1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
|
/*
Copyright (c) 2005-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_parallel_for_each_H
#define __TBB_parallel_for_each_H
#include "detail/_config.h"
#include "detail/_namespace_injection.h"
#include "detail/_exception.h"
#include "detail/_task.h"
#include "detail/_aligned_space.h"
#include "detail/_small_object_pool.h"
#include "detail/_utils.h"
#include "parallel_for.h"
#include "task_group.h" // task_group_context
#include <iterator>
#include <type_traits>
namespace tbb {
namespace detail {
#if __TBB_CPP20_CONCEPTS_PRESENT
namespace d1 {
template <typename Item>
class feeder;
} // namespace d1
inline namespace d0 {
template <typename Body, typename ItemType, typename FeederItemType>
concept parallel_for_each_body = std::invocable<const std::remove_reference_t<Body>&, ItemType&&> ||
std::invocable<const std::remove_reference_t<Body>&, ItemType&&, tbb::detail::d1::feeder<FeederItemType>&>;
} // namespace d0
#endif // __TBB_CPP20_CONCEPTS_PRESENT
namespace d2 {
template<typename Body, typename Item> class feeder_impl;
} // namespace d2
namespace d1 {
//! Class the user supplied algorithm body uses to add new tasks
template<typename Item>
class feeder {
feeder() {}
feeder(const feeder&) = delete;
void operator=( const feeder&) = delete;
virtual ~feeder () {}
virtual void internal_add_copy(const Item& item) = 0;
virtual void internal_add_move(Item&& item) = 0;
template<typename Body_, typename Item_> friend class d2::feeder_impl;
public:
//! Add a work item to a running parallel_for_each.
void add(const Item& item) {internal_add_copy(item);}
void add(Item&& item) {internal_add_move(std::move(item));}
};
} // namespace d1
namespace d2 {
using namespace tbb::detail::d1;
/** Selects one of the two possible forms of function call member operator.
@ingroup algorithms **/
template<class Body>
struct parallel_for_each_operator_selector {
public:
template<typename ItemArg, typename FeederArg>
static auto call(const Body& body, ItemArg&& item, FeederArg*)
-> decltype(tbb::detail::invoke(body, std::forward<ItemArg>(item)), void()) {
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
// Suppression of Microsoft non-standard extension warnings
#pragma warning (push)
#pragma warning (disable: 4239)
#endif
tbb::detail::invoke(body, std::forward<ItemArg>(item));
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#pragma warning (pop)
#endif
}
template<typename ItemArg, typename FeederArg>
static auto call(const Body& body, ItemArg&& item, FeederArg* feeder)
-> decltype(tbb::detail::invoke(body, std::forward<ItemArg>(item), *feeder), void()) {
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
// Suppression of Microsoft non-standard extension warnings
#pragma warning (push)
#pragma warning (disable: 4239)
#endif
__TBB_ASSERT(feeder, "Feeder was not created but should be");
tbb::detail::invoke(body, std::forward<ItemArg>(item), *feeder);
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
#pragma warning (pop)
#endif
}
};
template<typename Body, typename Item>
struct feeder_item_task: public task {
using feeder_type = feeder_impl<Body, Item>;
template <typename ItemType>
feeder_item_task(ItemType&& input_item, feeder_type& feeder, small_object_allocator& alloc, wait_tree_vertex_interface& wait_vertex) :
item(std::forward<ItemType>(input_item)),
my_feeder(feeder),
my_allocator(alloc),
m_wait_tree_vertex(r1::get_thread_reference_vertex(&wait_vertex))
{
m_wait_tree_vertex->reserve();
}
void finalize(const execution_data& ed) {
m_wait_tree_vertex->release();
my_allocator.delete_object(this, ed);
}
//! Hack for resolve ambiguity between calls to the body with and without moving the stored copy
//! Executing body with moving the copy should have higher priority
using first_priority = int;
using second_priority = double;
template <typename BodyType, typename ItemType, typename FeederType>
static auto call(const BodyType& call_body, ItemType& call_item, FeederType& call_feeder, first_priority)
-> decltype(parallel_for_each_operator_selector<Body>::call(call_body, std::move(call_item), &call_feeder), void())
{
parallel_for_each_operator_selector<Body>::call(call_body, std::move(call_item), &call_feeder);
}
template <typename BodyType, typename ItemType, typename FeederType>
static void call(const BodyType& call_body, ItemType& call_item, FeederType& call_feeder, second_priority) {
parallel_for_each_operator_selector<Body>::call(call_body, call_item, &call_feeder);
}
task* execute(execution_data& ed) override {
call(my_feeder.my_body, item, my_feeder, first_priority{});
finalize(ed);
return nullptr;
}
task* cancel(execution_data& ed) override {
finalize(ed);
return nullptr;
}
Item item;
feeder_type& my_feeder;
small_object_allocator my_allocator;
wait_tree_vertex_interface* m_wait_tree_vertex;
}; // class feeder_item_task
/** Implements new task adding procedure.
