File: custom_allocators.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (643 lines) | stat: -rw-r--r-- 23,348 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
/*
    Copyright (c) 2005-2021 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#ifndef __TBB_test_common_custom_allocators_H
#define __TBB_test_common_custom_allocators_H

#include "test.h"
#include <oneapi/tbb/detail/_allocator_traits.h>
#include <memory>
#include <atomic>
#include <scoped_allocator>

template <typename CounterType>
struct ArenaData {
    char* const my_buffer;
    const std::size_t my_size;
    CounterType my_allocated; // in bytes

    template <typename T>
    ArenaData( T* buf, std::size_t sz ) noexcept
        : my_buffer(reinterpret_cast<char*>(buf)),
          my_size(sz * sizeof(T))
    {
        my_allocated = 0;
    }

    ArenaData& operator=( const ArenaData& ) = delete;
}; // struct ArenaData

template <typename T, typename POCMA = std::false_type, typename CounterType = std::size_t>
struct ArenaAllocator {
    using arena_data_type = ArenaData<CounterType>;

    arena_data_type* my_data;

    using value_type = T;
    using propagate_on_container_move_assignment = POCMA;

    template <typename U>
    struct rebind {
        using other = ArenaAllocator<U, POCMA, CounterType>;
    };

    ArenaAllocator() = default;
    ArenaAllocator( arena_data_type& data ) noexcept : my_data(&data) {}

    template <typename U, typename POCMA2>
    ArenaAllocator( const ArenaAllocator<U, POCMA2, CounterType>& other ) noexcept
        : my_data(other.my_data) {}

    friend void swap( ArenaAllocator& lhs, ArenaAllocator& rhs ) {
        using std::swap;
        swap(lhs.my_data, rhs.my_data);
    }

    value_type* address( value_type& x ) const { return &x; }
    const value_type* address( const value_type& x ) const { return &x; }

    value_type* allocate( std::size_t n ) {
        std::size_t new_size = (my_data->my_allocated += n * sizeof(T));
        REQUIRE_MESSAGE(my_data->my_allocated <= my_data->my_size, "Trying to allocate more than was reserved");
        char* result = &(my_data->my_buffer[new_size - n * sizeof(T)]);
        return reinterpret_cast<value_type*>(result);
    }

    void deallocate( value_type* ptr, std::size_t n ) {
        char* p = reinterpret_cast<char*>(ptr);
        REQUIRE_MESSAGE((p >= my_data->my_buffer && p <= my_data->my_buffer + my_data->my_size),
                        "Trying to deallocate pointer not from arena");
        REQUIRE_MESSAGE((p + n * sizeof(T) <= my_data->my_buffer + my_data->my_size),
                        "Trying to deallocate pointer not from arena");
        // utils::suppress_unused_warning(p, n);
    }

    std::size_t max_size() const noexcept {
        return my_data->my_size / sizeof(T);
    }
}; // class ArenaAllocator

template <typename T, typename U, typename POCMA, typename C>
bool operator==( const ArenaAllocator<T, POCMA, C>& lhs, const ArenaAllocator<U, POCMA, C>& rhs ) {
    return lhs.my_data == rhs.my_data;
}

template <typename T, typename U, typename POCMA, typename C>
bool operator!=( const ArenaAllocator<T, POCMA, C>& lhs, const ArenaAllocator<U, POCMA, C>& rhs ) {
    return !(lhs == rhs);
}

template <typename BaseAllocatorType>
class LocalCountingAllocator : public BaseAllocatorType {
    using base_type = BaseAllocatorType;
    using base_traits = tbb::detail::allocator_traits<base_type>;
    using counter_type = std::atomic<std::size_t>;
public:
    using value_type = typename base_type::value_type;

    std::size_t max_items;
    counter_type items_allocated;
    counter_type items_freed;
    counter_type items_constructed;
    counter_type items_destroyed;
    counter_type allocations;
    counter_type frees;

    void set_counters( std::size_t it_allocated, std::size_t it_freed,
                       std::size_t it_constructed, std::size_t it_destroyed,
                       std::size_t allocs, std::size_t fres ) {
        items_allocated = it_allocated; // TODO: may be store
        items_freed = it_freed;
        items_constructed = it_constructed;
        items_destroyed = it_destroyed;
        allocations = allocs;
        frees = fres;
    }

    template <typename Allocator>
    void set_counters( const Allocator& alloc ) {
        set_counters(alloc.items_allocated, alloc.items_freed, alloc.items_constructed,
                     alloc.items_destroyed, alloc.allocations, alloc.frees);
    }

    void clear_counters() {
        set_counters(0, 0, 0, 0, 0, 0);
    }

    template <typename U>
    struct rebind {
        using other = LocalCountingAllocator<typename base_traits::template rebind_alloc<U>>;
    };

