the ownership is not transferred
            for (auto msg_waiter : metainfo.waiters()) {
                msg_waiter->reserve(1);
            }
            return true;
        }
        return false;
    }
#endif

    //! Reserves an item
    bool try_reserve( T &v ) override {
        return try_get(v);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
private:
    bool try_reserve(T& v, message_metainfo& metainfo) override {
        spin_mutex::scoped_lock l( my_mutex );
        if (my_buffer_is_valid) {
            v = my_buffer;
            metainfo = my_buffered_metainfo;
            return true;
        }
        return false;
    }
public:
#endif

    //! Releases the reserved item
    bool try_release() override { return true; }

    //! Consumes the reserved item
    bool try_consume() override { return true; }

    bool is_valid() {
       spin_mutex::scoped_lock l( my_mutex );
       return my_buffer_is_valid;
    }

    void clear() {
       spin_mutex::scoped_lock l( my_mutex );
       my_buffer_is_valid = false;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
       for (auto msg_waiter : my_buffered_metainfo.waiters()) {
           msg_waiter->release(1);
       }
       my_buffered_metainfo = message_metainfo{};
#endif
    }

protected:

    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    graph_task* try_put_task( const input_type &v ) override {
        spin_mutex::scoped_lock l( my_mutex );
        return try_put_task_impl(v __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const input_type& v, const message_metainfo& metainfo) override {
        spin_mutex::scoped_lock l( my_mutex );
        return try_put_task_impl(v, metainfo);
    }
#endif

    graph_task * try_put_task_impl(const input_type &v __TBB_FLOW_GRAPH_METAINFO_ARG(const message_metainfo& metainfo)) {
        my_buffer = v;
        my_buffer_is_valid = true;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
        // Since the new item is pushed to the buffer - reserving the waiters
        for (auto msg_waiter : metainfo.waiters()) {
            msg_waiter->reserve(1);
        }

        // Since the item is taken out from the buffer - releasing the stored waiters
        for (auto msg_waiter : my_buffered_metainfo.waiters()) {
            msg_waiter->release(1);
        }

        my_buffered_metainfo = metainfo;
#endif
        graph_task* rtask = my_successors.try_put_task(v __TBB_FLOW_GRAPH_METAINFO_ARG(my_buffered_metainfo) );
        if (!rtask) rtask = SUCCESSFULLY_ENQUEUED;
        return rtask;
    }

    graph& graph_reference() const override {
        return my_graph;
    }

    //! Breaks an infinite loop between the node reservation and register_successor call
    struct register_predecessor_task : public graph_task {
        register_predecessor_task(
            graph& g, d1::small_object_allocator& allocator, predecessor_type& owner, successor_type& succ)
            : graph_task(g, allocator), o(owner), s(succ) {};

        d1::task* execute(d1::execution_data& ed) override {
            // TODO revamp: investigate why qualification is needed for register_successor() call
            using tbb::detail::d2::register_predecessor;
            using tbb::detail::d2::register_successor;
            if ( !register_predecessor(s, o) ) {
                register_successor(o, s);
            }
            finalize<register_predecessor_task>(ed);
            return nullptr;
        }

        d1::task* cancel(d1::execution_data& ed) override {
            finalize<register_predecessor_task>(ed);
            return nullptr;
        }

        predecessor_type& o;
        successor_type& s;
    };

    spin_mutex my_mutex;
    broadcast_cache< input_type, null_rw_mutex > my_successors;
    input_type my_buffer;
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    message_metainfo my_buffered_metainfo;
#endif
    bool my_buffer_is_valid;

    void reset_node( reset_flags f) override {
        my_buffer_is_valid = false;
       if (f&rf_clear_edges) {
           my_successors.clear();
       }
    }
};  // overwrite_node

template< typename T >
class write_once_node : public overwrite_node<T> {
public:
    typedef T input_type;
    typedef T output_type;
    typedef overwrite_node<T> base_type;
    typedef typename receiver<input_type>::predecessor_type predecessor_type;
    typedef typename sender<output_type>::successor_type successor_type;

    //! Constructor
    __TBB_NOINLINE_SYM explicit write_once_node(graph& g) : base_type(g) {
        fgt_node( CODEPTR(), FLOW_WRITE_ONCE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    template <typename... Args>
    write_once_node(const node_set<Args...>& nodes) : write_once_node(nodes.graph_reference()) {
        make_edges_in_order(nodes, *this);
    }
#endif