@ingroup algorithms **/
template<typename Body, typename Item>
class feeder_impl : public feeder<Item> {
// Avoiding use of copy constructor in a virtual method if the type does not support it
void internal_add_copy_impl(std::true_type, const Item& item) {
using feeder_task = feeder_item_task<Body, Item>;
small_object_allocator alloc;
auto task = alloc.new_object<feeder_task>(item, *this, alloc, my_wait_context);
spawn(*task, my_execution_context);
}
void internal_add_copy_impl(std::false_type, const Item&) {
__TBB_ASSERT(false, "Overloading for r-value reference doesn't work or it's not movable and not copyable object");
}
void internal_add_copy(const Item& item) override {
internal_add_copy_impl(typename std::is_copy_constructible<Item>::type(), item);
}
void internal_add_move(Item&& item) override {
using feeder_task = feeder_item_task<Body, Item>;
small_object_allocator alloc{};
auto task = alloc.new_object<feeder_task>(std::move(item), *this, alloc, my_wait_context);
spawn(*task, my_execution_context);
}
public:
feeder_impl(const Body& body, wait_context_vertex& w_context, task_group_context &context)
: my_body(body),
my_wait_context(w_context)
, my_execution_context(context)
{}
const Body& my_body;
wait_context_vertex& my_wait_context;
task_group_context& my_execution_context;
}; // class feeder_impl
/** Execute computation under one element of the range
@ingroup algorithms **/
template<typename Iterator, typename Body, typename Item>
struct for_each_iteration_task: public task {
using feeder_type = feeder_impl<Body, Item>;
for_each_iteration_task(Iterator input_item_ptr, const Body& body, feeder_impl<Body, Item>* feeder_ptr, wait_context& wait_context) :
item_ptr(input_item_ptr), my_body(body), my_feeder_ptr(feeder_ptr), parent_wait_context(wait_context)
{}
void finalize() {
parent_wait_context.release();
}
task* execute(execution_data&) override {
parallel_for_each_operator_selector<Body>::call(my_body, *item_ptr, my_feeder_ptr);
finalize();
return nullptr;
}
task* cancel(execution_data&) override {
finalize();
return nullptr;
}
Iterator item_ptr;
const Body& my_body;
feeder_impl<Body, Item>* my_feeder_ptr;
wait_context& parent_wait_context;
}; // class for_each_iteration_task
// Helper to get the type of the iterator to the internal sequence of copies
// If the element can be passed to the body as an rvalue - this iterator should be move_iterator
template <typename Body, typename Item, typename = void>
struct input_iteration_task_iterator_helper {
// For input iterators we pass const lvalue reference to the body
// It is prohibited to take non-constant lvalue references for input iterators
using type = const Item*;
};
template <typename Body, typename Item>
struct input_iteration_task_iterator_helper<Body, Item,
tbb::detail::void_t<decltype(parallel_for_each_operator_selector<Body>::call(std::declval<const Body&>(),
std::declval<Item&&>(),
std::declval<feeder_impl<Body, Item>*>()))>>
{
using type = std::move_iterator<Item*>;
};
/** Split one block task to several(max_block_size) iteration tasks for input iterators
@ingroup algorithms **/
template <typename Body, typename Item>
struct input_block_handling_task : public task {
static constexpr size_t max_block_size = 4;
using feeder_type = feeder_impl<Body, Item>;
using iteration_task_iterator_type = typename input_iteration_task_iterator_helper<Body, Item>::type;
using iteration_task = for_each_iteration_task<iteration_task_iterator_type, Body, Item>;
input_block_handling_task(wait_context_vertex& root_wait_context, task_group_context& e_context,
const Body& body, feeder_impl<Body, Item>* feeder_ptr, small_object_allocator& alloc)