    LocalCountingAllocator() : max_items{0} { clear_counters(); }

    LocalCountingAllocator( const LocalCountingAllocator& other )
        : base_type(other), max_items{other.max_items} { set_counters(other); }

    template <typename U>
    LocalCountingAllocator( const LocalCountingAllocator<U>& other )
        : base_type(other), max_items{other.max_items} { set_counters(other); }

    LocalCountingAllocator& operator=( const LocalCountingAllocator& other ) {
        base_type::operator=(other);
        max_items = other.max_items;
        set_counters(other);
        return *this;
    }

    value_type* allocate( std::size_t n ) {
        if (max_items != 0 && items_allocated + n >= max_items) {
            TBB_TEST_THROW(std::bad_alloc());
        }
        value_type* ptr = static_cast<base_type*>(this)->allocate(n);
        ++allocations;
        items_allocated += n;
        return ptr;
    }

    void deallocate( value_type* ptr, std::size_t n ) {
        ++frees;
        items_freed += n;
        static_cast<base_type*>(this)->deallocate(ptr, n);
    }

    template <typename U, typename... Args>
    void construct( U* ptr, Args&&... args ) {
        base_traits::construct(*this, ptr, std::forward<Args>(args)...);
        ++items_constructed;
    }

    template <typename U>
    void destroy( U* ptr ) {
        base_traits::destroy(*this, ptr);
        ++items_destroyed;
    }

    void set_limits( std::size_t max ) {
        max_items = max;
    }
}; // class LocalCountingAllocator

struct AllocatorCounters {
    using counter_type = std::atomic<std::size_t>;

    counter_type items_allocated;
    counter_type items_freed;
    counter_type items_constructed;
    counter_type items_destroyed;
    counter_type allocations;
    counter_type frees;

    AllocatorCounters() = default;

    AllocatorCounters( std::size_t it_allocated, std::size_t it_freed, std::size_t it_constructed,
                       std::size_t it_destroyed, std::size_t allocs, std::size_t fres )
        : items_allocated(it_allocated), items_freed(it_freed),
          items_constructed(it_constructed), items_destroyed(it_destroyed),
          allocations(allocs), frees(fres) {}

    AllocatorCounters( const AllocatorCounters& other )
        : items_allocated(other.items_allocated.load()),
          items_freed(other.items_allocated.load()),
          items_constructed(other.items_constructed.load()),
          items_destroyed(other.items_destroyed.load()),
          allocations(other.allocations.load()),
          frees(other.allocations.load()) {}

    AllocatorCounters& operator=( const AllocatorCounters& other ) {
        items_allocated.store(other.items_allocated.load());
        items_freed.store(other.items_freed.load());
        items_constructed.store(other.items_constructed.load());
        items_destroyed.store(other.items_destroyed.load());
        allocations.store(other.allocations.load());
        frees.store(other.frees.load());
        return *this;
    }

    friend bool operator==( const AllocatorCounters& lhs, const AllocatorCounters& rhs ) {
        return lhs.items_allocated == rhs.items_allocated &&
               lhs.items_freed == rhs.items_freed &&
               lhs.items_constructed == rhs.items_constructed &&
               lhs.items_destroyed == rhs.items_destroyed &&
               lhs.allocations == rhs.allocations &&
               lhs.frees == rhs.frees;
    }
}; // struct AllocatorCounters

template <typename BaseAllocatorType>
class StaticCountingAllocator : public BaseAllocatorType {
    using base_type = BaseAllocatorType;
    using base_traits = tbb::detail::allocator_traits<BaseAllocatorType>;
    using counter_type = std::atomic<std::size_t>;
public:
    using value_type = typename base_type::value_type;
    using pointer = value_type*;
    using counters_type = AllocatorCounters;

    static std::size_t max_items;
    static counter_type items_allocated;
    static counter_type items_freed;
    static counter_type items_constructed;
    static counter_type items_destroyed;
    static counter_type allocations;
    static counter_type frees;
    static bool throwing;

    template <typename U>
    struct rebind {
        using other = StaticCountingAllocator<typename base_traits::template rebind_alloc<U>>;
    };

