File: graph_utils.h

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (973 lines) | stat: -rw-r--r-- 34,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
/*
    Copyright (c) 2005-2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

/** @file harness_graph.cpp
    This contains common helper classes and functions for testing graph nodes
**/

#ifndef __TBB_harness_graph_H
#define __TBB_harness_graph_H

#include "config.h"

#include "oneapi/tbb/flow_graph.h"
#include "oneapi/tbb/task.h"
#include "oneapi/tbb/null_rw_mutex.h"
#include "oneapi/tbb/concurrent_unordered_set.h"

#include <atomic>
#include <thread>
#include <mutex>
#include <condition_variable>

#include "common/spin_barrier.h"

using tbb::detail::d2::SUCCESSFULLY_ENQUEUED;

// Needed conversion to and from continue_msg, but didn't want to add
// conversion operators to the class, since we don't want it in general,
// only in these tests.
template<typename InputType, typename OutputType>
struct converter {
    static OutputType convert_value(const InputType &i) {
        return OutputType(i);
    }
};

template<typename InputType>
struct converter<InputType,tbb::flow::continue_msg> {
    static tbb::flow::continue_msg convert_value(const InputType &/*i*/) {
        return tbb::flow::continue_msg();
    }
};

template<typename OutputType>
struct converter<tbb::flow::continue_msg,OutputType> {
    static OutputType convert_value(const tbb::flow::continue_msg &/*i*/) {
        return OutputType();
    }
};

// helper for multifunction_node tests.
template<size_t N>
struct mof_helper {
    template<typename InputType, typename ports_type>
    static inline void output_converted_value(const InputType &i, ports_type &p) {
        (void)std::get<N-1>(p).try_put(converter<InputType,typename std::tuple_element<N-1,ports_type>::type::output_type>::convert_value(i));
        output_converted_value<N-1>(i, p);
    }
};

template<>
struct mof_helper<1> {
    template<typename InputType, typename ports_type>
    static inline void output_converted_value(const InputType &i, ports_type &p) {
        // just emit a default-constructed object
        (void)std::get<0>(p).try_put(converter<InputType,typename std::tuple_element<0,ports_type>::type::output_type>::convert_value(i));
    }
};

template< typename InputType, typename OutputType >
struct harness_graph_default_functor {
    static OutputType construct( InputType v ) {
        return OutputType(v);
    }
};

template< typename OutputType >
struct harness_graph_default_functor< tbb::flow::continue_msg, OutputType > {
    static OutputType construct( tbb::flow::continue_msg ) {
        return OutputType();
    }
};

template< typename InputType >
struct harness_graph_default_functor< InputType, tbb::flow::continue_msg > {
    static tbb::flow::continue_msg construct( InputType ) {
        return tbb::flow::continue_msg();
    }
};

template< >
struct harness_graph_default_functor< tbb::flow::continue_msg, tbb::flow::continue_msg > {
    static tbb::flow::continue_msg construct( tbb::flow::continue_msg ) {
        return tbb::flow::continue_msg();
    }
};

template<typename InputType, typename OutputSet>
struct harness_graph_default_multifunction_functor {
    static const int N = std::tuple_size<OutputSet>::value;
    typedef typename tbb::flow::multifunction_node<InputType,OutputSet>::output_ports_type ports_type;
    static void construct(const InputType &i, ports_type &p) {
        mof_helper<N>::output_converted_value(i, p);
    }
};

//! An executor that accepts InputType and generates OutputType
template< typename InputType, typename OutputType >
struct harness_graph_executor {

    typedef OutputType (*function_ptr_type)( InputType v );

    template<typename RW>
    struct mutex_holder { static RW mutex; };

    static function_ptr_type fptr;
    static std::atomic<size_t> execute_count;
    static std::atomic<size_t> current_executors;
    static size_t max_executors;

    static inline OutputType func( InputType v ) {
        size_t c; // Declaration separate from initialization to avoid ICC internal error on IA-64 architecture
        c = current_executors++;
        if (max_executors != 0) {
            CHECK(c <= max_executors);
        }
        ++execute_count;
        OutputType v2 = (*fptr)(v);
        --current_executors;
        return v2;
    }