:my_size(0), my_wait_context(0), my_root_wait_context(root_wait_context),
my_execution_context(e_context), my_allocator(alloc)
{
auto item_it = block_iteration_space.begin();
for (auto* it = task_pool.begin(); it != task_pool.end(); ++it) {
new (it) iteration_task(iteration_task_iterator_type(item_it++), body, feeder_ptr, my_wait_context);
}
}
void finalize(const execution_data& ed) {
my_root_wait_context.release();
my_allocator.delete_object(this, ed);
}
task* execute(execution_data& ed) override {
__TBB_ASSERT( my_size > 0, "Negative size was passed to task");
for (std::size_t counter = 1; counter < my_size; ++counter) {
my_wait_context.reserve();
spawn(*(task_pool.begin() + counter), my_execution_context);
}
my_wait_context.reserve();
execute_and_wait(*task_pool.begin(), my_execution_context,
my_wait_context, my_execution_context);
// deallocate current task after children execution
finalize(ed);
return nullptr;
}
task* cancel(execution_data& ed) override {
finalize(ed);
return nullptr;
}
~input_block_handling_task() {
for(std::size_t counter = 0; counter < max_block_size; ++counter) {
(task_pool.begin() + counter)->~iteration_task();
if (counter < my_size) {
(block_iteration_space.begin() + counter)->~Item();
}
}
}
aligned_space<Item, max_block_size> block_iteration_space;
aligned_space<iteration_task, max_block_size> task_pool;
std::size_t my_size;
wait_context my_wait_context;
wait_context_vertex& my_root_wait_context;
task_group_context& my_execution_context;
small_object_allocator my_allocator;
}; // class input_block_handling_task
/** Split one block task to several(max_block_size) iteration tasks for forward iterators
@ingroup algorithms **/
template <typename Iterator, typename Body, typename Item>
struct forward_block_handling_task : public task {
static constexpr size_t max_block_size = 4;
using iteration_task = for_each_iteration_task<Iterator, Body, Item>;
forward_block_handling_task(Iterator first, std::size_t size,
wait_context_vertex& w_context, task_group_context& e_context,
const Body& body, feeder_impl<Body, Item>* feeder_ptr,
small_object_allocator& alloc)
: my_size(size), my_wait_context(0), my_root_wait_context(w_context),
my_execution_context(e_context), my_allocator(alloc)
{
auto* task_it = task_pool.begin();
for (std::size_t i = 0; i < size; i++) {
new (task_it++) iteration_task(first, body, feeder_ptr, my_wait_context);
++first;
}
}
void finalize(const execution_data& ed) {
my_root_wait_context.release();
my_allocator.delete_object(this, ed);
}
task* execute(execution_data& ed) override {
__TBB_ASSERT( my_size > 0, "Negative size was passed to task");
for(std::size_t counter = 1; counter < my_size; ++counter) {
my_wait_context.reserve();
spawn(*(task_pool.begin() + counter), my_execution_context);
}
my_wait_context.reserve();
execute_and_wait(*task_pool.begin(), my_execution_context,
my_wait_context, my_execution_context);
// deallocate current task after children execution
finalize(ed);
return nullptr;
}
task* cancel(execution_data& ed) override {
finalize(ed);
return nullptr;
}
~forward_block_handling_task() {
for(std::size_t counter = 0; counter < my_size; ++counter) {
(task_pool.begin() + counter)->~iteration_task();
}
}
aligned_space<iteration_task, max_block_size> task_pool;
std::size_t my_size;
wait_context my_wait_context;
wait_context_vertex& my_root_wait_context;
task_group_context& my_execution_context;
small_object_allocator my_allocator;
}; // class forward_block_handling_task
/** Body for parallel_for algorithm.
* Allows to redirect operations under random access iterators range to the parallel_for algorithm.
