File: conformance_concurrent_queue.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (1885 lines) | stat: -rw-r--r-- 68,051 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
/*
    Copyright (c) 2005-2024 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#include <common/test.h>
#include <common/utils.h>
#include <common/utils_report.h>
#include <common/custom_allocators.h>
#include <common/container_move_support.h>
#include <common/test_comparisons.h>

#include "oneapi/tbb/concurrent_queue.h"
#include "oneapi/tbb/cache_aligned_allocator.h"
#include <type_traits>
#include <atomic>

//! \file conformance_concurrent_queue.cpp
//! \brief Test for [containers.concurrent_queue containers.concurrent_bounded_queue] specification

template <typename T>
using test_allocator = StaticSharedCountingAllocator<oneapi::tbb::cache_aligned_allocator<T>>;

static constexpr std::size_t MinThread = 1;
static constexpr std::size_t MaxThread = 4;

static constexpr std::size_t MAXTHREAD = 256;

static constexpr std::size_t M = 10000;
static std::atomic<long> PopKind[3];

static int Sum[MAXTHREAD];

template<typename CQ, typename ValueType, typename CounterType>
void push(CQ& q, ValueType v, CounterType i) {
    switch (i % 3) {
        case 0: q.push( v); break;
        case 1: q.push( std::move(v)); break;
        case 2: q.emplace( v); break;
        default: CHECK(false); break;
    }
}

template<typename T>
class ConcQWithCapacity : public oneapi::tbb::concurrent_queue<T, test_allocator<T>> {
    using base_type = oneapi::tbb::concurrent_queue<T, test_allocator<T>>;
public:
    ConcQWithCapacity() : my_capacity( std::size_t(-1) / (sizeof(void*) + sizeof(T)) ) {}
    std::size_t size() const {
        return this->unsafe_size();
    }

    std::size_t capacity() const {
        return my_capacity;
    }

    void set_capacity( const std::size_t n ) {
        my_capacity = n;
    }

    bool try_push( const T& source ) {
        base_type::push( source);
        return source.get_serial() < my_capacity;
    }

    bool try_pop( T& dest ) {
        base_type::try_pop( dest);
        return dest.get_serial() < my_capacity;
    }

private:
    std::size_t my_capacity;
};

template<typename CQ, typename T>
void TestEmptyQueue() {
    const CQ queue;
    CHECK(queue.size() == 0);
    CHECK(queue.capacity()> 0);
    CHECK(size_t(queue.capacity())>= std::size_t(-1)/(sizeof(void*)+sizeof(T)));
}

void TestEmptiness() {
    TestEmptyQueue<ConcQWithCapacity<char>, char>();
    TestEmptyQueue<ConcQWithCapacity<move_support_tests::Foo>, move_support_tests::Foo>();
    TestEmptyQueue<oneapi::tbb::concurrent_bounded_queue<char, test_allocator<char>>, char>();
    TestEmptyQueue<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo,
           test_allocator<move_support_tests::Foo>>, move_support_tests::Foo>();
}

template<typename CQ, typename T>
void TestFullQueue() {
    using allocator_type = decltype(std::declval<CQ>().get_allocator());

    for (std::size_t n = 0; n < 100; ++n) {
        allocator_type::init_counters();
        {
            CQ queue;
            queue.set_capacity(n);
            for (std::size_t i = 0; i <= n; ++i) {
                T f;
                f.set_serial(i);
                bool result = queue.try_push( f);
                CHECK((result == (i < n)));
            }

            for (std::size_t i = 0; i <= n; ++i) {
                T f;
                bool result = queue.try_pop(f);
                CHECK((result == (i < n)));
                CHECK((result == 0 || f.get_serial() == i));
            }
        }
        CHECK(allocator_type::items_allocated == allocator_type::items_freed);
        CHECK(allocator_type::allocations == allocator_type::frees);
    }
}

void TestFullness() {
    TestFullQueue<ConcQWithCapacity<move_support_tests::Foo>, move_support_tests::Foo>();
    TestFullQueue<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>, move_support_tests::Foo>();
}

template<typename CQ>
void TestClear() {
    using allocator_type = decltype(std::declval<CQ>().get_allocator());
    allocator_type::init_counters();
    const std::size_t n = 5;

    CQ queue;
    const std::size_t q_capacity = 10;
    queue.set_capacity(q_capacity);

    for (std::size_t i = 0; i < n; ++i) {
        move_support_tests::Foo f;
        f.set_serial(i);
        queue.push(f);
    }

    CHECK(queue.size() == n);

    queue.clear();
    CHECK(queue.size()==0);
    for (std::size_t i = 0; i < n; ++i) {
        move_support_tests::Foo f;
        f.set_serial(i);
        queue.push( f);
    }

    CHECK(queue.size() == n);
    queue.clear();
    CHECK(queue.size() == 0);

    for (std::size_t i = 0; i < n; ++i) {
        move_support_tests::Foo f;
        f.set_serial(i);
        queue.push(f);
    }

    CHECK(queue.size()==n);
}

void TestClearWorks() {
    TestClear<ConcQWithCapacity<move_support_tests::Foo>>();
    TestClear<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>>();
}

template<typename Iterator1, typename Iterator2>
void TestIteratorAux( Iterator1 i, Iterator2 j, int size ) {
    Iterator1 old_i; // assigned at first iteration below
    for (std::size_t k = 0; k < (std::size_t)size; ++k) {
        CHECK_FAST(i != j);
        CHECK_FAST(!(i == j));
        // Test "->"
        CHECK_FAST((k+1 == i->get_serial()));
        if (k & 1) {
            // Test post-increment
            move_support_tests::Foo f = *old_i++;
            CHECK_FAST((k + 1 == f.get_serial()));
            // Test assignment
            i = old_i;
        } else {
            // Test pre-increment
            if (k < std::size_t(size - 1)) {
                move_support_tests::Foo f = *++i;
                CHECK_FAST((k + 2 == f.get_serial()));
            } else ++i;
            // Test assignment
            old_i = i;
        }
    }
    CHECK_FAST(!(i != j));
    CHECK_FAST(i == j);
}

template<typename Iterator1, typename Iterator2>
void TestIteratorAssignment( Iterator2 j ) {
    Iterator1 i(j);
    CHECK(i == j);
    CHECK(!(i != j));

    Iterator1 k;
    k = j;
    CHECK(k == j);
    CHECK(!(k != j));
}

template<typename Iterator, typename T>
void TestIteratorTraits() {
    static_assert( std::is_same<typename Iterator::iterator_category, std::forward_iterator_tag>::value, "wrong iterator category");

    T x;

    typename Iterator::reference xr = x;
    typename Iterator::pointer xp = &x;
    CHECK((&xr == xp));
}

