File: parallel_scan.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (630 lines) | stat: -rw-r--r-- 23,295 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/*
    Copyright (c) 2005-2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_parallel_scan_H
#define __TBB_parallel_scan_H

#include <functional>

#include "detail/_config.h"
#include "detail/_namespace_injection.h"
#include "detail/_exception.h"
#include "detail/_task.h"

#include "profiling.h"
#include "partitioner.h"
#include "blocked_range.h"
#include "task_group.h"

namespace tbb {
namespace detail {
namespace d1 {

//! Used to indicate that the initial scan is being performed.
/** @ingroup algorithms */
struct pre_scan_tag {
    static bool is_final_scan() {return false;}
    operator bool() {return is_final_scan();}
};

//! Used to indicate that the final scan is being performed.
/** @ingroup algorithms */
struct final_scan_tag {
    static bool is_final_scan() {return true;}
    operator bool() {return is_final_scan();}
};

template<typename Range, typename Body>
struct sum_node;

#if __TBB_CPP20_CONCEPTS_PRESENT
} // namespace d1
inline namespace d0 {

template <typename Body, typename Range>
concept parallel_scan_body = splittable<Body> &&
                             requires( Body& body, const Range& range, Body& other ) {
                                 body(range, tbb::detail::d1::pre_scan_tag{});
                                 body(range, tbb::detail::d1::final_scan_tag{});
                                 body.reverse_join(other);
                                 body.assign(other);
                             };

template <typename Function, typename Range, typename Value>
concept parallel_scan_function = std::invocable<const std::remove_reference_t<Function>&,
                                                const Range&, const Value&, bool> &&
                                 std::convertible_to<std::invoke_result_t<const std::remove_reference_t<Function>&,
                                                                          const Range&, const Value&, bool>,
                                                     Value>;

template <typename Combine, typename Value>
concept parallel_scan_combine = std::invocable<const std::remove_reference_t<Combine>&,
                                               const Value&, const Value&> &&
                                std::convertible_to<std::invoke_result_t<const std::remove_reference_t<Combine>&,
                                                                         const Value&, const Value&>,
                                                    Value>;

} // namespace d0
namespace d1 {
#endif // __TBB_CPP20_CONCEPTS_PRESENT

//! Performs final scan for a leaf
/** @ingroup algorithms */
template<typename Range, typename Body>
struct final_sum : public task {
private:
    using sum_node_type = sum_node<Range, Body>;
    Body m_body;
    aligned_space<Range> m_range;
    //! Where to put result of last subrange, or nullptr if not last subrange.
    Body* m_stuff_last;

    wait_context& m_wait_context;
    sum_node_type* m_parent = nullptr;
public:
    small_object_allocator m_allocator;
    final_sum( Body& body, wait_context& w_o, small_object_allocator& alloc ) :
        m_body(body, split()), m_wait_context(w_o), m_allocator(alloc) {
        poison_pointer(m_stuff_last);
    }

    final_sum( final_sum& sum, small_object_allocator& alloc ) :
        m_body(sum.m_body, split()), m_wait_context(sum.m_wait_context), m_allocator(alloc) {
        poison_pointer(m_stuff_last);
    }

    ~final_sum() {
        m_range.begin()->~Range();
    }
    void finish_construction( sum_node_type* parent, const Range& range, Body* stuff_last ) {
        __TBB_ASSERT( m_parent == nullptr, nullptr );
        m_parent = parent;
        new( m_range.begin() ) Range(range);
        m_stuff_last = stuff_last;
    }
private:
    sum_node_type* release_parent() {
        call_itt_task_notify(releasing, m_parent);
        if (m_parent) {
            auto parent = m_parent;
            m_parent = nullptr;
            if (parent->ref_count.fetch_sub(1) == 1) {
                return parent;
            }
        }
        else
            m_wait_context.release();
        return nullptr;
    }
    sum_node_type* finalize(const execution_data& ed){
        sum_node_type* next_task = release_parent();
        m_allocator.delete_object<final_sum>(this, ed);
        return next_task;
    }

public:
    task* execute(execution_data& ed) override {
        m_body( *m_range.begin(), final_scan_tag() );
        if( m_stuff_last )
            m_stuff_last->assign(m_body);

        return finalize(ed);
    }
    task* cancel(execution_data& ed) override {
        return finalize(ed);
    }
    template<typename Tag>
    void operator()( const Range& r, Tag tag ) {
        m_body( r, tag );
    }
    void reverse_join( final_sum& a ) {
        m_body.reverse_join(a.m_body);
    }
    void reverse_join( Body& body ) {
        m_body.reverse_join(body);
    }
    void assign_to( Body& body ) {
        body.assign(m_body);
    }
    void self_destroy(const execution_data& ed) {
        m_allocator.delete_object<final_sum>(this, ed);
    }
};