    template< typename RW >
    static inline OutputType tfunc( InputType v ) {
        // Invocations allowed to be concurrent, the lock is acquired in shared ("read") mode.
        // A test can take it exclusively, thus creating a barrier for invocations.
        typename RW::scoped_lock l( mutex_holder<RW>::mutex, /*write=*/false );
        return func(v);
    }

    template< typename RW >
    struct tfunctor {
        std::atomic<size_t> my_execute_count;
        tfunctor() { my_execute_count = 0; }
        tfunctor( const tfunctor &f ) { my_execute_count = static_cast<size_t>(f.my_execute_count); }
        OutputType operator()( InputType i ) {
           typename RW::scoped_lock l( harness_graph_executor::mutex_holder<RW>::mutex, /*write=*/false );
           ++my_execute_count;
           return harness_graph_executor::func(i);
        }
    };
    typedef tfunctor<tbb::null_rw_mutex> functor;

};

//! A multifunction executor that accepts InputType and has only one Output of OutputType.
template< typename InputType, typename OutputTuple >
struct harness_graph_multifunction_executor {
    typedef typename tbb::flow::multifunction_node<InputType,OutputTuple>::output_ports_type ports_type;
    typedef typename std::tuple_element<0,OutputTuple>::type OutputType;

    typedef void (*mfunction_ptr_type)( const InputType& v, ports_type &p );

    template<typename RW>
    struct mutex_holder { static RW mutex; };

    static mfunction_ptr_type fptr;
    static std::atomic<size_t> execute_count;
    static std::atomic<size_t> current_executors;
    static size_t max_executors;

    static inline void empty_func( const InputType&, ports_type& ) {
    }

    static inline void func( const InputType &v, ports_type &p ) {
        size_t c; // Declaration separate from initialization to avoid ICC internal error on IA-64 architecture
        c = current_executors++;
        CHECK( (max_executors == 0 || c <= max_executors) );
        CHECK( (std::tuple_size<OutputTuple>::value == 1) );
        ++execute_count;
        (*fptr)(v,p);
        --current_executors;
    }

    template< typename RW >
    static inline void tfunc( const InputType& v, ports_type &p ) {
        // Shared lock in invocations, exclusive in a test; see a comment in harness_graph_executor.
        typename RW::scoped_lock l( mutex_holder<RW>::mutex, /*write=*/false );
        func(v,p);
    }

    template< typename RW >
    struct tfunctor {
        std::atomic<size_t> my_execute_count;
        tfunctor() { my_execute_count = 0; }
        tfunctor( const tfunctor &f ) { my_execute_count = static_cast<size_t>(f.my_execute_count); }
        void operator()( const InputType &i, ports_type &p ) {
           typename RW::scoped_lock l( harness_graph_multifunction_executor::mutex_holder<RW>::mutex, /*write=*/false );
           ++my_execute_count;
           harness_graph_multifunction_executor::func(i,p);
        }
    };
    typedef tfunctor<tbb::null_rw_mutex> functor;

};

// static vars for function_node tests
template< typename InputType, typename OutputType >
template< typename RW >
RW harness_graph_executor<InputType, OutputType>::mutex_holder<RW>::mutex;

template< typename InputType, typename OutputType >
std::atomic<size_t> harness_graph_executor<InputType, OutputType>::execute_count;

template< typename InputType, typename OutputType >
typename harness_graph_executor<InputType, OutputType>::function_ptr_type harness_graph_executor<InputType, OutputType>::fptr
    = harness_graph_default_functor< InputType, OutputType >::construct;

template< typename InputType, typename OutputType >
std::atomic<size_t> harness_graph_executor<InputType, OutputType>::current_executors;

template< typename InputType, typename OutputType >
size_t harness_graph_executor<InputType, OutputType>::max_executors = 0;

// static vars for multifunction_node tests
template< typename InputType, typename OutputTuple >
template< typename RW >
RW harness_graph_multifunction_executor<InputType, OutputTuple>::mutex_holder<RW>::mutex;

template< typename InputType, typename OutputTuple >
std::atomic<size_t> harness_graph_multifunction_executor<InputType, OutputTuple>::execute_count;

template< typename InputType, typename OutputTuple >
typename harness_graph_multifunction_executor<InputType, OutputTuple>::mfunction_ptr_type harness_graph_multifunction_executor<InputType, OutputTuple>::fptr
    = harness_graph_default_multifunction_functor< InputType, OutputTuple >::construct;

template< typename InputType, typename OutputTuple >
std::atomic<size_t> harness_graph_multifunction_executor<InputType, OutputTuple>::current_executors;

template< typename InputType, typename OutputTuple >
size_t harness_graph_multifunction_executor<InputType, OutputTuple>::max_executors = 0;