// Test the iterators for concurrent_queue
template <typename CQ>
void TestIterator() {
    CQ queue;
    const CQ& const_queue = queue;
    for (int j=0; j < 500; ++j) {
        TestIteratorAux( queue.unsafe_begin()      , queue.unsafe_end()      , j);
        TestIteratorAux( queue.unsafe_cbegin()      , queue.unsafe_cend()      , j);
        TestIteratorAux( const_queue.unsafe_begin(), const_queue.unsafe_end(), j);
        TestIteratorAux( const_queue.unsafe_begin(), queue.unsafe_end()      , j);
        TestIteratorAux( queue.unsafe_begin()      , const_queue.unsafe_end(), j);
        move_support_tests::Foo f;
        f.set_serial(j+1);
        queue.push(f);
    }
    TestIteratorAssignment<typename CQ::const_iterator>( const_queue.unsafe_begin());
    TestIteratorAssignment<typename CQ::const_iterator>( queue.unsafe_begin());
    TestIteratorAssignment<typename CQ::iterator>( queue.unsafe_begin());
    TestIteratorTraits<typename CQ::const_iterator, const move_support_tests::Foo>();
    TestIteratorTraits<typename CQ::iterator, move_support_tests::Foo>();
}

void TestQueueIteratorWorks() {
    TestIterator<oneapi::tbb::concurrent_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>>();
    TestIterator<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>>();
}

// Define wrapper classes to test oneapi::tbb::concurrent_queue<T>
template<typename T, typename A = oneapi::tbb::cache_aligned_allocator<T>>
class ConcQWithSizeWrapper : public oneapi::tbb::concurrent_queue<T, A> {
public:
    ConcQWithSizeWrapper() {}
    ConcQWithSizeWrapper( const ConcQWithSizeWrapper& q ) : oneapi::tbb::concurrent_queue<T, A>(q) {}
    ConcQWithSizeWrapper( const ConcQWithSizeWrapper& q, const A& a ) : oneapi::tbb::concurrent_queue<T, A>(q, a) {}
    ConcQWithSizeWrapper( const A& a ) : oneapi::tbb::concurrent_queue<T, A>( a ) {}

    ConcQWithSizeWrapper( ConcQWithSizeWrapper&& q ) : oneapi::tbb::concurrent_queue<T>(std::move(q)) {}
    ConcQWithSizeWrapper( ConcQWithSizeWrapper&& q, const A& a )
        : oneapi::tbb::concurrent_queue<T, A>(std::move(q), a) { }

    template<typename InputIterator>
    ConcQWithSizeWrapper( InputIterator begin, InputIterator end, const A& a = A() )
        : oneapi::tbb::concurrent_queue<T, A>(begin, end, a) {}
    typename oneapi::tbb::concurrent_queue<T, A>::size_type size() const { return this->unsafe_size(); }
};

enum state_type {
    LIVE = 0x1234,
    DEAD = 0xDEAD
};

class Bar {
    state_type state;
public:
    static std::size_t construction_num, destruction_num;
    std::ptrdiff_t my_id;
    Bar() : state(LIVE), my_id(-1)
    {}

    Bar( std::size_t _i ) : state(LIVE), my_id(_i) { construction_num++; }

    Bar( const Bar& a_bar ) : state(LIVE) {
        CHECK_FAST(a_bar.state == LIVE);
        my_id = a_bar.my_id;
        construction_num++;
    }

    ~Bar() {
        CHECK_FAST(state == LIVE);
        state = DEAD;
        my_id = DEAD;
        destruction_num++;
    }

    void operator=( const Bar& a_bar ) {
        CHECK_FAST(a_bar.state == LIVE);
        CHECK_FAST(state == LIVE);
        my_id = a_bar.my_id;
    }
    friend bool operator==( const Bar& bar1, const Bar& bar2 ) ;
};

std::size_t Bar::construction_num = 0;
std::size_t Bar::destruction_num = 0;

bool operator==( const Bar& bar1, const Bar& bar2 ) {
    CHECK_FAST(bar1.state == LIVE);
    CHECK_FAST(bar2.state == LIVE);
    return bar1.my_id == bar2.my_id;
}

class BarIterator {
    Bar* bar_ptr;
    BarIterator(Bar* bp_) : bar_ptr(bp_) {}
public:
    Bar& operator*() const {
        return *bar_ptr;
    }
    BarIterator& operator++() {
        ++bar_ptr;
        return *this;
    }
    Bar* operator++(int) {
        Bar* result = &operator*();
        operator++();
        return result;
    }
    friend bool operator==(const BarIterator& bia, const BarIterator& bib) ;
    friend bool operator!=(const BarIterator& bia, const BarIterator& bib) ;
    template<typename CQ, typename T, typename TIter, typename CQ_EX, typename T_EX>
    friend void TestConstructors ();
} ;

bool operator==(const BarIterator& bia, const BarIterator& bib) {
    return bia.bar_ptr==bib.bar_ptr;
}

bool operator!=(const BarIterator& bia, const BarIterator& bib) {
    return bia.bar_ptr!=bib.bar_ptr;
}


class Bar_exception : public std::bad_alloc {
public:
    virtual const char *what() const noexcept override { return "making the entry invalid"; }
    virtual ~Bar_exception() noexcept {}
};

class BarEx {
    static int count;
public:
    state_type state;
    typedef enum {
        PREPARATION,
        COPY_CONSTRUCT
    } mode_type;
    static mode_type mode;
    std::ptrdiff_t my_id;
    std::ptrdiff_t my_tilda_id;

    static int button;

    BarEx() : state(LIVE), my_id(-1), my_tilda_id(-1)
    {}

    BarEx(std::size_t _i) : state(LIVE), my_id(_i), my_tilda_id(my_id^(-1))
    {}

    BarEx( const BarEx& a_bar ) : state(LIVE) {
        CHECK_FAST(a_bar.state == LIVE);
        my_id = a_bar.my_id;
        if (mode == PREPARATION)
            if (!(++count % 100)) {
                TBB_TEST_THROW(Bar_exception());
            }
        my_tilda_id = a_bar.my_tilda_id;
    }

    ~BarEx() {
        CHECK_FAST(state == LIVE);
        state = DEAD;
        my_id = DEAD;
    }
    static void set_mode( mode_type m ) { mode = m; }

    void operator=( const BarEx& a_bar ) {
        CHECK_FAST(a_bar.state == LIVE);
        CHECK_FAST(state == LIVE);
        my_id = a_bar.my_id;
        my_tilda_id = a_bar.my_tilda_id;
    }

    friend bool operator==(const BarEx& bar1, const BarEx& bar2 ) ;
};

int BarEx::count = 0;
BarEx::mode_type BarEx::mode = BarEx::PREPARATION;

bool operator==(const BarEx& bar1, const BarEx& bar2) {
    CHECK_FAST(bar1.state == LIVE);
    CHECK_FAST(bar2.state == LIVE);
    CHECK_FAST((bar1.my_id ^ bar1.my_tilda_id) == -1);
    CHECK_FAST((bar2.my_id ^ bar2.my_tilda_id) == -1);
    return bar1.my_id == bar2.my_id && bar1.my_tilda_id == bar2.my_tilda_id;
}

template<typename CQ, typename T, typename TIter, typename CQ_EX, typename T_EX>
void TestConstructors () {
    CQ src_queue;
    typename CQ::const_iterator dqb;
    typename CQ::const_iterator dqe;
    typename CQ::const_iterator iter;
    using size_type = typename CQ::size_type;

    for (size_type size = 0; size < 1001; ++size) {
        for (size_type i = 0; i < size; ++i)
            src_queue.push(T(i + (i ^ size)));
        typename CQ::const_iterator sqb( src_queue.unsafe_begin());
        typename CQ::const_iterator sqe( src_queue.unsafe_end()  );