    StaticCountingAllocator() = default;

    template <typename U>
    StaticCountingAllocator( const StaticCountingAllocator<U>& other ) : base_type(other) {}

    value_type* allocate( std::size_t n ) {
        if (max_items != 0 && items_allocated + n >= max_items) {
            if (throwing) {
                TBB_TEST_THROW(std::bad_alloc{});
            }
            return nullptr;
        }
        value_type* ptr = static_cast<base_type*>(this)->allocate(n);
        ++allocations;
        items_allocated += n;
        return ptr;
    }

    void deallocate(const pointer ptr, const std::size_t n){
        ++frees;
        items_freed += n;
        static_cast<base_type*>(this)->deallocate(ptr, n);
    }

    template <typename U, typename... Args>
    void construct( U* ptr, Args&&... args ) {
        ++items_constructed;
        base_traits::construct(*this, ptr, std::forward<Args>(args)...);
    }

    template <typename U>
    void destroy( U* ptr ) {
        ++items_destroyed;
        base_traits::destroy(*this, ptr);
    }

    static AllocatorCounters counters() {
        return {items_allocated, items_freed, items_constructed, items_destroyed, allocations, frees};
    }

    static void init_counters() {
        items_allocated = 0;
        items_freed = 0;
        items_constructed = 0;
        items_destroyed = 0;
        allocations = 0;
        frees = 0;
    }

    static void set_limits( std::size_t max = 0, bool do_throw = true ) {
        max_items = max;
        throwing = do_throw;
    }
}; // class StaticCountingAllocator

template <typename T>
std::size_t StaticCountingAllocator<T>::max_items;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::items_allocated;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::items_freed;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::items_constructed;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::items_destroyed;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::allocations;
template <typename T>
std::atomic<std::size_t> StaticCountingAllocator<T>::frees;
template <typename T>
bool StaticCountingAllocator<T>::throwing;

struct StaticSharedCountingAllocatorBase {
    using counter_type = std::atomic<std::size_t>;
    using counters_type = AllocatorCounters;
    static std::size_t max_items;
    static counter_type items_allocated;
    static counter_type items_freed;
    static counter_type items_constructed;
    static counter_type items_destroyed;
    static counter_type allocations;
    static counter_type frees;
    static bool throwing;

    static counters_type counters() {
        return { items_allocated.load(), items_freed.load(), items_constructed.load(),
                 items_destroyed.load(), allocations.load(), frees.load() };
    }

    static void init_counters() {
        items_allocated = 0;
        items_freed = 0;
        items_constructed = 0;
        items_destroyed = 0;
        allocations = 0;
        frees = 0;
    }

    static void set_limits( std::size_t max = 0, bool do_throw = true ) {
        max_items = max;
        throwing = do_throw;
    }
}; // class StaticSharedCountingAllocatorBase

std::size_t StaticSharedCountingAllocatorBase::max_items;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::items_constructed;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::items_destroyed;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::items_allocated;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::items_freed;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::allocations;
std::atomic<std::size_t> StaticSharedCountingAllocatorBase::frees;
bool StaticSharedCountingAllocatorBase::throwing;

template <typename BaseAllocatorType>
class StaticSharedCountingAllocator
    : public StaticSharedCountingAllocatorBase, public BaseAllocatorType
{
    using base_type = StaticSharedCountingAllocatorBase;
    using alloc_base_type = BaseAllocatorType;
    using base_traits = tbb::detail::allocator_traits<BaseAllocatorType>;
public:
    using value_type = typename alloc_base_type::value_type;
    using counters_type = AllocatorCounters;

    template <typename U>
    struct rebind {
        using other = StaticSharedCountingAllocator<typename base_traits::template rebind_alloc<U>>;
    };

    StaticSharedCountingAllocator() = default;
    StaticSharedCountingAllocator( const StaticSharedCountingAllocator& ) = default;
    StaticSharedCountingAllocator& operator=( const StaticSharedCountingAllocator& ) = default;

    template <typename U>
    StaticSharedCountingAllocator( const StaticSharedCountingAllocator<U>& other) : alloc_base_type(other) {}