//! Split work to be done in the scan.
/** @ingroup algorithms */
template<typename Range, typename Body>
struct sum_node : public task {
private:
    using final_sum_type = final_sum<Range,Body>;
public:
    final_sum_type *m_incoming;
    final_sum_type *m_body;
    Body *m_stuff_last;
private:
    final_sum_type *m_left_sum;
    sum_node *m_left;
    sum_node *m_right;
    bool m_left_is_final;
    Range m_range;
    wait_context& m_wait_context;
    sum_node* m_parent;
    small_object_allocator m_allocator;
public:
    std::atomic<unsigned int> ref_count{0};
    sum_node( const Range range, bool left_is_final_, sum_node* parent, wait_context& w_o, small_object_allocator& alloc ) :
        m_stuff_last(nullptr),
        m_left_sum(nullptr),
        m_left(nullptr),
        m_right(nullptr),
        m_left_is_final(left_is_final_),
        m_range(range),
        m_wait_context(w_o),
        m_parent(parent),
        m_allocator(alloc)
    {
        if( m_parent )
            m_parent->ref_count.fetch_add(1);
        // Poison fields that will be set by second pass.
        poison_pointer(m_body);
        poison_pointer(m_incoming);
    }

    ~sum_node() {
        if (m_parent)
            m_parent->ref_count.fetch_sub(1);
    }
private:
    sum_node* release_parent() {
        call_itt_task_notify(releasing, m_parent);
        if (m_parent) {
            auto parent = m_parent;
            m_parent = nullptr;
            if (parent->ref_count.fetch_sub(1) == 1) {
                return parent;
            }
        }
        else
            m_wait_context.release();
        return nullptr;
    }
    task* create_child( const Range& range, final_sum_type& body, sum_node* child, final_sum_type* incoming, Body* stuff_last ) {
        if( child ) {
            __TBB_ASSERT( is_poisoned(child->m_body) && is_poisoned(child->m_incoming), nullptr );
            child->prepare_for_execution(body, incoming, stuff_last);
            return child;
        } else {
            body.finish_construction(this, range, stuff_last);
            return &body;
        }
    }

    sum_node* finalize(const execution_data& ed) {
        sum_node* next_task = release_parent();
        m_allocator.delete_object<sum_node>(this, ed);
        return next_task;
    }

public:
    void prepare_for_execution(final_sum_type& body, final_sum_type* incoming, Body *stuff_last) {
        this->m_body = &body;
        this->m_incoming = incoming;
        this->m_stuff_last = stuff_last;
    }
    task* execute(execution_data& ed) override {
        if( m_body ) {
            if( m_incoming )
                m_left_sum->reverse_join( *m_incoming );
            task* right_child = this->create_child(Range(m_range,split()), *m_left_sum, m_right, m_left_sum, m_stuff_last);
            task* left_child = m_left_is_final ? nullptr : this->create_child(m_range, *m_body, m_left, m_incoming, nullptr);
            ref_count = (left_child != nullptr) + (right_child != nullptr);
            m_body = nullptr;
            if( left_child ) {
                spawn(*right_child, *ed.context);
                return left_child;
            } else {
                return right_child;
            }
        } else {
            return finalize(ed);
        }
    }
    task* cancel(execution_data& ed) override {
        return finalize(ed);
    }
    void self_destroy(const execution_data& ed) {
        m_allocator.delete_object<sum_node>(this, ed);
    }
    template<typename range,typename body,typename partitioner>
    friend struct start_scan;

    template<typename range,typename body>
    friend struct finish_scan;
};