@ingroup algorithms **/
template <typename Iterator, typename Body, typename Item>
class parallel_for_body_wrapper {
Iterator my_first;
const Body& my_body;
feeder_impl<Body, Item>* my_feeder_ptr;
public:
parallel_for_body_wrapper(Iterator first, const Body& body, feeder_impl<Body, Item>* feeder_ptr)
: my_first(first), my_body(body), my_feeder_ptr(feeder_ptr) {}
void operator()(tbb::blocked_range<std::size_t> range) const {
#if __INTEL_COMPILER
#pragma ivdep
#endif
for (std::size_t count = range.begin(); count != range.end(); count++) {
parallel_for_each_operator_selector<Body>::call(my_body, *(my_first + count),
my_feeder_ptr);
}
}
}; // class parallel_for_body_wrapper
/** Helper for getting iterators tag including inherited custom tags
@ingroup algorithms */
template<typename It>
using tag = typename std::iterator_traits<It>::iterator_category;
#if __TBB_CPP20_CONCEPTS_PRESENT
template <typename It>
struct move_iterator_dispatch_helper {
using type = It;
};
// Until C++23, std::move_iterator::iterator_concept always defines
// to std::input_iterator_tag and hence std::forward_iterator concept
// always evaluates to false, so std::move_iterator dispatch should be
// made according to the base iterator type.
template <typename It>
struct move_iterator_dispatch_helper<std::move_iterator<It>> {
using type = It;
};
template <typename It>
using iterator_tag_dispatch_impl =
std::conditional_t<std::random_access_iterator<It>,
std::random_access_iterator_tag,
std::conditional_t<std::forward_iterator<It>,
std::forward_iterator_tag,
std::input_iterator_tag>>;
template <typename It>
using iterator_tag_dispatch =
iterator_tag_dispatch_impl<typename move_iterator_dispatch_helper<It>::type>;
#else
template<typename It>
using iterator_tag_dispatch = typename
std::conditional<
std::is_base_of<std::random_access_iterator_tag, tag<It>>::value,
std::random_access_iterator_tag,
typename std::conditional<
std::is_base_of<std::forward_iterator_tag, tag<It>>::value,
std::forward_iterator_tag,
std::input_iterator_tag
>::type
>::type;
#endif // __TBB_CPP20_CONCEPTS_PRESENT
template <typename Body, typename Iterator, typename Item>
using feeder_is_required = tbb::detail::void_t<decltype(tbb::detail::invoke(std::declval<const Body>(),
std::declval<typename std::iterator_traits<Iterator>::reference>(),
std::declval<feeder<Item>&>()))>;
// Creates feeder object only if the body can accept it
template <typename Iterator, typename Body, typename Item, typename = void>
struct feeder_holder {
feeder_holder( wait_context_vertex&, task_group_context&, const Body& ) {}
feeder_impl<Body, Item>* feeder_ptr() { return nullptr; }
}; // class feeder_holder
template <typename Iterator, typename Body, typename Item>
class feeder_holder<Iterator, Body, Item, feeder_is_required<Body, Iterator, Item>> {
public:
feeder_holder( wait_context_vertex& w_context, task_group_context& context, const Body& body )
: my_feeder(body, w_context, context) {}
feeder_impl<Body, Item>* feeder_ptr() { return &my_feeder; }
private:
feeder_impl<Body, Item> my_feeder;
}; // class feeder_holder
template <typename Iterator, typename Body, typename Item>
class for_each_root_task_base : public task {
public:
for_each_root_task_base(Iterator first, Iterator last, const Body& body, wait_context_vertex& w_context, task_group_context& e_context)
: my_first(first), my_last(last), my_wait_context(w_context), my_execution_context(e_context),
my_body(body), my_feeder_holder(my_wait_context, my_execution_context, my_body)
{
my_wait_context.reserve();
}
private:
task* cancel(execution_data&) override {
this->my_wait_context.release();
return nullptr;
}
protected:
Iterator my_first;
Iterator my_last;
wait_context_vertex& my_wait_context;
task_group_context& my_execution_context;
const Body& my_body;
feeder_holder<Iterator, Body, Item> my_feeder_holder;