        CQ dst_queue(sqb, sqe);
        CQ copy_with_alloc(src_queue, typename CQ::allocator_type());

        CHECK_FAST_MESSAGE(src_queue.size() == dst_queue.size(), "different size");
        CHECK_FAST_MESSAGE(src_queue.size() == copy_with_alloc.size(), "different size");

        src_queue.clear();
    }

    T bar_array[1001];
    for (size_type size=0; size < 1001; ++size) {
        for (size_type i=0; i < size; ++i) {
            bar_array[i] = T(i+(i^size));
        }

        const TIter sab(bar_array + 0);
        const TIter sae(bar_array + size);

        CQ dst_queue2(sab, sae);

        CHECK_FAST(size == dst_queue2.size());
        CHECK_FAST(sab == TIter(bar_array+0));
        CHECK_FAST(sae == TIter(bar_array+size));

        dqb = dst_queue2.unsafe_begin();
        dqe = dst_queue2.unsafe_end();
        auto res = std::mismatch(dqb, dqe, bar_array);
        CHECK_FAST_MESSAGE(res.first == dqe,  "unexpected element");
        CHECK_FAST_MESSAGE(res.second == bar_array + size, "different size?");
    }

    src_queue.clear();

    CQ dst_queue3(src_queue);
    CHECK(src_queue.size() == dst_queue3.size());
    CHECK(0 == dst_queue3.size());

    int k = 0;
    for (size_type i = 0; i < 1001; ++i) {
        T tmp_bar;
        src_queue.push(T(++k));
        src_queue.push(T(++k));
        src_queue.try_pop(tmp_bar);

        CQ dst_queue4( src_queue);

        CHECK_FAST(src_queue.size() == dst_queue4.size());

        dqb = dst_queue4.unsafe_begin();
        dqe = dst_queue4.unsafe_end();
        iter = src_queue.unsafe_begin();
        auto res = std::mismatch(dqb, dqe, iter);
        CHECK_FAST_MESSAGE(res.first == dqe, "unexpected element");
        CHECK_FAST_MESSAGE(res.second == src_queue.unsafe_end(), "different size?");
    }

    CQ dst_queue5(src_queue);

    CHECK(src_queue.size() == dst_queue5.size());
    dqb = dst_queue5.unsafe_begin();
    dqe = dst_queue5.unsafe_end();
    iter = src_queue.unsafe_begin();
    REQUIRE_MESSAGE(std::equal(dqb, dqe, iter), "unexpected element");

    for (size_type i=0; i<100; ++i) {
        T tmp_bar;
        src_queue.push(T(i + 1000));
        src_queue.push(T(i + 1000));
        src_queue.try_pop(tmp_bar);

        dst_queue5.push(T(i + 1000));
        dst_queue5.push(T(i + 1000));
        dst_queue5.try_pop(tmp_bar);
    }

    CHECK(src_queue.size() == dst_queue5.size());
    dqb = dst_queue5.unsafe_begin();
    dqe = dst_queue5.unsafe_end();
    iter = src_queue.unsafe_begin();
    auto res = std::mismatch(dqb, dqe, iter);
    REQUIRE_MESSAGE(res.first == dqe, "unexpected element");
    REQUIRE_MESSAGE(res.second == src_queue.unsafe_end(), "different size?");

#if TBB_USE_EXCEPTIONS
    k = 0;
    typename CQ_EX::size_type n_elements = 0;
    CQ_EX src_queue_ex;
    for (size_type size = 0; size < 1001; ++size) {
        T_EX tmp_bar_ex;
        typename CQ_EX::size_type n_successful_pushes = 0;
        T_EX::set_mode(T_EX::PREPARATION);
        try {
            src_queue_ex.push(T_EX(k + (k ^ size)));
            ++n_successful_pushes;
        } catch (...) {
        }
        ++k;
        try {
            src_queue_ex.push(T_EX(k + (k ^ size)));
            ++n_successful_pushes;
        } catch (...) {
        }
        ++k;
        src_queue_ex.try_pop(tmp_bar_ex);
        n_elements += (n_successful_pushes - 1);
        CHECK_FAST(src_queue_ex.size() == n_elements);

        T_EX::set_mode(T_EX::COPY_CONSTRUCT);
        CQ_EX dst_queue_ex(src_queue_ex);

        CHECK_FAST(src_queue_ex.size() == dst_queue_ex.size());

        typename CQ_EX::const_iterator dqb_ex = dst_queue_ex.unsafe_begin();
        typename CQ_EX::const_iterator dqe_ex = dst_queue_ex.unsafe_end();
        typename CQ_EX::const_iterator iter_ex = src_queue_ex.unsafe_begin();

        auto res2 = std::mismatch(dqb_ex, dqe_ex, iter_ex);
        CHECK_FAST_MESSAGE(res2.first == dqe_ex, "unexpected element");
        CHECK_FAST_MESSAGE(res2.second == src_queue_ex.unsafe_end(), "different size?");
    }
#endif
    src_queue.clear();

    for (size_type size = 0; size < 1001; ++size) {
        for (size_type i = 0; i < size; ++i) {
            src_queue.push(T(i + (i ^ size)));
        }
        std::vector<const T*> locations(size);
        typename CQ::const_iterator qit = src_queue.unsafe_begin();
        for (size_type i = 0; i < size; ++i, ++qit) {
            locations[i] = &(*qit);
        }

        size_type size_of_queue = src_queue.size();
        CQ dst_queue(std::move(src_queue));

        CHECK_FAST_MESSAGE((src_queue.empty() && src_queue.size() == 0), "not working move constructor?");
        CHECK_FAST_MESSAGE((size == size_of_queue && size_of_queue == dst_queue.size()), "not working move constructor?");

        CHECK_FAST_MESSAGE(
            std::equal(locations.begin(), locations.end(), dst_queue.unsafe_begin(), [](const T* t1, const T& r2) { return t1 == &r2; }),
            "there was data movement during move constructor"
        );

        for (size_type i = 0; i < size; ++i) {
            T test(i + (i ^ size));
            T popped;
            bool pop_result = dst_queue.try_pop( popped);

            CHECK_FAST(pop_result);
            CHECK_FAST(test == popped);
        }
    }
}

void TestQueueConstructors() {
    TestConstructors<ConcQWithSizeWrapper<Bar>, Bar, BarIterator, ConcQWithSizeWrapper<BarEx>, BarEx>();
    TestConstructors<oneapi::tbb::concurrent_bounded_queue<Bar>, Bar, BarIterator, oneapi::tbb::concurrent_bounded_queue<BarEx>, BarEx>();
}

template<typename T>
struct TestNegativeQueueBody {
    oneapi::tbb::concurrent_bounded_queue<T>& queue;
    const std::size_t nthread;
    TestNegativeQueueBody( oneapi::tbb::concurrent_bounded_queue<T>& q, std::size_t n ) : queue(q), nthread(n) {}
    void operator()( std::size_t k ) const {
        if (k == 0) {
            int number_of_pops = int(nthread) - 1;
            // Wait for all pops to pend.
            while (int(queue.size())> -number_of_pops) {
                utils::yield();
            }

            for (int i = 0; ; ++i) {
                CHECK(queue.size() == std::size_t(i - number_of_pops));
                CHECK((queue.empty() == (queue.size() <= 0)));
                if (i == number_of_pops) break;
                // Satisfy another pop
                queue.push(T());
            }
        } else {
            // Pop item from queue
            T item;
            queue.pop(item);
        }
    }
};