    // Constructor from the base allocator with any type
    template <typename Alloc>
    StaticSharedCountingAllocator( const Alloc& src ) noexcept
        : alloc_base_type(src) {}

    value_type* allocate( std::size_t n ) {
        if (base_type::max_items != 0 &&
            base_type::items_allocated + n >= base_type::max_items) {
            if (base_type::throwing) {
                TBB_TEST_THROW(std::bad_alloc());
            }
            return nullptr;
        }
        ++base_type::allocations;
        base_type::items_allocated += n;
        return static_cast<alloc_base_type*>(this)->allocate(n);
    }

    void deallocate( value_type* ptr, std::size_t n ) {
        ++base_type::frees;
        base_type::items_freed += n;
        static_cast<alloc_base_type*>(this)->deallocate(ptr, n);
    }

    template <typename U, typename... Args>
    void construct( U* ptr, Args&&... args ) {
        base_traits::construct(*this, ptr, std::forward<Args>(args)...);
        ++base_type::items_constructed;
    }

    template <typename U>
    void destroy( U* ptr ) {
        base_traits::destroy(*this, ptr);
        ++base_type::items_destroyed;
    }
}; // class StaticSharedCountingAllocator

template <typename Allocator>
class AllocatorAwareData {
public:
    static bool assert_on_constructions;
    using allocator_type = Allocator;

    AllocatorAwareData( const allocator_type& allocator = allocator_type() )
        : my_allocator(allocator), my_value(0) {}

    AllocatorAwareData( int v, const allocator_type& allocator = allocator_type() )
        : my_allocator(allocator), my_value(v) {}

    AllocatorAwareData( const AllocatorAwareData& rhs )
        : my_allocator(rhs.my_allocator), my_value(rhs.my_value)
    {
        REQUIRE_MESSAGE(!assert_on_constructions, "Allocator should propagate to the data during copy construction");
    }

    AllocatorAwareData( AllocatorAwareData&& rhs)
        : my_allocator(rhs.my_allocator), my_value(rhs.my_value)
    {
        REQUIRE_MESSAGE(!assert_on_constructions, "Allocator should propagate to the data during move construction");
    }

    AllocatorAwareData( const AllocatorAwareData& rhs, const allocator_type& allocator )
        : my_allocator(allocator), my_value(rhs.my_value) {}

    AllocatorAwareData( AllocatorAwareData&& rhs, const allocator_type& allocator )
        : my_allocator(allocator), my_value(rhs.my_value) {}

    AllocatorAwareData& operator=( const AllocatorAwareData& other ) {
        my_value = other.my_value;
        return *this;
    }

    int value() const { return my_value; }

    static void activate() { assert_on_constructions = true; }
    static void deactivate() { assert_on_constructions = false; }
private:
    allocator_type my_allocator;
    int my_value;
}; // class AllocatorAwareData

template <typename Allocator>
bool AllocatorAwareData<Allocator>::assert_on_constructions = false;

template <typename Allocator>
bool operator==( const AllocatorAwareData<Allocator>& lhs, const AllocatorAwareData<Allocator>& rhs ) {
    return lhs.value() == rhs.value();
}

template <typename Allocator>
bool operator<( const AllocatorAwareData<Allocator>& lhs, const AllocatorAwareData<Allocator>& rhs ) {
    return lhs.value() < rhs.value();
}

namespace std {
template <typename Allocator>
struct hash<AllocatorAwareData<Allocator>> {
    std::size_t operator()(const AllocatorAwareData<Allocator>& obj) const {
        return std::hash<int>()(obj.value());
    }
};
}

template <typename Allocator, typename POCMA = std::false_type, typename POCCA = std::false_type,
          typename POCS = std::false_type>
struct PropagatingAllocator : Allocator {
    using base_allocator_traits = std::allocator_traits<Allocator>;
    using propagate_on_container_copy_assignment = POCCA;
    using propagate_on_container_move_assignment = POCMA;
    using propagate_on_container_swap = POCS;
    bool* propagated_on_copy_assignment;
    bool* propagated_on_move_assignment;
    bool* propagated_on_swap;
    bool* selected_on_copy_construction;

    template <typename U>
    struct rebind {
        using other = PropagatingAllocator<typename base_allocator_traits::template rebind_alloc<U>,
                                           POCMA, POCCA, POCS>;
    };

    PropagatingAllocator()
        : propagated_on_copy_assignment(nullptr),
          propagated_on_move_assignment(nullptr),
          propagated_on_swap(nullptr),
          selected_on_copy_construction(nullptr) {}

    PropagatingAllocator( bool& poca, bool& poma, bool& pos, bool& soc )
        : propagated_on_copy_assignment(&poca),
          propagated_on_move_assignment(&poma),
          propagated_on_swap(&pos),
          selected_on_copy_construction(&soc) {}