//! Combine partial results
/** @ingroup algorithms */
template<typename Range, typename Body>
struct finish_scan : public task {
private:
    using sum_node_type = sum_node<Range,Body>;
    using final_sum_type = final_sum<Range,Body>;
    final_sum_type** const m_sum_slot;
    sum_node_type*& m_return_slot;
    small_object_allocator m_allocator;
public:
    std::atomic<final_sum_type*> m_right_zombie;
    sum_node_type& m_result;
    std::atomic<unsigned int> ref_count{2};
    finish_scan*  m_parent;
    wait_context& m_wait_context;
    task* execute(execution_data& ed) override {
        __TBB_ASSERT( m_result.ref_count.load() == static_cast<unsigned int>((m_result.m_left!=nullptr)+(m_result.m_right!=nullptr)), nullptr );
        if( m_result.m_left )
            m_result.m_left_is_final = false;
        final_sum_type* right_zombie = m_right_zombie.load(std::memory_order_acquire);
        if( right_zombie && m_sum_slot )
            (*m_sum_slot)->reverse_join(*m_result.m_left_sum);
        __TBB_ASSERT( !m_return_slot, nullptr );
        if( right_zombie || m_result.m_right ) {
            m_return_slot = &m_result;
        } else {
            m_result.self_destroy(ed);
        }
        if( right_zombie && !m_sum_slot && !m_result.m_right ) {
            right_zombie->self_destroy(ed);
            m_right_zombie.store(nullptr, std::memory_order_relaxed);
        }
        return finalize(ed);
    }
    task* cancel(execution_data& ed) override {
        return finalize(ed);
    }
    finish_scan(sum_node_type*& return_slot, final_sum_type** sum, sum_node_type& result_, finish_scan* parent, wait_context& w_o, small_object_allocator& alloc) :
        m_sum_slot(sum),
        m_return_slot(return_slot),
        m_allocator(alloc),
        m_right_zombie(nullptr),
        m_result(result_),
        m_parent(parent),
        m_wait_context(w_o)
    {
        __TBB_ASSERT( !m_return_slot, nullptr );
    }
private:
    finish_scan* release_parent() {
        call_itt_task_notify(releasing, m_parent);
        if (m_parent) {
            auto parent = m_parent;
            m_parent = nullptr;
            if (parent->ref_count.fetch_sub(1) == 1) {
                return parent;
            }
        }
        else
            m_wait_context.release();
        return nullptr;
    }
    finish_scan* finalize(const execution_data& ed) {
        finish_scan* next_task = release_parent();
        m_allocator.delete_object<finish_scan>(this, ed);
        return next_task;
    }
};

//! Initial task to split the work
/** @ingroup algorithms */
template<typename Range, typename Body, typename Partitioner>
struct start_scan : public task {
private:
    using sum_node_type = sum_node<Range,Body>;
    using final_sum_type = final_sum<Range,Body>;
    using finish_pass1_type = finish_scan<Range,Body>;
    std::reference_wrapper<sum_node_type*> m_return_slot;
    Range m_range;
    std::reference_wrapper<final_sum_type> m_body;
    typename Partitioner::partition_type m_partition;
    /** Non-null if caller is requesting total. */
    final_sum_type** m_sum_slot;
    bool m_is_final;
    bool m_is_right_child;

    finish_pass1_type*  m_parent;
    small_object_allocator m_allocator;
    wait_context& m_wait_context;

    finish_pass1_type* release_parent() {
        call_itt_task_notify(releasing, m_parent);
        if (m_parent) {
            auto parent = m_parent;
            m_parent = nullptr;
            if (parent->ref_count.fetch_sub(1) == 1) {
                return parent;
            }
        }
        else
            m_wait_context.release();
        return nullptr;
    }

    finish_pass1_type* finalize( const execution_data& ed ) {
        finish_pass1_type* next_task = release_parent();
        m_allocator.delete_object<start_scan>(this, ed);
        return next_task;
    }

public:
    task* execute( execution_data& ) override;
    task* cancel( execution_data& ed ) override {
        return finalize(ed);
    }
    start_scan( sum_node_type*& return_slot, start_scan& parent, small_object_allocator& alloc ) :
        m_return_slot(return_slot),
        m_range(parent.m_range,split()),
        m_body(parent.m_body),
        m_partition(parent.m_partition,split()),
        m_sum_slot(parent.m_sum_slot),
        m_is_final(parent.m_is_final),
        m_is_right_child(true),
        m_parent(parent.m_parent),
        m_allocator(alloc),
        m_wait_context(parent.m_wait_context)
    {
        __TBB_ASSERT( !m_return_slot, nullptr );
        parent.m_is_right_child = false;
    }

    start_scan( sum_node_type*& return_slot, const Range& range, final_sum_type& body, const Partitioner& partitioner, wait_context& w_o, small_object_allocator& alloc ) :
        m_return_slot(return_slot),
        m_range(range),
        m_body(body),
        m_partition(partitioner),
        m_sum_slot(nullptr),
        m_is_final(true),
        m_is_right_child(false),
        m_parent(nullptr),
        m_allocator(alloc),
        m_wait_context(w_o)
    {
        __TBB_ASSERT( !m_return_slot, nullptr );
    }