//! Test a queue with a negative size.
template<typename T>
void TestNegativeQueue( std::size_t nthread ) {
    oneapi::tbb::concurrent_bounded_queue<T> queue;
    utils::NativeParallelFor( nthread, TestNegativeQueueBody<T>(queue,nthread));
}

template<typename T>
class ConcQPushPopWrapper : public oneapi::tbb::concurrent_queue<T, test_allocator<T>> {
public:
    ConcQPushPopWrapper() : my_capacity(std::size_t(-1) / (sizeof(void*) + sizeof(T)))
    {}

    std::size_t size() const { return this->unsafe_size(); }
    void set_capacity( const ptrdiff_t n ) { my_capacity = n; }
    bool try_push( const T& source ) { return this->push( source); }
    bool try_pop( T& dest ) { return this->oneapi::tbb::concurrent_queue<T, test_allocator<T>>::try_pop(dest); }
    std::size_t my_capacity;
};

template<typename CQ, typename T>
struct Body {
    CQ* queue;
    const std::size_t nthread;
    Body( std::size_t nthread_ ) : nthread(nthread_) {}
    void operator()( std::size_t thread_id ) const {
        long pop_kind[3] = {0, 0, 0};
        std::size_t serial[MAXTHREAD + 1];
        memset(serial, 0, nthread * sizeof(std::size_t));
        CHECK(thread_id < nthread);

        long sum = 0;
        for (std::size_t j = 0; j < M; ++j) {
            T f;
            f.set_thread_id(move_support_tests::serial_dead_state);
            f.set_serial(move_support_tests::serial_dead_state);
            bool prepopped = false;
            if (j & 1) {
                prepopped = queue->try_pop(f);
                ++pop_kind[prepopped];
            }
            T g;
            g.set_thread_id(thread_id);
            g.set_serial(j + 1);
            push(*queue, g, j);
            if (!prepopped) {
                while(!(queue)->try_pop(f)) utils::yield();
                ++pop_kind[2];
            }
            CHECK_FAST(f.get_thread_id() <= nthread);
            CHECK_FAST_MESSAGE((f.get_thread_id() == nthread || serial[f.get_thread_id()] < f.get_serial()), "partial order violation");
            serial[f.get_thread_id()] = f.get_serial();
            sum += int(f.get_serial() - 1);
        }
        Sum[thread_id] = sum;
        for (std::size_t k = 0; k < 3; ++k)
            PopKind[k] += pop_kind[k];
    }
};

template<typename CQ, typename T>
void TestPushPop(typename CQ::size_type prefill, std::ptrdiff_t capacity, std::size_t nthread ) {
    using allocator_type = decltype(std::declval<CQ>().get_allocator());
    CHECK(nthread> 0);
    std::ptrdiff_t signed_prefill = std::ptrdiff_t(prefill);

    if (signed_prefill + 1>= capacity) {
        return;
    }

    bool success = false;
    for (std::size_t k=0; k < 3; ++k) {
        PopKind[k] = 0;
    }

    for (std::size_t trial = 0; !success; ++trial) {
        allocator_type::init_counters();
        Body<CQ,T> body(nthread);
        CQ queue;
        queue.set_capacity(capacity);
        body.queue = &queue;
        for (typename CQ::size_type i = 0; i < prefill; ++i) {
            T f;
            f.set_thread_id(nthread);
            f.set_serial(1 + i);
            push(queue, f, i);
            CHECK_FAST(queue.size() == i + 1);
            CHECK_FAST(!queue.empty());
        }

        utils::NativeParallelFor( nthread, body);

        int sum = 0;
        for (std::size_t k = 0; k < nthread; ++k) {
            sum += Sum[k];
        }

        int expected = int( nthread * ((M - 1) * M / 2) + ((prefill - 1) * prefill) / 2);
        for (int i = int(prefill); --i>=0;) {
            CHECK_FAST(!queue.empty());
            T f;
            bool result = queue.try_pop(f);
            CHECK_FAST(result);
            CHECK_FAST(int(queue.size()) == i);
            sum += int(f.get_serial()) - 1;
        }
        REQUIRE_MESSAGE(queue.empty(), "The queue should be empty");
        REQUIRE_MESSAGE(queue.size() == 0, "The queue should have zero size");
        if (sum != expected) {
            REPORT("sum=%d expected=%d\n",sum,expected);
        }

        success = true;
        if (nthread> 1 && prefill == 0) {
            // Check that pop_if_present got sufficient exercise
            for (std::size_t k = 0; k < 2; ++k) {
                const int min_requirement = 100;
                const int max_trial = 20;

                if (PopKind[k] < min_requirement) {
                    if (trial>= max_trial) {
                        REPORT("Warning: %d threads had only %ld pop_if_present operations %s after %d trials (expected at least %d). "
                            "This problem may merely be unlucky scheduling. "
                            "Investigate only if it happens repeatedly.\n",
                            nthread, long(PopKind[k]), k==0?"failed":"succeeded", max_trial, min_requirement);
                    } else {
                        success = false;
                    }
               }
            }
        }
    }
}

void TestConcurrentPushPop() {
    for (std::size_t nthread = MinThread; nthread <= MaxThread; ++nthread) {
        INFO(" Testing with "<< nthread << " thread(s)");
        TestNegativeQueue<move_support_tests::Foo>(nthread);
        for (std::size_t prefill=0; prefill < 64; prefill += (1 + prefill / 3)) {
            TestPushPop<ConcQPushPopWrapper<move_support_tests::Foo>, move_support_tests::Foo>(prefill, std::ptrdiff_t(-1), nthread);
            TestPushPop<ConcQPushPopWrapper<move_support_tests::Foo>, move_support_tests::Foo>(prefill, std::ptrdiff_t(1), nthread);
            TestPushPop<ConcQPushPopWrapper<move_support_tests::Foo>, move_support_tests::Foo>(prefill, std::ptrdiff_t(2), nthread);
            TestPushPop<ConcQPushPopWrapper<move_support_tests::Foo>, move_support_tests::Foo>(prefill, std::ptrdiff_t(10), nthread);
            TestPushPop<ConcQPushPopWrapper<move_support_tests::Foo>, move_support_tests::Foo>(prefill, std::ptrdiff_t(100), nthread);
        }
        for (std::size_t prefill = 0; prefill < 64; prefill += (1 + prefill / 3) ) {
            TestPushPop<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>,
                move_support_tests::Foo>(prefill, std::ptrdiff_t(-1), nthread);
            TestPushPop<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>,
                move_support_tests::Foo>(prefill, std::ptrdiff_t(1), nthread);
            TestPushPop<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>,
                move_support_tests::Foo>(prefill, std::ptrdiff_t(2), nthread);
            TestPushPop<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>,
                move_support_tests::Foo>(prefill, std::ptrdiff_t(10), nthread);
            TestPushPop<oneapi::tbb::concurrent_bounded_queue<move_support_tests::Foo, test_allocator<move_support_tests::Foo>>,
                move_support_tests::Foo>(prefill, std::ptrdiff_t(100), nthread);
        }
    }
}

class Foo_exception : public std::bad_alloc {
public:
    virtual const char *what() const noexcept override { return "out of Foo limit"; }
    virtual ~Foo_exception() noexcept {}
};

