1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
Copyright (c) 2005-2022 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#ifndef __TBB_test_common_utils_H
#define __TBB_test_common_utils_H
#include "config.h"
#include <oneapi/tbb/detail/_template_helpers.h>
#include <oneapi/tbb/detail/_config.h>
#include <oneapi/tbb/blocked_range.h>
#include <thread>
#include <type_traits>
#include <memory>
#include <array>
#include <cstdint>
#include <vector>
#include <limits>
#include <algorithm>
#include <cstring>
#include <chrono>
#include <unordered_set>
#if HARNESS_TBBMALLOC_THREAD_SHUTDOWN && __TBB_SOURCE_DIRECTLY_INCLUDED && (_WIN32 || _WIN64)
#include "../../src/tbbmalloc/tbbmalloc_internal_api.h"
#endif
#include "dummy_body.h"
#include "utils_yield.h"
#include "utils_assert.h"
namespace utils {
#define utils_fallthrough __TBB_fallthrough
using tbb::detail::try_call;
template<typename It>
typename std::iterator_traits<It>::value_type median(It first, It last) {
std::sort(first, last);
typename std::iterator_traits<It>::difference_type distance = std::distance(first, last);
std::advance(first, distance / 2 - 1);
if (distance % 2 == 0) {
// Wrote iterators in variables because of warning: <sequence-point>
auto curr_element = first;
auto next_element = ++first;
return typename std::iterator_traits<It>::value_type((*curr_element + *(++next_element)) / 2);
} else {
return typename std::iterator_traits<It>::value_type(*first);
}
}
static constexpr std::uint8_t MinThread = 1;
static constexpr std::uint8_t MaxThread = 4;
//! Simple native parallel loop where each iteration is executed in a different thread
template <typename Index, typename Body>
void NativeParallelFor( Index Number, const Body& body ) {
std::vector<std::thread> thread_pool;
for (Index idx = 0; idx < Number; ++idx) {
thread_pool.emplace_back([&body, idx] {
body(idx);
#if HARNESS_TBBMALLOC_THREAD_SHUTDOWN && __TBB_SOURCE_DIRECTLY_INCLUDED && (_WIN32 || _WIN64)
// in those cases can't release per-thread cache automatically, so do it manually
// TODO: investigate less-intrusive way to do it, for example via FLS keys
__TBB_mallocThreadShutdownNotification();
#endif
});
}
for (auto& thread : thread_pool) {
thread.join();
}
}
//! Native parallel loop with grainsize (like tbb::blocked_range)
template <typename Index, typename Body>
void NativeParallelFor( Index Number, Index block_size, const Body& body ) {
NativeParallelFor(Number / block_size, [block_size, &body] (Index idx) {
for (Index i = idx * block_size; i < (idx + 1) * block_size; ++i) {
body(i);
}
});
}
//! Utility template function to prevent "unused" warnings by various compilers.
template<typename... T> void suppress_unused_warning(T&&...) {}
namespace detail {
template <std::size_t size>
struct fixed_width_uint;
template <> struct fixed_width_uint<1>{ using type = uint8_t; };
template <> struct fixed_width_uint<2>{ using type = uint16_t; };
template <> struct fixed_width_uint<4>{ using type = uint32_t; };
template <> struct fixed_width_uint<8>{ using type = uint64_t; };
template <typename In>
typename fixed_width_uint<sizeof(In)>::type fixed_width_cast(In in) {
return static_cast<typename fixed_width_uint<sizeof(In)>::type>(in);
}
static constexpr std::array<uint64_t, 64> Primes = {{
0x9e3779b13346320e, 0xffe6cc5974101cb7, 0x2109f6dd6aaac9c9, 0x43977ab5f3dbca42,
0xba5703f59405b746, 0xb495a877a86fb54e, 0xe1626741ae21caf5, 0x79695e6bc8febd31,
0xbc98c09f76a304e0, 0xd5bee2b3513a491d, 0x287488f9933e6cb9, 0x3af18231269a8b29,
0x9677cd4ddbc9d5b1, 0xbe3a6929ddd2a556, 0xadc6a877a2f30f00, 0xdcf0674bb6968d97,
0xbe4d6fe991c0538d, 0x5f15e201c9cc571e, 0x99afc3fd0f27f767, 0xf3f16801361d4489,