//! Counts the number of puts received
template< typename T >
struct harness_counting_receiver : public tbb::flow::receiver<T> {
    harness_counting_receiver& operator=(const harness_counting_receiver&) = delete;

    std::atomic< size_t > my_count;
    T max_value;
    size_t num_copies;
    tbb::flow::graph& my_graph;

    harness_counting_receiver(tbb::flow::graph& g) : num_copies(1), my_graph(g) {
       my_count = 0;
    }

    void initialize_map( const T& m, size_t c ) {
       my_count = 0;
       max_value = m;
       num_copies = c;
    }

    tbb::flow::graph& graph_reference() const override {
        return my_graph;
    }

    tbb::detail::d2::graph_task *try_put_task( const T & ) override {
      ++my_count;
      return const_cast<tbb::detail::d2::graph_task*>(SUCCESSFULLY_ENQUEUED);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    tbb::detail::d2::graph_task *try_put_task( const T &t, const tbb::detail::d2::message_metainfo& ) override {
      return try_put_task(t);
    }
#endif

    void validate() {
        size_t n = my_count;
        CHECK( n == num_copies*max_value );
    }
 };

//! Counts the number of puts received
template< typename T >
struct harness_mapped_receiver : public tbb::flow::receiver<T> {
    harness_mapped_receiver(const harness_mapped_receiver&) = delete;
    harness_mapped_receiver& operator=(const harness_mapped_receiver&) = delete;

    std::atomic< size_t > my_count;
    T max_value;
    size_t num_copies;
    typedef tbb::concurrent_unordered_multiset<T> multiset_type;
    multiset_type *my_multiset;
    tbb::flow::graph& my_graph;

    harness_mapped_receiver(tbb::flow::graph& g) : my_multiset(nullptr), my_graph(g) {
       my_count = 0;
    }

#if __INTEL_COMPILER <= 2021
    // Suppress superfluous diagnostic about virtual keyword absence in a destructor of an inherited
    // class while the parent class has the virtual keyword for the destrocutor.
    virtual
#endif
    ~harness_mapped_receiver() {
        delete my_multiset;
        my_multiset = nullptr;
    }

    void initialize_map( const T& m, size_t c ) {
       my_count = 0;
       max_value = m;
       num_copies = c;
       delete my_multiset;
       my_multiset = new multiset_type;
    }

    tbb::detail::d2::graph_task* try_put_task( const T &t ) override {
      if ( my_multiset ) {
          (*my_multiset).emplace( t );
      } else {
          ++my_count;
      }
      return const_cast<tbb::detail::d2::graph_task*>(SUCCESSFULLY_ENQUEUED);
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    tbb::detail::d2::graph_task *try_put_task( const T &t, const tbb::detail::d2::message_metainfo& ) override {
      return try_put_task(t);
    }
#endif

    tbb::flow::graph& graph_reference() const override {
        return my_graph;
    }

    void validate() {
        if ( my_multiset ) {
            for ( size_t i = 0; i < (size_t)max_value; ++i ) {
                auto it = (*my_multiset).find((int)i);
                CHECK_MESSAGE( it != my_multiset->end(), "Expected element in the map." );
                size_t n = (*my_multiset).count(int(i));
                CHECK( n == num_copies );
            }
        } else {
            size_t n = my_count;
            CHECK( n == num_copies*max_value );
        }
    }

    void reset_receiver(tbb::flow::reset_flags /*f*/) {
        my_count = 0;
        if(my_multiset) delete my_multiset;
        my_multiset = new multiset_type;
    }

};