    static void run( const Range& range, Body& body, const Partitioner& partitioner ) {
        if( !range.empty() ) {
            task_group_context context(PARALLEL_SCAN);

            using start_pass1_type = start_scan<Range,Body,Partitioner>;
            sum_node_type* root = nullptr;
            wait_context w_ctx{1};
            small_object_allocator alloc{};

            auto& temp_body = *alloc.new_object<final_sum_type>(body, w_ctx, alloc);
            temp_body.reverse_join(body);

            auto& pass1 = *alloc.new_object<start_pass1_type>(/*m_return_slot=*/root, range, temp_body, partitioner, w_ctx, alloc);

            execute_and_wait(pass1, context, w_ctx, context);
            if( root ) {
                root->prepare_for_execution(temp_body, nullptr, &body);
                w_ctx.reserve();
                execute_and_wait(*root, context, w_ctx, context);
            } else {
                temp_body.assign_to(body);
                temp_body.finish_construction(nullptr, range, nullptr);
                alloc.delete_object<final_sum_type>(&temp_body);
            }
        }
    }
};

template<typename Range, typename Body, typename Partitioner>
task* start_scan<Range,Body,Partitioner>::execute( execution_data& ed ) {
    // Inspecting m_parent->result.left_sum would ordinarily be a race condition.
    // But we inspect it only if we are not a stolen task, in which case we
    // know that task assigning to m_parent->result.left_sum has completed.
    __TBB_ASSERT(!m_is_right_child || m_parent, "right child is never an orphan");
    bool treat_as_stolen = m_is_right_child && (is_stolen(ed) || &m_body.get()!=m_parent->m_result.m_left_sum);
    if( treat_as_stolen ) {
        // Invocation is for right child that has been really stolen or needs to be virtually stolen
        small_object_allocator alloc{};
        final_sum_type* right_zombie = alloc.new_object<final_sum_type>(m_body, alloc);
        m_parent->m_right_zombie.store(right_zombie, std::memory_order_release);
        m_body = *right_zombie;
        m_is_final = false;
    }
    task* next_task = nullptr;
    if( (m_is_right_child && !treat_as_stolen) || !m_range.is_divisible() || m_partition.should_execute_range(ed) ) {
        if( m_is_final )
            m_body(m_range, final_scan_tag());
        else if( m_sum_slot )
            m_body(m_range, pre_scan_tag());
        if( m_sum_slot )
            *m_sum_slot = &m_body.get();
        __TBB_ASSERT( !m_return_slot, nullptr );

        next_task = finalize(ed);
    } else {
        small_object_allocator alloc{};
        auto result = alloc.new_object<sum_node_type>(m_range,/*m_left_is_final=*/m_is_final, m_parent? &m_parent->m_result: nullptr, m_wait_context, alloc);

        auto new_parent = alloc.new_object<finish_pass1_type>(m_return_slot, m_sum_slot, *result, m_parent, m_wait_context, alloc);
        m_parent = new_parent;

        // Split off right child
        auto& right_child = *alloc.new_object<start_scan>(/*m_return_slot=*/result->m_right, *this, alloc);

        spawn(right_child, *ed.context);

        m_sum_slot = &result->m_left_sum;
        m_return_slot = result->m_left;

        __TBB_ASSERT( !m_return_slot, nullptr );
        next_task = this;
    }
    return next_task;
}

template<typename Range, typename Value, typename Scan, typename ReverseJoin>
class lambda_scan_body {
    Value               m_sum_slot;
    const Value&        identity_element;
    const Scan&         m_scan;
    const ReverseJoin&  m_reverse_join;
public:
    void operator=(const lambda_scan_body&) = delete;
    lambda_scan_body(const lambda_scan_body&) = default;

    lambda_scan_body( const Value& identity, const Scan& scan, const ReverseJoin& rev_join )
        : m_sum_slot(identity)
        , identity_element(identity)
        , m_scan(scan)
        , m_reverse_join(rev_join) {}

    lambda_scan_body( lambda_scan_body& b, split )
        : m_sum_slot(b.identity_element)
        , identity_element(b.identity_element)
        , m_scan(b.m_scan)
        , m_reverse_join(b.m_reverse_join) {}

    template<typename Tag>
    void operator()( const Range& r, Tag tag ) {
        m_sum_slot = tbb::detail::invoke(m_scan, r, m_sum_slot, tag);
    }

    void reverse_join( lambda_scan_body& a ) {
        m_sum_slot = tbb::detail::invoke(m_reverse_join, a.m_sum_slot, m_sum_slot);
    }

    void assign( lambda_scan_body& b ) {
        m_sum_slot = b.m_sum_slot;
    }

    Value result() const {
        return m_sum_slot;
    }
};