0xe222cfffee1eec74, 0x24ba5fdb21098d07, 0x0620452d45401c7f, 0x79f149e30a92241f,
0xc8b93f49e4fe3077, 0x972702cd3aac3d56, 0xb07dd827a9126d73, 0x6c97d5ed60811c65,
0x085a3d61d2e858f8, 0x46eb5ea7ce433ba1, 0x3d9910edfc8bb30a, 0x2e687b5b6226023c,
0x296092277d3fd038, 0x6eb081f199767dbe, 0x0954c4e114d147dd, 0x9d114db92a2a629a,
0x542acfa9232adfb9, 0xb3e6bd7bddd0e31e, 0x0742d917c18e24dc, 0xe9f3ffa78ba59fab,
0x54581edb3717eaf7, 0xf2480f45494a28c9, 0x0bb9288ff4884f1b, 0xef1affc7bb0a5916,
0x85fa0ca7da978b79, 0x3ccc14db2137131b, 0xe6baf34b9bb9ade8, 0x343377f7e00c0852,
0x5ca190311bef1612, 0xe6d9293bc4c93e07, 0xf0a9f391680e1894, 0x5d2e980bb090bd62,
0xfc41107323c82d43, 0xc3749363812d28e8, 0xb892d829b0357953, 0x3549366b9e23bb94,
0x629750ad007fd05c, 0xb98294e53416fada, 0x892d9483bb3deae3, 0xc235baf386c925e4,
0x3d2402a37346a4b0, 0x6bdef3c95be05f43, 0xbec333cd1928a169, 0x40c9520f59e003fa
}};
}
//! A fast random number generator.
/* Uses linear congruential method. */
template <std::size_t size = 2>
class FastRandom {
public:
using result_type = typename ::utils::detail::fixed_width_uint<size>::type;
//! Construct a random number generator.
explicit FastRandom( uint64_t seed )
: my_seed(seed),
my_prime(detail::Primes[my_seed % detail::Primes.size()]) {}
static constexpr result_type max() {
return my_max;
}
static constexpr result_type min() {
return my_min;
}
//! Get a random number for the given seed; update the seed for next use.
result_type get( uint64_t seed ) {
result_type random_number = static_cast<result_type>(my_seed >> (64 - size * CHAR_BIT));
my_seed = seed * my_prime + 1;
return random_number;
}
//! Get a random number
result_type get( ) { return get(my_seed); }
result_type operator() () {
return static_cast<result_type>(my_seed >> (64 - size * CHAR_BIT)) % my_max;
}
private:
uint64_t my_seed, my_prime;
static constexpr result_type my_max = std::numeric_limits<result_type>::max();
static constexpr result_type my_min = std::numeric_limits<result_type>::min();
};
namespace iterator_type_traits {
template <typename T> using iterator_traits_value_type = typename std::iterator_traits<T>::value_type;
template <typename T> using iterator_traits_difference_type = typename std::iterator_traits<T>::difference_type;
template <typename T> using iterator_traits_pointer = typename std::iterator_traits<T>::pointer;
template <typename T> using iterator_traits_iterator_category = typename std::iterator_traits<T>::iterator_category;
using std::swap;
template <typename T> using is_swappable = decltype(swap(std::declval<T&>(), std::declval<T&>()));
template <typename T> using is_dereferenceable_by_asterisk = decltype(*std::declval<T>());
template <typename T> using is_dereferenceable_by_arrow = decltype(std::declval<T>().operator->());
template <typename T> using is_preincrementable = decltype(++std::declval<T>());
template <typename T> using is_postincrementable = decltype(std::declval<T>()++);
template <typename T> using is_equality_comparable = decltype(std::declval<T>() == std::declval<T>());
template <typename T> using is_unequality_comparable = decltype(std::declval<T>() != std::declval<T>());
template <typename T> using is_predecrementable = decltype(--std::declval<T>());
template <typename T> using is_postdecrementable = decltype(std::declval<T>()--);
template <typename T> using is_add_assignable = decltype(std::declval<T>() += std::declval<typename T::difference_type>());
template <typename T> using is_sub_assignable = decltype(std::declval<T>() -= std::declval<typename T::difference_type>());
template <typename T> using have_operator_plus = decltype(std::declval<T>() + std::declval<typename T::difference_type>());