    //! Copy constructor: call base class copy constructor
    __TBB_NOINLINE_SYM write_once_node( const write_once_node& src ) : base_type(src) {
        fgt_node( CODEPTR(), FLOW_WRITE_ONCE_NODE, &(this->my_graph),
                                 static_cast<receiver<input_type> *>(this),
                                 static_cast<sender<output_type> *>(this) );
    }

protected:
    template< typename R, typename B > friend class run_and_put_task;
    template<typename X, typename Y> friend class broadcast_cache;
    template<typename X, typename Y> friend class round_robin_cache;
    graph_task *try_put_task( const T &v ) override {
        spin_mutex::scoped_lock l( this->my_mutex );
        return this->my_buffer_is_valid ? nullptr : this->try_put_task_impl(v __TBB_FLOW_GRAPH_METAINFO_ARG(message_metainfo{}));
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    graph_task* try_put_task(const T& v, const message_metainfo& metainfo) override {
        spin_mutex::scoped_lock l( this->my_mutex );
        return this->my_buffer_is_valid ? nullptr : this->try_put_task_impl(v, metainfo);
    }
#endif
}; // write_once_node

inline void set_name(const graph& g, const char *name) {
    fgt_graph_desc(&g, name);
}

template <typename Output>
inline void set_name(const input_node<Output>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename Input, typename Output, typename Policy>
inline void set_name(const function_node<Input, Output, Policy>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename Output, typename Policy>
inline void set_name(const continue_node<Output,Policy>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const broadcast_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const buffer_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const queue_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const sequencer_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T, typename Compare>
inline void set_name(const priority_queue_node<T, Compare>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T, typename DecrementType>
inline void set_name(const limiter_node<T, DecrementType>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename OutputTuple, typename JP>
inline void set_name(const join_node<OutputTuple, JP>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename... Types>
inline void set_name(const indexer_node<Types...>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const overwrite_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template <typename T>
inline void set_name(const write_once_node<T>& node, const char *name) {
    fgt_node_desc(&node, name);
}

template<typename Input, typename Output, typename Policy>
inline void set_name(const multifunction_node<Input, Output, Policy>& node, const char *name) {
    fgt_multioutput_node_desc(&node, name);
}

template<typename TupleType>
inline void set_name(const split_node<TupleType>& node, const char *name) {
    fgt_multioutput_node_desc(&node, name);
}

template< typename InputTuple, typename OutputTuple >
inline void set_name(const composite_node<InputTuple, OutputTuple>& node, const char *name) {
    fgt_multiinput_multioutput_node_desc(&node, name);
}

template<typename Input, typename Output, typename Policy>
inline void set_name(const async_node<Input, Output, Policy>& node, const char *name)
{
    fgt_multioutput_node_desc(&node, name);
}
} // d2
} // detail
} // tbb


// Include deduction guides for node classes
#include "detail/_flow_graph_nodes_deduction.h"

namespace tbb {
namespace flow {
inline namespace v1 {
    using detail::d2::receiver;
    using detail::d2::sender;

    using detail::d2::serial;
    using detail::d2::unlimited;

    using detail::d2::reset_flags;
    using detail::d2::rf_reset_protocol;
    using detail::d2::rf_reset_bodies;
    using detail::d2::rf_clear_edges;

    using detail::d2::graph;
    using detail::d2::graph_node;
    using detail::d2::continue_msg;

    using detail::d2::input_node;
    using detail::d2::function_node;
    using detail::d2::multifunction_node;
    using detail::d2::split_node;
    using detail::d2::output_port;
    using detail::d2::indexer_node;
    using detail::d2::tagged_msg;
    using detail::d2::cast_to;
    using detail::d2::is_a;
    using detail::d2::continue_node;
    using detail::d2::overwrite_node;
    using detail::d2::write_once_node;
    using detail::d2::broadcast_node;
    using detail::d2::buffer_node;
    using detail::d2::queue_node;
    using detail::d2::sequencer_node;
    using detail::d2::priority_queue_node;
    using detail::d2::limiter_node;
    using namespace detail::d2::graph_policy_namespace;
    using detail::d2::join_node;
    using detail::d2::input_port;
    using detail::d2::copy_body;
    using detail::d2::make_edge;
    using detail::d2::remove_edge;
    using detail::d2::tag_value;
    using detail::d2::composite_node;
    using detail::d2::async_node;
    using detail::d2::node_priority_t;
    using detail::d2::no_priority;

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    using detail::d2::follows;
    using detail::d2::precedes;
    using detail::d2::make_node_set;
    using detail::d2::make_edges;
#endif

} // v1
} // flow

    using detail::d1::flow_control;

namespace profiling {
    using detail::d2::set_name;
} // profiling

} // tbb


#if TBB_USE_PROFILING_TOOLS  && ( __unix__ || __APPLE__ )
   // We don't do pragma pop here, since it still gives warning on the USER side
   #undef __TBB_NOINLINE_SYM
#endif

#endif // __TBB_flow_graph_H