}; // class for_each_root_task_base
/** parallel_for_each algorithm root task - most generic version
* Splits input range to blocks
@ingroup algorithms **/
template <typename Iterator, typename Body, typename Item, typename IteratorTag = iterator_tag_dispatch<Iterator>>
class for_each_root_task : public for_each_root_task_base<Iterator, Body, Item>
{
using base_type = for_each_root_task_base<Iterator, Body, Item>;
public:
using base_type::base_type;
private:
task* execute(execution_data& ed) override {
using block_handling_type = input_block_handling_task<Body, Item>;
if (this->my_first == this->my_last) {
this->my_wait_context.release();
return nullptr;
}
this->my_wait_context.reserve();
small_object_allocator alloc{};
auto block_handling_task = alloc.new_object<block_handling_type>(ed, this->my_wait_context, this->my_execution_context,
this->my_body, this->my_feeder_holder.feeder_ptr(),
alloc);
auto* block_iterator = block_handling_task->block_iteration_space.begin();
for (; !(this->my_first == this->my_last) && block_handling_task->my_size < block_handling_type::max_block_size; ++this->my_first) {
// Move semantics are automatically used when supported by the iterator
new (block_iterator++) Item(*this->my_first);
++block_handling_task->my_size;
}
// Do not access this after spawn to avoid races
spawn(*this, this->my_execution_context);
return block_handling_task;
}
}; // class for_each_root_task - most generic implementation
/** parallel_for_each algorithm root task - forward iterator based specialization
* Splits input range to blocks
@ingroup algorithms **/
template <typename Iterator, typename Body, typename Item>
class for_each_root_task<Iterator, Body, Item, std::forward_iterator_tag>
: public for_each_root_task_base<Iterator, Body, Item>
{
using base_type = for_each_root_task_base<Iterator, Body, Item>;
public:
using base_type::base_type;
private:
task* execute(execution_data& ed) override {
using block_handling_type = forward_block_handling_task<Iterator, Body, Item>;
if (this->my_first == this->my_last) {
this->my_wait_context.release();
return nullptr;
}
std::size_t block_size{0};
Iterator first_block_element = this->my_first;
for (; !(this->my_first == this->my_last) && block_size < block_handling_type::max_block_size; ++this->my_first) {
++block_size;
}
this->my_wait_context.reserve();
small_object_allocator alloc{};
auto block_handling_task = alloc.new_object<block_handling_type>(ed, first_block_element, block_size,
this->my_wait_context, this->my_execution_context,
this->my_body, this->my_feeder_holder.feeder_ptr(), alloc);
// Do not access this after spawn to avoid races
spawn(*this, this->my_execution_context);
return block_handling_task;
}
}; // class for_each_root_task - forward iterator based specialization
/** parallel_for_each algorithm root task - random access iterator based specialization
* Splits input range to blocks
@ingroup algorithms **/
template <typename Iterator, typename Body, typename Item>
class for_each_root_task<Iterator, Body, Item, std::random_access_iterator_tag>
: public for_each_root_task_base<Iterator, Body, Item>
{
using base_type = for_each_root_task_base<Iterator, Body, Item>;
public:
using base_type::base_type;
private:
task* execute(execution_data&) override {
tbb::parallel_for(
tbb::blocked_range<std::size_t>(0, std::distance(this->my_first, this->my_last)),
parallel_for_body_wrapper<Iterator, Body, Item>(this->my_first, this->my_body, this->my_feeder_holder.feeder_ptr())
, this->my_execution_context
);
this->my_wait_context.release();
return nullptr;
}
}; // class for_each_root_task - random access iterator based specialization
/** Helper for getting item type. If item type can be deduced from feeder - got it from feeder,
if feeder is generic - got item type from range.