//! Counts the number of puts received
template< typename T >
struct harness_counting_sender : public tbb::flow::sender<T> {
    harness_counting_sender(const harness_counting_sender&) = delete;
    harness_counting_sender& operator=(const harness_counting_sender&) = delete;

    typedef typename tbb::flow::sender<T>::successor_type successor_type;
    std::atomic< successor_type * > my_receiver;
    std::atomic< size_t > my_count;
    std::atomic< size_t > my_received;
    size_t my_limit;

    harness_counting_sender( ) : my_limit(~size_t(0)) {
       my_receiver = nullptr;
       my_count = 0;
       my_received = 0;
    }

    harness_counting_sender( size_t limit ) : my_limit(limit) {
       my_receiver = nullptr;
       my_count = 0;
       my_received = 0;
    }

    bool register_successor( successor_type &r ) override {
        my_receiver = &r;
        return true;
    }

    bool remove_successor( successor_type &r ) override {
        successor_type *s = my_receiver.exchange( nullptr );
        CHECK( s == &r );
        return true;
    }

    bool try_get( T & v ) override {
        size_t i = my_count++;
        if ( i < my_limit ) {
           v = T( i );
           ++my_received;
           return true;
        } else {
           return false;
        }
    }

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
    bool try_get( T & v, tbb::detail::d2::message_metainfo& ) override {
        return try_get(v);
    }
#endif

    bool try_put_once() {
        successor_type *s = my_receiver;
        size_t i = my_count++;
        if ( s->try_put( T(i) ) ) {
            ++my_received;
            return true;
        } else {
            return false;
        }
    }

    void try_put_until_false() {
        successor_type *s = my_receiver;
        size_t i = my_count++;

        while ( s->try_put( T(i) ) ) {
            ++my_received;
            i = my_count++;
        }
    }

    void try_put_until_limit() {
        successor_type *s = my_receiver;

        for ( int i = 0; i < (int)my_limit; ++i ) {
            CHECK( s->try_put( T(i) ) );
            ++my_received;
        }
        CHECK( my_received == my_limit );
    }

};

template< typename InputType >
struct parallel_put_until_limit {
    parallel_put_until_limit& operator=(const parallel_put_until_limit&) = delete;

    typedef std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders_t;

    senders_t& my_senders;

    parallel_put_until_limit( senders_t& senders ) : my_senders(senders) {}

    void operator()( int i ) const  { my_senders[i]->try_put_until_limit(); }
};

// test for resets of buffer-type nodes.
std::atomic<int> serial_fn_state0;
std::atomic<int> serial_fn_state1;
std::atomic<int> serial_continue_state0;

template<typename T>
struct serial_fn_body {
    std::atomic<int>& my_flag;
    serial_fn_body(std::atomic<int>& flag) : my_flag(flag) { }
    T operator()(const T& in) {
        if (my_flag == 0) {
            my_flag = 1;

            // wait until we are released
            utils::SpinWaitWhileEq(my_flag, 1);
        }
        return in;
    }
};

template<typename T>
struct serial_continue_body {
    std::atomic<int>& my_flag;
    serial_continue_body(std::atomic<int> &flag) : my_flag(flag) {}
    T operator()(const tbb::flow::continue_msg& /*in*/) {
        // signal we have received a value
        my_flag = 1;
        // wait until we are released
        utils::SpinWaitWhileEq(my_flag, 1);
        return (T)1;
    }
};

template<typename T, typename BufferType>
void test_resets() {
    const int NN = 3;
    bool nFound[NN];
    tbb::task_arena arena{4};
    arena.execute(
        [&] {
            tbb::task_group_context   tgc;
            tbb::flow::graph          g(tgc);
            BufferType                b0(g);
            tbb::flow::queue_node<T>  q0(g);
            T j{};

            // reset empties buffer
            for(T i = 0; i < NN; ++i) {
                b0.try_put(i);
                nFound[(int)i] = false;
            }
            g.wait_for_all();
            g.reset();
            CHECK_MESSAGE(!b0.try_get(j), "reset did not empty buffer");

            // reset doesn't delete edge

            tbb::flow::make_edge(b0,q0);
            g.wait_for_all(); // TODO: invesigate why make_edge to buffer_node always creates a forwarding task
            g.reset();
            for(T i = 0; i < NN; ++i) {
                b0.try_put(i);
            }

            g.wait_for_all();
            for( T i = 0; i < NN; ++i) {
                CHECK_MESSAGE(q0.try_get(j), "Missing value from buffer");
                CHECK_MESSAGE(!nFound[(int)j], "Duplicate value found");
                nFound[(int)j] = true;
            }

            for(int ii = 0; ii < NN; ++ii) {
                CHECK_MESSAGE(nFound[ii], "missing value");
            }
            CHECK_MESSAGE(!q0.try_get(j), "Extra values in output");