template <typename T> using have_operator_minus = decltype(std::declval<T>() + std::declval<typename T::difference_type>());
template <typename T> using have_operator_access = decltype(std::declval<T>()[std::declval<typename T::difference_type>()]);
template <typename T> using have_operator_less = decltype(std::declval<T>() < std::declval<T>());
template <typename T> using have_operator_great = decltype(std::declval<T>() > std::declval<T>());
template <typename T> using have_operator_not_less = decltype(std::declval<T>() <= std::declval<T>());
template <typename T> using have_operator_not_great = decltype(std::declval<T>() >= std::declval<T>());
template <typename T>
using supports_iterator = tbb::detail::supports<T, iterator_traits_value_type,
iterator_traits_difference_type,
iterator_traits_pointer,
iterator_traits_iterator_category,
is_swappable,
is_dereferenceable_by_asterisk,
is_preincrementable>;
template <typename T>
using supports_input_iterator = tbb::detail::supports<T, is_equality_comparable,
is_unequality_comparable,
is_dereferenceable_by_arrow,
is_postincrementable>;
template <typename T>
using supports_bidirectional_iterator = tbb::detail::supports<T, is_predecrementable,
is_postdecrementable>;
template <typename T>
using supports_random_access_iterator = tbb::detail::supports<T, is_add_assignable,
is_sub_assignable,
have_operator_plus,
have_operator_minus,
have_operator_access,
have_operator_less,
have_operator_great,
have_operator_not_less,
have_operator_not_great>;
} // namespace iterator_type_traits
template <typename T>
struct is_iterator : std::integral_constant<bool,
std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value &&
std::is_destructible<T>::value &&
iterator_type_traits::supports_iterator<T>::value> {};
template <typename T>
struct is_input_iterator : std::integral_constant<bool,
is_iterator<T>::value &&
iterator_type_traits::supports_input_iterator<T>::value> {};
template <typename T>
struct is_forward_iterator : std::integral_constant<bool,
is_input_iterator<T>::value &&
std::is_default_constructible<T>::value> {};
template <typename T>
struct is_bidirectional_iterator : std::integral_constant<bool,
is_forward_iterator<T>::value &&
iterator_type_traits::supports_bidirectional_iterator<T>::value> {};
template <typename T>
struct is_random_access_iterator : std::integral_constant<bool,
is_bidirectional_iterator<T>::value &&
iterator_type_traits::supports_random_access_iterator<T>::value> {};
// The function to zero-initialize arrays; useful to avoid warnings
template <typename T>
void zero_fill( void* array, std::size_t n ) {
std::memset(array, 0, sizeof(T) * n);
}
//! Base class that asserts that no operations are made with the object after its destruction.
class NoAfterlife {
protected:
enum state_t {
LIVE = 0x56781234,
DEAD = 0xDEADBEEF
} m_state;
public:
NoAfterlife() : m_state(LIVE) {}
NoAfterlife(const NoAfterlife& src) : m_state(LIVE) {
CHECK_FAST_MESSAGE(src.IsLive(), "Constructing from the dead source");
}
~NoAfterlife() {
CHECK_FAST_MESSAGE(IsLive(), "Repeated destructor call");
m_state = DEAD;
}
const NoAfterlife& operator=(const NoAfterlife& src) {
CHECK_FAST(IsLive());
CHECK_FAST(src.IsLive());
return *this;
}
void AssertLive() const {
CHECK_FAST_MESSAGE(IsLive(), "Already dead");
}
bool IsLive() const {
return m_state == LIVE;
}
}; // NoAfterlife
//! Base class for types that should not be assigned.
class NoAssign {
public:
NoAssign& operator=(const NoAssign&) = delete;
NoAssign(const NoAssign&) = default;
NoAssign() = default;
};
//! Base class for types that should not be copied or assigned.