@ingroup algorithms */
template<typename Body, typename Item, typename FeederArg>
auto feeder_argument_parser(void (Body::*)(Item, feeder<FeederArg>&) const) -> FeederArg;
template<typename Body, typename>
decltype(feeder_argument_parser<Body>(&Body::operator())) get_item_type_impl(int); // for (T, feeder<T>)
template<typename Body, typename Item> Item get_item_type_impl(...); // stub
template <typename Body, typename Item>
using get_item_type = decltype(get_item_type_impl<Body, Item>(0));
#if __TBB_CPP20_CONCEPTS_PRESENT
template <typename Body, typename ItemType>
using feeder_item_type = std::remove_cvref_t<get_item_type<Body, ItemType>>;
template <typename Body, typename Iterator>
concept parallel_for_each_iterator_body =
parallel_for_each_body<Body, iterator_reference_type<Iterator>, feeder_item_type<Body, iterator_reference_type<Iterator>>>;
template <typename Body, typename Range>
concept parallel_for_each_range_body =
parallel_for_each_body<Body, range_reference_type<Range>, feeder_item_type<Body, range_reference_type<Range>>>;
#endif
/** Implements parallel iteration over a range.
@ingroup algorithms */
template<typename Iterator, typename Body>
void run_parallel_for_each( Iterator first, Iterator last, const Body& body, task_group_context& context)
{
if (!(first == last)) {
using ItemType = get_item_type<Body, typename std::iterator_traits<Iterator>::value_type>;
wait_context_vertex w_context(0);
for_each_root_task<Iterator, Body, ItemType> root_task(first, last, body, w_context, context);
execute_and_wait(root_task, context, w_context.get_context(), context);
}
}
/** \page parallel_for_each_body_req Requirements on parallel_for_each body
Class \c Body implementing the concept of parallel_for_each body must define:
- \code
B::operator()(
cv_item_type item,
feeder<item_type>& feeder
) const
OR
B::operator()( cv_item_type& item ) const
\endcode Process item.
May be invoked concurrently for the same \c this but different \c item.
- \code item_type( const item_type& ) \endcode
Copy a work item.
- \code ~item_type() \endcode Destroy a work item
**/
/** \name parallel_for_each
See also requirements on \ref parallel_for_each_body_req "parallel_for_each Body". **/
//@{
//! Parallel iteration over a range, with optional addition of more work.
/** @ingroup algorithms */
template<typename Iterator, typename Body>
__TBB_requires(std::input_iterator<Iterator> && parallel_for_each_iterator_body<Body, Iterator>)
void parallel_for_each(Iterator first, Iterator last, const Body& body) {
task_group_context context(PARALLEL_FOR_EACH);
run_parallel_for_each<Iterator, Body>(first, last, body, context);
}
template<typename Range, typename Body>
__TBB_requires(container_based_sequence<Range, std::input_iterator_tag> && parallel_for_each_range_body<Body, Range>)
void parallel_for_each(Range& rng, const Body& body) {
parallel_for_each(std::begin(rng), std::end(rng), body);
}
template<typename Range, typename Body>
__TBB_requires(container_based_sequence<Range, std::input_iterator_tag> && parallel_for_each_range_body<Body, Range>)
void parallel_for_each(const Range& rng, const Body& body) {
parallel_for_each(std::begin(rng), std::end(rng), body);
}
//! Parallel iteration over a range, with optional addition of more work and user-supplied context
/** @ingroup algorithms */
template<typename Iterator, typename Body>
__TBB_requires(std::input_iterator<Iterator> && parallel_for_each_iterator_body<Body, Iterator>)
void parallel_for_each(Iterator first, Iterator last, const Body& body, task_group_context& context) {
run_parallel_for_each<Iterator, Body>(first, last, body, context);
}
template<typename Range, typename Body>
__TBB_requires(container_based_sequence<Range, std::input_iterator_tag> && parallel_for_each_range_body<Body, Range>)
void parallel_for_each(Range& rng, const Body& body, task_group_context& context) {
parallel_for_each(std::begin(rng), std::end(rng), body, context);
}
template<typename Range, typename Body>
__TBB_requires(container_based_sequence<Range, std::input_iterator_tag> && parallel_for_each_range_body<Body, Range>)
void parallel_for_each(const Range& rng, const Body& body, task_group_context& context) {
parallel_for_each(std::begin(rng), std::end(rng), body, context);
}
} // namespace d2
} // namespace detail
//! @endcond
//@}
inline namespace v1 {
using detail::d2::parallel_for_each;
using detail::d1::feeder;
} // namespace v1
} // namespace tbb
#endif /* __TBB_parallel_for_each_H */
|