            // reset reverses a reversed edge.
            // we will use a serial rejecting node to get the edge to reverse.
            tbb::flow::function_node<T, T, tbb::flow::rejecting> sfn(g, tbb::flow::serial, serial_fn_body<T>(serial_fn_state0));
            tbb::flow::queue_node<T> outq(g);
            tbb::flow::remove_edge(b0,q0);
            tbb::flow::make_edge(b0, sfn);
            tbb::flow::make_edge(sfn,outq);
            g.wait_for_all();  // wait for all the tasks started by building the graph are done.
            serial_fn_state0 = 0;

            // b0 ------> sfn ------> outq
            for(int icnt = 0; icnt < 2; ++icnt) {
                g.wait_for_all();
                serial_fn_state0 = 0;
                std::thread t([&] {
                    b0.try_put((T)0);  // will start sfn
                    g.wait_for_all();  // wait for all the tasks to complete.
                });
                // wait until function_node starts
                utils::SpinWaitWhileEq(serial_fn_state0, 0);
                // now the function_node is executing.
                // this will start a task to forward the second item
                // to the serial function node
                b0.try_put((T)1);  // first item will be consumed by task completing the execution
                b0.try_put((T)2);  // second item will remain after cancellation
                // now wait for the task that attempts to forward the buffer item to
                // complete.
                // now cancel the graph.
                CHECK_MESSAGE(tgc.cancel_group_execution(), "task group already cancelled");
                serial_fn_state0 = 0;  // release the function_node.
                t.join();
                // check that at most one output reached the queue_node
                T outt;
                T outt2;
                bool got_item1 = outq.try_get(outt);
                bool got_item2 = outq.try_get(outt2);
                // either the output queue was empty (if the function_node tested for cancellation before putting the
                // result to the queue) or there was one element in the queue (the 0).
                bool is_successful_operation = got_item1 && (int)outt == 0 && !got_item2;
                CHECK_MESSAGE( is_successful_operation, "incorrect output from function_node");
                // the edge between the buffer and the function_node should be reversed, and the last
                // message we put in the buffer should still be there.  We can't directly test for the
                // edge reversal.
                got_item1 = b0.try_get(outt);
                CHECK_MESSAGE(got_item1, " buffer lost a message");
                is_successful_operation = (2 == (int)outt || 1 == (int)outt);
                CHECK_MESSAGE(is_successful_operation, " buffer had incorrect message");  // the one not consumed by the node.
                CHECK_MESSAGE(g.is_cancelled(), "Graph was not cancelled");
                g.reset();
            }  // icnt

            // reset with remove_edge removes edge.  (icnt ==0 => forward edge, 1 => reversed edge
            for(int icnt = 0; icnt < 2; ++icnt) {
                if(icnt == 1) {
                    // set up reversed edge
                    tbb::flow::make_edge(b0, sfn);
                    tbb::flow::make_edge(sfn,outq);
                    serial_fn_state0 = 0;
                    std::thread t([&] {
                        b0.try_put((T)0);  // starts up the function node
                        b0.try_put((T)1);  // should reverse the edge
                        g.wait_for_all();  // wait for all the tasks to complete.
                    });
                    utils::SpinWaitWhileEq(serial_fn_state0, 0); // waiting for edge reversal
                    CHECK_MESSAGE(tgc.cancel_group_execution(), "task group already cancelled");
                    serial_fn_state0 = 0;  // release the function_node.
                    t.join();
                }
                g.reset(tbb::flow::rf_clear_edges);
                // test that no one is a successor to the buffer now.
                serial_fn_state0 = 1;  // let the function_node go if it gets an input message
                b0.try_put((T)23);
                g.wait_for_all();
                CHECK_MESSAGE((int)serial_fn_state0 == 1, "function_node executed when it shouldn't");
                T outt;
                bool is_successful_operation = b0.try_get(outt) && (T)23 == outt && !outq.try_get(outt);
                CHECK_MESSAGE(is_successful_operation, "node lost its input");
            }
        }
    );                          // arena.execute()
}