#if TBB_USE_EXCEPTIONS
static std::atomic<long> FooExConstructed;
static std::atomic<long> FooExDestroyed;
static std::atomic<long> serial_source;
static long MaxFooCount = 0;
static const long Threshold = 400;

class FooEx {
    state_type state;
public:
    int serial;
    FooEx() : state(LIVE) {
        ++FooExConstructed;
        serial = serial_source++;
    }

    FooEx( const FooEx& item ) : state(LIVE) {
        CHECK(item.state == LIVE);
        ++FooExConstructed;
        if (MaxFooCount && (FooExConstructed - FooExDestroyed) >= MaxFooCount) { // in push()
            throw Foo_exception();
        }
        serial = item.serial;
    }

    ~FooEx() {
        CHECK(state==LIVE);
        ++FooExDestroyed;
        state=DEAD;
        serial=DEAD;
    }

    void operator=( FooEx& item ) {
        CHECK(item.state==LIVE);
        CHECK(state==LIVE);
        serial = item.serial;
        if( MaxFooCount==2*Threshold && (FooExConstructed-FooExDestroyed) <= MaxFooCount/4 ) // in pop()
            throw Foo_exception();
    }

    void operator=( FooEx&& item ) {
        operator=( item );
        item.serial = 0;
    }

};

template <template <typename, typename> class CQ, typename A1, typename A2, typename T>
void TestExceptionBody() {
    enum methods {
        m_push = 0,
        m_pop
    };

    const int N = 1000;     // # of bytes

    MaxFooCount = 5;

    try {
        int n_pushed=0, n_popped=0;
        for(int t = 0; t <= 1; t++)// exception type -- 0 : from allocator(), 1 : from Foo's constructor
        {
            CQ<T,A1> queue_test;
            for( int m=m_push; m<=m_pop; m++ ) {
                // concurrent_queue internally rebinds the allocator to the one for 'char'
                A2::init_counters();

                if(t) MaxFooCount = MaxFooCount + 400;
                else A2::set_limits(N/2);

                try {
                    switch(m) {
                    case m_push:
                        for( int k=0; k<N; k++ ) {
                            push( queue_test, T(), k);
                            n_pushed++;
                        }
                        break;
                    case m_pop:
                        n_popped=0;
                        for( int k=0; k<n_pushed; k++ ) {
                            T elt;
                            queue_test.try_pop( elt);
                            n_popped++;
                        }
                        n_pushed = 0;
                        A2::set_limits();
                        break;
                    }
                    if( !t && m==m_push ) REQUIRE_MESSAGE(false, "should throw an exception");
                } catch ( Foo_exception & ) {
                    long tc = MaxFooCount;
                    MaxFooCount = 0; // disable exception
                    switch(m) {
                    case m_push:
                        REQUIRE_MESSAGE(ptrdiff_t(queue_test.size())==n_pushed, "incorrect queue size");
                        for( int k=0; k<(int)tc; k++ ) {
                            push( queue_test, T(), k);
                            n_pushed++;
                        }
                        break;
                    case m_pop:
                        n_pushed -= (n_popped+1); // including one that threw the exception
                        REQUIRE_MESSAGE(n_pushed>=0, "n_pushed cannot be less than 0");
                        for( int k=0; k<1000; k++ ) {
                            push( queue_test, T(), k);
                            n_pushed++;
                        }
                        REQUIRE_MESSAGE(!queue_test.empty(), "queue must not be empty");
                        REQUIRE_MESSAGE(ptrdiff_t(queue_test.size())==n_pushed, "queue size must be equal to n pushed");
                        for( int k=0; k<n_pushed; k++ ) {
                            T elt;
                            queue_test.try_pop( elt);
                        }
                        REQUIRE_MESSAGE(queue_test.empty(), "queue must be empty");
                        REQUIRE_MESSAGE(queue_test.size()==0, "queue must be empty");
                        break;
                    }
                    MaxFooCount = tc;
                } catch ( std::bad_alloc & ) {
                    A2::set_limits(); // disable exception from allocator
                    std::size_t size = queue_test.size();
                    switch(m) {
                        case m_push:
                            REQUIRE_MESSAGE(size>0, "incorrect queue size");
                            break;
                        case m_pop:
                            if( !t ) REQUIRE_MESSAGE(false, "should not throw an exception");
                            break;
                    }
                }
                INFO("for t= " << t << "and m= " << m << " exception test passed");
            }
        }
    } catch(...) {
        REQUIRE_MESSAGE(false, "unexpected exception");
    }
}

void TestExceptions() {
    using allocator_t = StaticSharedCountingAllocator<oneapi::tbb::cache_aligned_allocator<std::size_t>>;
    using allocator_char_t = StaticSharedCountingAllocator<oneapi::tbb::cache_aligned_allocator<char>>;
    TestExceptionBody<ConcQWithSizeWrapper, allocator_t, allocator_char_t, FooEx>();
    TestExceptionBody<oneapi::tbb::concurrent_bounded_queue, allocator_t, allocator_char_t, FooEx>();

}

std::atomic<std::size_t> num_pushed;
std::atomic<std::size_t> num_popped;
std::atomic<std::size_t> failed_pushes;
std::atomic<std::size_t> failed_pops;

class SimplePushBody {
    oneapi::tbb::concurrent_bounded_queue<int>* q;
    std::size_t max;
public:
    SimplePushBody(oneapi::tbb::concurrent_bounded_queue<int>* _q, std::size_t hi_thr) : q(_q), max(hi_thr) {}

    void operator()(std::size_t thread_id) const {
        if (thread_id == max) {
            while ( q->size() < std::ptrdiff_t(max) ) {
                utils::yield();
            }
            q->abort();
            return;
        }
        try {
            q->push(42);
            ++num_pushed;
        } catch (...) {
            ++failed_pushes;
        }
    }
};

class SimplePopBody {
    oneapi::tbb::concurrent_bounded_queue<int>* q;
    std::ptrdiff_t max;
    std::ptrdiff_t prefill;
public:
    SimplePopBody(oneapi::tbb::concurrent_bounded_queue<int>* _q, std::size_t hi_thr, std::size_t nitems)
    : q(_q), max(hi_thr), prefill(nitems) {}

    void operator()(std::size_t thread_id) const {
        int e;
        if (thread_id == std::size_t(max)) {
            while (q->size()> prefill - max) {
                utils::yield();
            }