// Requirements on Range concept are documented in blocked_range.h

/** \page parallel_scan_body_req Requirements on parallel_scan body
    Class \c Body implementing the concept of parallel_scan body must define:
    - \code Body::Body( Body&, split ); \endcode    Splitting constructor.
                                                    Split \c b so that \c this and \c b can accumulate separately
    - \code Body::~Body(); \endcode                 Destructor
    - \code void Body::operator()( const Range& r, pre_scan_tag ); \endcode
                                                    Preprocess iterations for range \c r
    - \code void Body::operator()( const Range& r, final_scan_tag ); \endcode
                                                    Do final processing for iterations of range \c r
    - \code void Body::reverse_join( Body& a ); \endcode
                                                    Merge preprocessing state of \c a into \c this, where \c a was
                                                    created earlier from \c b by b's splitting constructor
**/

/** \name parallel_scan
    See also requirements on \ref range_req "Range" and \ref parallel_scan_body_req "parallel_scan Body". **/
//@{

//! Parallel prefix with default partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
    __TBB_requires(tbb_range<Range> && parallel_scan_body<Body, Range>)
void parallel_scan( const Range& range, Body& body ) {
    start_scan<Range, Body, __TBB_DEFAULT_PARTITIONER>::run(range,body,__TBB_DEFAULT_PARTITIONER());
}

//! Parallel prefix with simple_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
    __TBB_requires(tbb_range<Range> && parallel_scan_body<Body, Range>)
void parallel_scan( const Range& range, Body& body, const simple_partitioner& partitioner ) {
    start_scan<Range, Body, simple_partitioner>::run(range, body, partitioner);
}

//! Parallel prefix with auto_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Body>
    __TBB_requires(tbb_range<Range> && parallel_scan_body<Body, Range>)
void parallel_scan( const Range& range, Body& body, const auto_partitioner& partitioner ) {
    start_scan<Range,Body,auto_partitioner>::run(range, body, partitioner);
}

//! Parallel prefix with default partitioner
/** @ingroup algorithms **/
template<typename Range, typename Value, typename Scan, typename ReverseJoin>
    __TBB_requires(tbb_range<Range> && parallel_scan_function<Scan, Range, Value> &&
                   parallel_scan_combine<ReverseJoin, Value>)
Value parallel_scan( const Range& range, const Value& identity, const Scan& scan, const ReverseJoin& reverse_join ) {
    lambda_scan_body<Range, Value, Scan, ReverseJoin> body(identity, scan, reverse_join);
    parallel_scan(range, body, __TBB_DEFAULT_PARTITIONER());
    return body.result();
}

//! Parallel prefix with simple_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Value, typename Scan, typename ReverseJoin>
    __TBB_requires(tbb_range<Range> && parallel_scan_function<Scan, Range, Value> &&
                   parallel_scan_combine<ReverseJoin, Value>)
Value parallel_scan( const Range& range, const Value& identity, const Scan& scan, const ReverseJoin& reverse_join,
                     const simple_partitioner& partitioner ) {
    lambda_scan_body<Range, Value, Scan, ReverseJoin> body(identity, scan, reverse_join);
    parallel_scan(range, body, partitioner);
    return body.result();
}

//! Parallel prefix with auto_partitioner
/** @ingroup algorithms **/
template<typename Range, typename Value, typename Scan, typename ReverseJoin>
    __TBB_requires(tbb_range<Range> && parallel_scan_function<Scan, Range, Value> &&
                   parallel_scan_combine<ReverseJoin, Value>)
Value parallel_scan( const Range& range, const Value& identity, const Scan& scan, const ReverseJoin& reverse_join,
                     const auto_partitioner& partitioner ) {
    lambda_scan_body<Range, Value, Scan, ReverseJoin> body(identity, scan, reverse_join);
    parallel_scan(range, body, partitioner);
    return body.result();
}

} // namespace d1
} // namespace detail

inline namespace v1 {
    using detail::d1::parallel_scan;
    using detail::d1::pre_scan_tag;
    using detail::d1::final_scan_tag;
} // namespace v1

} // namespace tbb

#endif /* __TBB_parallel_scan_H */