template<typename NodeType>
void test_input_ports_return_ref(NodeType& mip_node) {
    typename NodeType::input_ports_type& input_ports1 = mip_node.input_ports();
    typename NodeType::input_ports_type& input_ports2 = mip_node.input_ports();
    CHECK_MESSAGE(&input_ports1 == &input_ports2, "input_ports() should return reference");
}

template<typename NodeType>
void test_output_ports_return_ref(NodeType& mop_node) {
    typename NodeType::output_ports_type& output_ports1 = mop_node.output_ports();
    typename NodeType::output_ports_type& output_ports2 = mop_node.output_ports();
    CHECK_MESSAGE(&output_ports1 == &output_ports2, "output_ports() should return reference");
}

template< template <typename> class ReservingNodeType, typename DataType, bool DoClear >
class harness_reserving_body {
    harness_reserving_body& operator=(const harness_reserving_body&) = delete;
    ReservingNodeType<DataType> &my_reserving_node;
    tbb::flow::buffer_node<DataType> &my_buffer_node;
public:
    harness_reserving_body(ReservingNodeType<DataType> &reserving_node, tbb::flow::buffer_node<DataType> &bn) : my_reserving_node(reserving_node), my_buffer_node(bn) {}
    void operator()(DataType i) const {
        my_reserving_node.try_put(i);
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (push)
#pragma warning (disable: 4127)  /* suppress conditional expression is constant */
#endif
        if (DoClear) {
#if _MSC_VER && !__INTEL_COMPILER
#pragma warning (pop)
#endif
            my_reserving_node.clear();
        }
        my_buffer_node.try_put(i);
        my_reserving_node.try_put(i);
    }
};

template< template <typename> class ReservingNodeType, typename DataType >
void test_reserving_nodes() {
#if TBB_TEST_LOW_WORKLOAD
    const int N = 30;
#else
    const int N = 300;
#endif

    tbb::flow::graph g;

    ReservingNodeType<DataType> reserving_n(g);

    tbb::flow::buffer_node<DataType> buffering_n(g);
    tbb::flow::join_node< std::tuple<DataType, DataType>, tbb::flow::reserving > join_n(g);
    harness_counting_receiver< std::tuple<DataType, DataType> > end_receiver(g);

    tbb::flow::make_edge(reserving_n, tbb::flow::input_port<0>(join_n));
    tbb::flow::make_edge(buffering_n, tbb::flow::input_port<1>(join_n));
    tbb::flow::make_edge(join_n, end_receiver);

    utils::NativeParallelFor(N, harness_reserving_body<ReservingNodeType, DataType, false>(reserving_n, buffering_n));
    g.wait_for_all();

    CHECK(end_receiver.my_count == N);

    // Should not hang
    utils::NativeParallelFor(N, harness_reserving_body<ReservingNodeType, DataType, true>(reserving_n, buffering_n));
    g.wait_for_all();

    CHECK(end_receiver.my_count == 2 * N);
}

template<typename BufferNode>
void test_nested_make_edge_single_item_buffer_to_continue_receiver() {
    tbb::flow::graph g;

    using msg_t = tbb::flow::continue_msg;
    using cnode_t = tbb::flow::continue_node<msg_t>;

    std::atomic<int> count(0);

    // make a single item buffer and fill it
    BufferNode b{g};
    b.try_put(msg_t{});

    cnode_t execute_one_time{g,
        [&](const msg_t& m) {
            ++count;
            return m;
        }};

    cnode_t edge_adder{g, 
        [&](const msg_t& m) {
            // should increment predecessor count on execute_one_time
            // should NOT cause execute_one_time to immediately execute
            // since it has 2 predecessors, edge_adder and b
            tbb::flow::make_edge(b, execute_one_time);
            return m;
        }};

    tbb::flow::make_edge(edge_adder, execute_one_time);

    // execute_one should execute
    edge_adder.try_put(msg_t{});
    g.wait_for_all();