            q->abort();
            return;
        }
        try {
            q->pop(e);
            ++num_popped;
        } catch ( ... ) {
            ++failed_pops;
        }
    }
};

void TestAbort() {
    for (std::size_t nthreads = MinThread; nthreads <= MaxThread; ++nthreads) {
        oneapi::tbb::concurrent_bounded_queue<int> iq1;
        iq1.set_capacity(0);
        for (std::size_t i = 0; i < 10; ++i) {
            num_pushed.store(0, std::memory_order_relaxed);
            num_popped.store(0, std::memory_order_relaxed);
            failed_pushes.store(0, std::memory_order_relaxed);
            failed_pops.store(0, std::memory_order_relaxed);
            SimplePushBody my_push_body1(&iq1, nthreads);
            utils::NativeParallelFor(nthreads + 1, my_push_body1);
            REQUIRE_MESSAGE(num_pushed == 0, "no elements should have been pushed to zero-sized queue");
            REQUIRE_MESSAGE(failed_pushes == nthreads, "All threads should have failed to push an element to zero-sized queue");
            // Do not test popping each time in order to test queue destruction with no previous pops
            if (nthreads < (MaxThread + MinThread) / 2) {
                int e;
                bool queue_empty = !iq1.try_pop(e);
                REQUIRE_MESSAGE(queue_empty, "no elements should have been popped from zero-sized queue");
            }
        }

        oneapi::tbb::concurrent_bounded_queue<int> iq2;
        iq2.set_capacity(2);
        for (std::size_t i=0; i < 10; ++i) {
            num_pushed.store(0, std::memory_order_relaxed);
            num_popped.store(0, std::memory_order_relaxed);
            failed_pushes.store(0, std::memory_order_relaxed);
            failed_pops.store(0, std::memory_order_relaxed);
            SimplePushBody my_push_body2(&iq2, nthreads);
            utils::NativeParallelFor(nthreads + 1, my_push_body2);
            REQUIRE_MESSAGE(num_pushed <= 2, "at most 2 elements should have been pushed to queue of size 2");
            if (nthreads>= 2)
                REQUIRE_MESSAGE(failed_pushes == nthreads - 2, "nthreads-2 threads should have failed to push an element to queue of size 2");
            int e;
            while (iq2.try_pop(e)) ;
        }

        oneapi::tbb::concurrent_bounded_queue<int> iq3;
        iq3.set_capacity(2);
        for (std::size_t i = 0; i < 10; ++i) {
            num_pushed.store(0, std::memory_order_relaxed);
            num_popped.store(0, std::memory_order_relaxed);
            failed_pushes.store(0, std::memory_order_relaxed);
            failed_pops.store(0, std::memory_order_relaxed);
            iq3.push(42);
            iq3.push(42);
            SimplePopBody my_pop_body(&iq3, nthreads, 2);
            utils::NativeParallelFor( nthreads+1, my_pop_body );
            REQUIRE_MESSAGE(num_popped <= 2, "at most 2 elements should have been popped from queue of size 2");
            if (nthreads>= 2)
                REQUIRE_MESSAGE(failed_pops == nthreads - 2, "nthreads-2 threads should have failed to pop an element from queue of size 2");
            else {
                int e;
                iq3.pop(e);
            }
        }

        oneapi::tbb::concurrent_bounded_queue<int> iq4;
        std::size_t cap = nthreads / 2;
        if (!cap) cap = 1;
        iq4.set_capacity(cap);
        for (int i=0; i<10; ++i) {
            num_pushed.store(0, std::memory_order_relaxed);
            num_popped.store(0, std::memory_order_relaxed);
            failed_pushes.store(0, std::memory_order_relaxed);
            failed_pops.store(0, std::memory_order_relaxed);
            SimplePushBody my_push_body2(&iq4, nthreads);
            utils::NativeParallelFor(nthreads + 1, my_push_body2);
            REQUIRE_MESSAGE(num_pushed <= cap, "at most cap elements should have been pushed to queue of size cap");
            if (nthreads>= cap)
                REQUIRE_MESSAGE(failed_pushes == nthreads-cap, "nthreads-cap threads should have failed to push an element to queue of size cap");
            SimplePopBody my_pop_body(&iq4, nthreads, num_pushed);
            utils::NativeParallelFor( nthreads+1, my_pop_body );
            REQUIRE_MESSAGE((int)num_popped <= cap, "at most cap elements should have been popped from queue of size cap");
            if (nthreads>= cap)
                REQUIRE_MESSAGE(failed_pops == nthreads-cap, "nthreads-cap threads should have failed to pop an element from queue of size cap");
            else {
                int e;
                while (iq4.try_pop(e)) ;
            }
        }
    }
}
#endif

template <template <typename...> class ContainerType>
void test_member_types() {
    using container_type = ContainerType<int>;
    static_assert(std::is_same<typename container_type::allocator_type, oneapi::tbb::cache_aligned_allocator<int>>::value,
                  "Incorrect default template allocator");

    static_assert(std::is_same<typename container_type::value_type, int>::value,
                  "Incorrect container value_type member type");

    static_assert(std::is_signed<typename container_type::difference_type>::value,
                  "Incorrect container difference_type member type");

    using value_type = typename container_type::value_type;
    static_assert(std::is_same<typename container_type::reference, value_type&>::value,
                  "Incorrect container reference member type");
    static_assert(std::is_same<typename container_type::const_reference, const value_type&>::value,
                  "Incorrect container const_reference member type");
    using allocator_type = typename container_type::allocator_type;
    static_assert(std::is_same<typename container_type::pointer, typename std::allocator_traits<allocator_type>::pointer>::value,
                  "Incorrect container pointer member type");
    static_assert(std::is_same<typename container_type::const_pointer, typename std::allocator_traits<allocator_type>::const_pointer>::value,
                  "Incorrect container const_pointer member type");

    static_assert(utils::is_forward_iterator<typename container_type::iterator>::value,
                  "Incorrect container iterator member type");
    static_assert(!std::is_const<typename container_type::iterator::value_type>::value,
                  "Incorrect container iterator member type");
    static_assert(utils::is_forward_iterator<typename container_type::const_iterator>::value,
                  "Incorrect container const_iterator member type");
    static_assert(std::is_const<typename container_type::const_iterator::value_type>::value,
                  "Incorrect container iterator member type");
}

enum push_t { push_op, try_push_op };

template<push_t push_op>
struct pusher {
    template<typename CQ, typename VType>
    static bool push( CQ& queue, VType&& val ) {
        queue.push( std::forward<VType>( val ) );
        return true;
    }
};

template<>
struct pusher< try_push_op> {
    template<typename CQ, typename VType>
    static bool push( CQ& queue, VType&& val ) {
        return queue.try_push( std::forward<VType>( val ) );
    }
};

enum pop_t { pop_op, try_pop_op };

template<pop_t pop_op>
struct popper {
    template<typename CQ, typename VType>
    static bool pop( CQ& queue, VType&& val ) {
        if( queue.empty() ) return false;
        queue.pop( std::forward<VType>( val ) );
        return true;
    }
};

template<>
struct popper<try_pop_op> {
    template<typename CQ, typename VType>
    static bool pop( CQ& queue, VType&& val ) {
        return queue.try_pop( std::forward<VType>( val ) );
    }
};

struct MoveOperationTracker {
    static std::size_t copy_constructor_called_times;
    static std::size_t move_constructor_called_times;
    static std::size_t copy_assignment_called_times;
    static std::size_t move_assignment_called_times;