class NoCopy : NoAssign {
public:
NoCopy(const NoCopy&) = delete;
NoCopy() = default;
};
//! Base class for objects which support move ctors
class Movable {
public:
Movable() : alive(true) {}
void Reset() { alive = true; }
Movable(Movable&& other) {
CHECK_MESSAGE(other.alive, "Moving from a dead object");
alive = true;
other.alive = false;
}
Movable& operator=(Movable&& other) {
CHECK_MESSAGE(alive, "Assignment to a dead object");
CHECK_MESSAGE(other.alive, "Assignment of a dead object");
other.alive = false;
return *this;
}
Movable& operator=(const Movable& other) {
CHECK_MESSAGE(alive, "Assignment to a dead object");
CHECK_MESSAGE(other.alive, "Assignment of a dead object");
return *this;
}
Movable(const Movable& other) {
CHECK_MESSAGE(other.alive, "Const reference to a dead object");
alive = true;
}
~Movable() { alive = false; }
volatile bool alive;
};
class MoveOnly : Movable, NoCopy {
public:
MoveOnly() : Movable() {}
MoveOnly(MoveOnly&& other) : Movable(std::move(other)) {}
};
void Sleep ( int ms ) {
std::chrono::milliseconds sleep_time( ms );
std::this_thread::sleep_for( sleep_time );
}
template<typename T, typename U>
auto max(const T& left, const U& right) -> decltype(left > right ? left : right)
{
return left > right ? left : right;
}
template<typename T, typename U>
auto min(const T& left, const U& right) -> decltype(left < right ? left : right)
{
return left < right ? left : right;
}
template<typename T, std::size_t N>
inline std::size_t array_length(const T(&)[N]) {
return N;
}
// TODO: consider adding a common comparator with member functions is_equal, is_less, is_greater, etc.
struct IsEqual {
template <typename T>
static bool compare( const std::weak_ptr<T> &t1, const std::weak_ptr<T> &t2 ) {
// Compare real pointers.
return t1.lock().get() == t2.lock().get();
}
template <typename T>
static bool compare( const std::unique_ptr<T> &t1, const std::unique_ptr<T> &t2 ) {
// Compare real values.
return *t1 == *t2;
}
template <typename T1, typename T2>
static bool compare( const std::pair< const std::weak_ptr<T1>, std::weak_ptr<T2> > &t1,
const std::pair< const std::weak_ptr<T1>, std::weak_ptr<T2> > &t2 ) {
// Compare real pointers.
return t1.first.lock().get() == t2.first.lock().get() &&
t1.second.lock().get() == t2.second.lock().get();
}
template <typename T1, typename T2>
static bool compare( const T1 &t1, const T2 &t2 ) {
return t1 == t2;
}
template <typename T1, typename T2>
bool operator()( T1 &t1, T2 &t2) const {
return compare( (const T1&)t1, (const T2&)t2 );
}
}; // struct IsEqual
template <typename T, std::size_t N>
tbb::blocked_range<T*> make_blocked_range( T(& array)[N] ) {
return tbb::blocked_range<T*>(array, array + N);
}
template <typename T>
void check_range_bounds_after_splitting( const tbb::blocked_range<T>& original, const tbb::blocked_range<T>& first,
const tbb::blocked_range<T>& second, const T& expected_first_end )
{
REQUIRE(first.begin() == original.begin());
REQUIRE(first.end() == expected_first_end);
REQUIRE(second.begin() == expected_first_end);
REQUIRE(second.end() == original.end());
REQUIRE(first.size() + second.size() == original.size());
}
template<typename M>
struct Counter {
using mutex_type = M;
M mutex;
volatile long value;
};
template<typename M>
struct AtomicCounter {
using mutex_type = M;
M mutex;
std::atomic<long> value;
};
#if __TBB_CPP20_CONCEPTS_PRESENT
template <template <typename...> class Template, typename... Types>
concept well_formed_instantiation = requires {
typename Template<Types...>;
};
#endif // __TBB_CPP20_CONCEPTS_PRESENT
class LifeTrackableObject {
using set_type = std::unordered_set<const LifeTrackableObject*>;
static set_type alive_objects;
public:
LifeTrackableObject() {
alive_objects.insert(this);
}
LifeTrackableObject(const LifeTrackableObject&) {
alive_objects.insert(this);
}
LifeTrackableObject(LifeTrackableObject&&) {
alive_objects.insert(this);
}
LifeTrackableObject& operator=(const LifeTrackableObject&) = default;
LifeTrackableObject& operator=(LifeTrackableObject&&) = default;
~LifeTrackableObject() {
alive_objects.erase(this);
}
static bool is_alive(const LifeTrackableObject& object) {
return is_alive(&object);
}
static bool is_alive(const LifeTrackableObject* object) {
return alive_objects.find(object) != alive_objects.end();
}
static const set_type& set() {
return alive_objects;
}
};
std::unordered_set<const LifeTrackableObject*> LifeTrackableObject::alive_objects{};
} // namespace utils
#endif // __TBB_test_common_utils_H
|