    // execute_one should NOT execute, it has 2 predecessors and
    // has seen a total of 3 messages
    execute_one_time.try_put(msg_t{});
    g.wait_for_all();
    CHECK_MESSAGE ((count == 1), "node should only execute once");
}

namespace lightweight_testing {

typedef std::tuple<int, int> output_tuple_type;

template<typename NodeType>
class native_loop_body {
    native_loop_body& operator=(const native_loop_body&) = delete;
    NodeType& my_node;
public:
    native_loop_body(NodeType& node) : my_node(node) {}

    void operator()(int) const noexcept {
        std::thread::id this_id = std::this_thread::get_id();
        my_node.try_put(this_id);
    }
};

std::atomic<unsigned> g_body_count;

class concurrency_checker_body {
public:
    concurrency_checker_body() { g_body_count = 0; }

    template<typename gateway_type>
    void operator()(const std::thread::id& input, gateway_type&) noexcept { increase_and_check(input); }

    output_tuple_type operator()(const std::thread::id& input) noexcept {
        increase_and_check(input);
        return output_tuple_type();
    }

private:
    void increase_and_check(const std::thread::id& input) {
        ++g_body_count;
        std::thread::id body_thread_id = std::this_thread::get_id();
        CHECK_MESSAGE(input == body_thread_id, "Body executed as not lightweight");
    }
};

template<typename NodeType>
void test_unlimited_lightweight_execution(unsigned N) {
    tbb::flow::graph g;
    NodeType node(g, tbb::flow::unlimited, concurrency_checker_body());

    utils::NativeParallelFor(N, native_loop_body<NodeType>(node));
    g.wait_for_all();

    CHECK_MESSAGE(g_body_count == N, "Body needs to be executed N times");
}

std::mutex m;
std::condition_variable lightweight_condition;
std::atomic<bool> work_submitted;
std::atomic<bool> lightweight_work_processed;

template<typename NodeType>
class native_loop_limited_body {
    native_loop_limited_body& operator=(const native_loop_limited_body&) = delete;
    NodeType& my_node;
    utils::SpinBarrier& my_barrier;
public:
    native_loop_limited_body(NodeType& node, utils::SpinBarrier& barrier):
        my_node(node), my_barrier(barrier) {}
    void operator()(int) const noexcept {
        std::thread::id this_id = std::this_thread::get_id();
        my_node.try_put(this_id);
        if(!lightweight_work_processed) {
            my_barrier.wait();
            work_submitted = true;
            lightweight_condition.notify_all();
        }
    }
};

struct condition_predicate {
    bool operator()() {
        return work_submitted;
    }
};

std::atomic<unsigned> g_lightweight_count;
std::atomic<unsigned> g_task_count;

template <bool NoExcept>
class limited_lightweight_checker_body {
public:
    limited_lightweight_checker_body() {
        g_body_count = 0;
        g_lightweight_count = 0;
        g_task_count = 0;
    }
private:
    void increase_and_check(const std::thread::id& /*input*/) {
        ++g_body_count;

        bool is_inside_task = oneapi::tbb::task::current_context() != nullptr;

        if(is_inside_task) {
            ++g_task_count;
        } else {
            std::unique_lock<std::mutex> lock(m);
            lightweight_condition.wait(lock, condition_predicate());
            ++g_lightweight_count;
            lightweight_work_processed = true;
        }
    }
public:
    template<typename gateway_type>
    void operator()(const std::thread::id& input, gateway_type&) noexcept(NoExcept) {
        increase_and_check(input);
    }
    output_tuple_type operator()(const std::thread::id& input) noexcept(NoExcept) {
        increase_and_check(input);
        return output_tuple_type();
    }
};

template<typename NodeType>
void test_limited_lightweight_execution(unsigned N, unsigned concurrency) {
    CHECK_MESSAGE(concurrency != tbb::flow::unlimited,
                  "Test for limited concurrency cannot be called with unlimited concurrency argument");
    tbb::flow::graph g;
    NodeType node(g, concurrency, limited_lightweight_checker_body</*NoExcept*/true>());
    // Execute first body as lightweight, then wait for all other threads to fill internal buffer.
    // Then unblock the lightweight thread and check if other body executions are inside oneTBB task.
    utils::SpinBarrier barrier(N - concurrency);
    utils::NativeParallelFor(N, native_loop_limited_body<NodeType>(node, barrier));
    g.wait_for_all();
    CHECK_MESSAGE(g_body_count == N, "Body needs to be executed N times");
    CHECK_MESSAGE(g_lightweight_count == concurrency, "Body needs to be executed as lightweight once");
    CHECK_MESSAGE(g_task_count == N - concurrency, "Body needs to be executed as not lightweight N - 1 times");
    work_submitted = false;
    lightweight_work_processed = false;
}