    MoveOperationTracker() {}
    MoveOperationTracker(const MoveOperationTracker&) {
        ++copy_constructor_called_times;
    }
    MoveOperationTracker(MoveOperationTracker&&) {
        ++move_constructor_called_times;
    }
    MoveOperationTracker& operator=(MoveOperationTracker const&) {
        ++copy_assignment_called_times;
        return *this;
    }
    MoveOperationTracker& operator=(MoveOperationTracker&&) {
        ++move_assignment_called_times;
        return *this;
    }
};

size_t MoveOperationTracker::copy_constructor_called_times = 0;
size_t MoveOperationTracker::move_constructor_called_times = 0;
size_t MoveOperationTracker::copy_assignment_called_times = 0;
size_t MoveOperationTracker::move_assignment_called_times = 0;

template <class CQ, push_t push_op, pop_t pop_op>
void TestMoveSupport() {
    std::size_t &mcct = MoveOperationTracker::move_constructor_called_times;
    std::size_t &ccct = MoveOperationTracker::copy_constructor_called_times;
    std::size_t &cact = MoveOperationTracker::copy_assignment_called_times;
    std::size_t &mact = MoveOperationTracker::move_assignment_called_times;
    mcct = ccct = cact = mact = 0;

    CQ q;

    REQUIRE_MESSAGE(mcct == 0, "Value must be zero-initialized");
    REQUIRE_MESSAGE(ccct == 0, "Value must be zero-initialized");
    CHECK(pusher<push_op>::push( q, MoveOperationTracker() ));
    REQUIRE_MESSAGE(mcct == 1, "Not working push(T&&) or try_push(T&&)?");
    REQUIRE_MESSAGE(ccct == 0, "Copying of arg occurred during push(T&&) or try_push(T&&)");

    MoveOperationTracker ob;
    CHECK(pusher<push_op>::push( q, std::move(ob) ));
    REQUIRE_MESSAGE(mcct == 2, "Not working push(T&&) or try_push(T&&)?");
    REQUIRE_MESSAGE(ccct == 0, "Copying of arg occurred during push(T&&) or try_push(T&&)");

    REQUIRE_MESSAGE(cact == 0, "Copy assignment called during push(T&&) or try_push(T&&)");
    REQUIRE_MESSAGE(mact == 0, "Move assignment called during push(T&&) or try_push(T&&)");

    bool result = popper<pop_op>::pop( q, ob );
    CHECK(result);
    REQUIRE_MESSAGE(cact == 0, "Copy assignment called during try_pop(T&&)");
    REQUIRE_MESSAGE(mact == 1, "Move assignment was not called during try_pop(T&&)");
}

void TestMoveSupportInPushPop() {
    TestMoveSupport<oneapi::tbb::concurrent_queue<MoveOperationTracker>, push_op, try_pop_op>();
    TestMoveSupport<oneapi::tbb::concurrent_bounded_queue<MoveOperationTracker>, push_op, pop_op>();
    TestMoveSupport<oneapi::tbb::concurrent_bounded_queue<MoveOperationTracker>, try_push_op, try_pop_op>();
}

template<class T>
class allocator: public oneapi::tbb::cache_aligned_allocator<T> {
public:
    state_type state = LIVE;
    std::size_t m_unique_id;

    allocator() : m_unique_id( 0 ) {}
    allocator(size_t unique_id) { m_unique_id = unique_id; }

    ~allocator() {
        REQUIRE_MESSAGE(state == LIVE, "Destroyed allocator has been used.");
        state = DEAD;
    }

    template<typename U>
    allocator(const allocator<U>& a) noexcept {
        REQUIRE_MESSAGE(a.state == LIVE, "Destroyed allocator has been used.");
        m_unique_id = a.m_unique_id;
    }

    template<typename U>
    struct rebind { typedef allocator<U> other; };

    friend bool operator==(const allocator& lhs, const allocator& rhs) {
        REQUIRE_MESSAGE(lhs.state == LIVE, "Destroyed allocator has been used.");
        REQUIRE_MESSAGE(rhs.state == LIVE, "Destroyed allocator has been used.");
        return lhs.m_unique_id == rhs.m_unique_id;
    }
};

template <typename Queue>
void AssertEquality(Queue &q, const std::vector<typename Queue::value_type> &vec) {
    CHECK(q.size() == typename Queue::size_type(vec.size()));
    CHECK(std::equal(q.unsafe_begin(), q.unsafe_end(), vec.begin()));
}

template <typename Queue>
void AssertEmptiness(Queue &q) {
    CHECK(q.empty());
    CHECK(!q.size());
    typename Queue::value_type elem;
    CHECK(!q.try_pop(elem));
}

template <push_t push_op, typename Queue>
void FillTest(Queue &q, const std::vector<typename Queue::value_type> &vec) {
    for (typename std::vector<typename Queue::value_type>::const_iterator it = vec.begin(); it != vec.end(); ++it)
        CHECK(pusher<push_op>::push(q, *it));
    AssertEquality(q, vec);
}

template <pop_t pop_op, typename Queue>
void EmptyTest(Queue &q, const std::vector<typename Queue::value_type> &vec) {
    typedef typename Queue::value_type value_type;

    value_type elem;
    typename std::vector<value_type>::const_iterator it = vec.begin();
    while (popper<pop_op>::pop(q, elem)) {
        CHECK(elem == *it);
        ++it;
    }
    CHECK(it == vec.end());
    AssertEmptiness(q);
}

template <typename T, typename A>
void bounded_queue_specific_test(oneapi::tbb::concurrent_queue<T, A> &, const std::vector<T> &) { /* do nothing */ }

template <typename T, typename A>
void bounded_queue_specific_test(oneapi::tbb::concurrent_bounded_queue<T, A> &q, const std::vector<T> &vec) {
    typedef typename oneapi::tbb::concurrent_bounded_queue<T, A>::size_type size_type;

    FillTest<try_push_op>(q, vec);
    oneapi::tbb::concurrent_bounded_queue<T, A> q2 = q;
    EmptyTest<pop_op>(q, vec);

    // capacity
    q2.set_capacity(size_type(vec.size()));
    CHECK(q2.capacity() == size_type(vec.size()));
    CHECK(q2.size() == size_type(vec.size()));
    CHECK(!q2.try_push(vec[0]));
    q.abort();
}

// Checks operability of the queue the data was moved from
template<typename T, typename CQ>
void TestQueueOperabilityAfterDataMove( CQ& queue ) {
    const std::size_t size = 10;
    std::vector<T> v(size);
    for( std::size_t i = 0; i < size; ++i ) v[i] = T( i * i + i );