    PropagatingAllocator( const PropagatingAllocator& other )
        : Allocator(other),
          propagated_on_copy_assignment(other.propagated_on_copy_assignment),
          propagated_on_move_assignment(other.propagated_on_move_assignment),
          propagated_on_swap(other.propagated_on_swap),
          selected_on_copy_construction(other.selected_on_copy_construction) {}

    template <typename Allocator2>
    PropagatingAllocator( const PropagatingAllocator<Allocator2, POCMA, POCCA, POCS>& other )
        : Allocator(other),
          propagated_on_copy_assignment(other.propagated_on_copy_assignment),
          propagated_on_move_assignment(other.propagated_on_move_assignment),
          propagated_on_swap(other.propagated_on_swap),
          selected_on_copy_construction(other.selected_on_copy_construction) {}

    PropagatingAllocator& operator=( const PropagatingAllocator& ) {
        REQUIRE_MESSAGE(POCCA::value, "Allocator should not copy assign if POCCA is false");
        if (propagated_on_copy_assignment)
            *propagated_on_copy_assignment = true;
        return *this;
    }

    PropagatingAllocator& operator=( PropagatingAllocator&& ) {
        REQUIRE_MESSAGE(POCMA::value, "Allocator should not move assign if POCMA is false");
        if (propagated_on_move_assignment)
            *propagated_on_move_assignment = true;
        return *this;
    }

    PropagatingAllocator select_on_container_copy_construction() const {
        if (selected_on_copy_construction)
            *selected_on_copy_construction = true;
        return *this;
    }
}; // struct PropagatingAllocator

template <typename Allocator, typename POCMA, typename POCCA, typename POCS>
void swap( PropagatingAllocator<Allocator, POCMA, POCCA, POCS>& lhs,
           PropagatingAllocator<Allocator, POCMA, POCCA, POCS>& )
{
    REQUIRE_MESSAGE(POCS::value, "Allocator should not swap if POCS is false");
    if (lhs.propagated_on_swap)
        *lhs.propagated_on_swap = true;
}

template <typename T>
using AlwaysPropagatingAllocator = PropagatingAllocator<std::allocator<T>, /*POCMA = */std::true_type,
                                                        /*POCCA = */std::true_type, /*POCS = */std::true_type>;
template <typename T>
using NeverPropagatingAllocator = PropagatingAllocator<std::allocator<T>>;
template <typename T>
using PocmaAllocator = PropagatingAllocator<std::allocator<T>, /*POCMA = */std::true_type>;
template <typename T>
using PoccaAllocator = PropagatingAllocator<std::allocator<T>, /*POCMA = */std::false_type, /*POCCA = */std::true_type>;
template <typename T>
using PocsAllocator = PropagatingAllocator<std::allocator<T>, /*POCMA = */std::false_type, /*POCCA = */std::false_type,
                                           /*POCS = */std::true_type>;

template <typename T>
class AlwaysEqualAllocator : public std::allocator<T> {
    using base_allocator = std::allocator<T>;
public:
    using is_always_equal = std::true_type;
    using value_type = typename base_allocator::value_type;
    using propagate_on_container_move_assignment = std::false_type;

    template <typename U>
    struct rebind {
        using other = AlwaysEqualAllocator<U>;
    };

    AlwaysEqualAllocator() = default;

    AlwaysEqualAllocator( const AlwaysEqualAllocator& ) = default;

    template <typename U>
    AlwaysEqualAllocator( const AlwaysEqualAllocator<U>& other )
        : base_allocator(other) {}
}; // class AlwaysEqualAllocator

template <typename T>
class NotAlwaysEqualAllocator : public std::allocator<T> {
    using base_allocator = std::allocator<T>;
public:
    using is_always_equal = std::false_type;
    using value_type = typename base_allocator::value_type;
    using propagate_on_container_swap = std::false_type;

    template <typename U>
    struct rebind {
        using other = NotAlwaysEqualAllocator<U>;
    };

    NotAlwaysEqualAllocator() = default;

    NotAlwaysEqualAllocator( const NotAlwaysEqualAllocator& ) = default;

    template <typename U>
    NotAlwaysEqualAllocator( const NotAlwaysEqualAllocator<U>& other )
        : base_allocator(other) {}
};

template <typename T>
bool operator==( const AlwaysEqualAllocator<T>&, const AlwaysEqualAllocator<T>& ) {
#ifndef __TBB_TEST_SKIP_IS_ALWAYS_EQUAL_CHECK
    REQUIRE_MESSAGE(false, "operator== should not be called if is_always_equal is true");
#endif
    return true;
}

#endif // __TBB_test_common_custom_allocators_H