template<typename NodeType>
void test_limited_lightweight_execution_with_throwing_body(unsigned N, unsigned concurrency) {
    CHECK_MESSAGE(concurrency != tbb::flow::unlimited,
                  "Test for limited concurrency cannot be called with unlimited concurrency argument");
    tbb::flow::graph g;
    NodeType node(g, concurrency, limited_lightweight_checker_body</*NoExcept*/false>());
    // Body is no noexcept, in this case it must be executed as tasks, instead of lightweight execution
    utils::SpinBarrier barrier(N);
    utils::NativeParallelFor(N, native_loop_limited_body<NodeType>(node, barrier));
    g.wait_for_all();
    CHECK_MESSAGE(g_body_count == N, "Body needs to be executed N times");
    CHECK_MESSAGE(g_lightweight_count == 0, "Body needs to be executed with queueing policy");
    CHECK_MESSAGE(g_task_count == N, "Body needs to be executed as task N times");
    work_submitted = false;
    lightweight_work_processed = false;
}

template <int Threshold>
struct throwing_body{
    std::atomic<int>& my_counter;

    throwing_body(std::atomic<int>& counter) : my_counter(counter) {}

    template<typename input_type, typename gateway_type>
    void operator()(const input_type&, gateway_type&) {
        ++my_counter;
        if(my_counter == Threshold)
            throw Threshold;
    }

    template<typename input_type>
    output_tuple_type operator()(const input_type&) {
        ++my_counter;
        if(my_counter == Threshold)
            throw Threshold;
        return output_tuple_type();
    }
};

#if TBB_USE_EXCEPTIONS
//! Test excesption thrown in node with lightweight policy was rethrown by graph
template<template<typename, typename, typename> class NodeType>
void test_exception_ligthweight_policy(){
    std::atomic<int> counter {0};
    constexpr int threshold = 10;

    using IndexerNodeType = oneapi::tbb::flow::indexer_node<int, int>;
    using FuncNodeType = NodeType<IndexerNodeType::output_type, output_tuple_type, tbb::flow::lightweight>;
    oneapi::tbb::flow::graph g;

    IndexerNodeType indexer(g);
    FuncNodeType tested_node(g, oneapi::tbb::flow::serial, throwing_body<threshold>(counter));
    oneapi::tbb::flow::make_edge(indexer, tested_node);

    utils::NativeParallelFor( threshold * 2, [&](int i){
        if(i % 2)
            std::get<1>(indexer.input_ports()).try_put(1);
        else
            std::get<0>(indexer.input_ports()).try_put(0);
    });

    bool catchException = false;
    try
    {
        g.wait_for_all();
    }
    catch (const int& exc)
    {
        catchException = true;
        CHECK_MESSAGE( exc == threshold, "graph.wait_for_all() rethrow current exception" );
    }
    CHECK_MESSAGE( catchException, "The exception must be thrown from graph.wait_for_all()" );
    CHECK_MESSAGE( counter == threshold, "Graph must cancel all tasks after exception" );
}
#endif /* TBB_USE_EXCEPTIONS */

template<typename NodeType>
void test_lightweight(unsigned N) {
    test_unlimited_lightweight_execution<NodeType>(N);
    test_limited_lightweight_execution<NodeType>(N, tbb::flow::serial);
    test_limited_lightweight_execution<NodeType>(N, (std::min)(std::thread::hardware_concurrency() / 2, N/2));

    test_limited_lightweight_execution_with_throwing_body<NodeType>(N, tbb::flow::serial);
}

template<template<typename, typename, typename> class NodeType>
void test(unsigned N) {
    typedef std::thread::id input_type;
    typedef NodeType<input_type, output_tuple_type, tbb::flow::queueing_lightweight> node_type;
    test_lightweight<node_type>(N);

#if TBB_USE_EXCEPTIONS
    test_exception_ligthweight_policy<NodeType>();
#endif /* TBB_USE_EXCEPTIONS */
}

} // namespace lightweight_testing

#endif  // __TBB_harness_graph_H