    FillTest<push_op>(queue, v);
    EmptyTest<try_pop_op>(queue, v);
    bounded_queue_specific_test(queue, v);
}

template<class CQ, class T>
void TestMoveConstructors() {
    T::construction_num = T::destruction_num = 0;
    CQ src_queue( allocator<T>(0) );
    const std::size_t size = 10;
    for( std::size_t i = 0; i < size; ++i )
        src_queue.push( T(i + (i ^ size)) );
    CHECK(T::construction_num == 2 * size);
    CHECK(T::destruction_num == size);

    const T* locations[size];
    typename CQ::const_iterator qit = src_queue.unsafe_begin();
    for( std::size_t i = 0; i < size; ++i, ++qit )
        locations[i] = &(*qit);

    // Ensuring allocation operation takes place during move when allocators are different
    T::construction_num = T::destruction_num = 0;
    CQ dst_queue( std::move(src_queue), allocator<T>(1) );
    CHECK(T::construction_num == size);
    CHECK(T::destruction_num == size);

    TestQueueOperabilityAfterDataMove<T>( src_queue );

    qit = dst_queue.unsafe_begin();
    for( std::size_t i = 0; i < size; ++i, ++qit ) {
        REQUIRE_MESSAGE(locations[i] != &(*qit), "an item should have been copied but was not" );
        locations[i] = &(*qit);
    }

    T::construction_num = T::destruction_num = 0;
    // Ensuring there is no allocation operation during move with equal allocators
    CQ dst_queue2( std::move(dst_queue), allocator<T>(1) );
    CHECK(T::construction_num == 0);
    CHECK(T::destruction_num == 0);

    TestQueueOperabilityAfterDataMove<T>( dst_queue );

    qit = dst_queue2.unsafe_begin();
    for( std::size_t i = 0; i < size; ++i, ++qit ) {
        REQUIRE_MESSAGE(locations[i] == &(*qit), "an item should have been moved but was not" );
    }

    for( std::size_t i = 0; i < size; ++i) {
        T test(i + (i ^ size));
        T popped;
        bool pop_result = dst_queue2.try_pop( popped );
        CHECK(pop_result);
        CHECK(test == popped);
    }
    CHECK(dst_queue2.empty());
    CHECK(dst_queue2.size() == 0);
}

void TestMoveConstruction() {
    TestMoveConstructors<ConcQWithSizeWrapper<Bar, allocator<Bar>>, Bar>();
    TestMoveConstructors<oneapi::tbb::concurrent_bounded_queue<Bar, allocator<Bar>>, Bar>();
}

class NonTrivialConstructorType {
public:
    NonTrivialConstructorType( int a = 0 ) : m_a( a ), m_str( "" ) {}
    NonTrivialConstructorType( const std::string& str ) : m_a( 0 ), m_str( str ) {}
    NonTrivialConstructorType( int a, const std::string& str ) : m_a( a ), m_str( str ) {}
    int get_a() const { return m_a; }
    std::string get_str() const { return m_str; }
private:
    int m_a;
    std::string m_str;
};

enum emplace_t { emplace_op, try_emplace_op };

template<emplace_t emplace_op>
struct emplacer {
    template<typename CQ, typename... Args>
    static void emplace( CQ& queue, Args&&... val ) { queue.emplace( std::forward<Args>( val )... ); }
};

template<>
struct emplacer <try_emplace_op> {
    template<typename CQ, typename... Args>
    static void emplace( CQ& queue, Args&&... val ) {
        bool result = queue.try_emplace( std::forward<Args>( val )... );
        REQUIRE_MESSAGE(result, "try_emplace error\n");
    }
};

template<typename CQ, emplace_t emplace_op>
void TestEmplaceInQueue() {
    CQ cq;
    std::string test_str = "I'm being emplaced!";
    {
        emplacer<emplace_op>::emplace( cq, 5 );
        CHECK(cq.size() == 1);
        NonTrivialConstructorType popped( -1 );
        bool result = cq.try_pop( popped );
        CHECK(result);
        CHECK(popped.get_a() == 5);
        CHECK(popped.get_str() == std::string( "" ));
    }

    CHECK(cq.empty());

    {
        NonTrivialConstructorType popped( -1 );
        emplacer<emplace_op>::emplace( cq, std::string(test_str) );
        bool result = cq.try_pop( popped );
        CHECK(result);
        CHECK(popped.get_a() == 0);
        CHECK(popped.get_str() == test_str);
    }

    CHECK(cq.empty());

    {
        NonTrivialConstructorType popped( -1, "" );
        emplacer<emplace_op>::emplace( cq, 5, std::string(test_str) );
        bool result = cq.try_pop( popped );
        CHECK(result);
        CHECK(popped.get_a() == 5);
        CHECK(popped.get_str() == test_str);
    }
}
void TestEmplace() {
    TestEmplaceInQueue<ConcQWithSizeWrapper<NonTrivialConstructorType>, emplace_op>();
    TestEmplaceInQueue<oneapi::tbb::concurrent_bounded_queue<NonTrivialConstructorType>, emplace_op>();
    TestEmplaceInQueue<oneapi::tbb::concurrent_bounded_queue<NonTrivialConstructorType>, try_emplace_op>();
}

#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <template <typename...> typename TQueue>
void TestDeductionGuides() {
    using ComplexType = const std::string*;
    std::vector<ComplexType> v;

    // check TQueue(InputIterator, InputIterator)
    TQueue q1(v.begin(), v.end());
    static_assert(std::is_same<decltype(q1), TQueue<ComplexType>>::value);

    // check TQueue(InputIterator, InputIterator, Allocator)
    TQueue q2(v.begin(), v.end(), std::allocator<ComplexType>());
    static_assert(std::is_same<decltype(q2), TQueue<ComplexType, std::allocator<ComplexType>>>::value);

    // check TQueue(TQueue &)
    TQueue q3(q1);
    static_assert(std::is_same<decltype(q3), decltype(q1)>::value);

    // check TQueue(TQueue &, Allocator)
    TQueue q4(q2, std::allocator<ComplexType>());
    static_assert(std::is_same<decltype(q4), decltype(q2)>::value);

    // check TQueue(TQueue &&)
    TQueue q5(std::move(q1));
    static_assert(std::is_same<decltype(q5), decltype(q1)>::value);

    // check TQueue(TQueue &&, Allocator)
    TQueue q6(std::move(q4), std::allocator<ComplexType>());
    static_assert(std::is_same<decltype(q6), decltype(q4)>::value);
}
#endif

template <typename Iterator, typename QueueType>
void TestQueueIteratorComparisonsBasic( QueueType& q ) {
    REQUIRE_MESSAGE(!q.empty(), "Incorrect test setup");
    using namespace comparisons_testing;
    Iterator it1, it2;
    testEqualityComparisons</*ExpectEqual = */true>(it1, it2);
    it1 = q.unsafe_begin();
    testEqualityComparisons</*ExpectEqual = */false>(it1, it2);
    it2 = q.unsafe_begin();
    testEqualityComparisons</*ExpectEqual = */true>(it1, it2);
    it2 = q.unsafe_end();
    testEqualityComparisons</*ExpectEqual = */false>(it1, it2);
}

template <typename QueueType>
void TestQueueIteratorComparisons() {
    QueueType q;
    q.emplace(1);
    q.emplace(2);
    q.emplace(3);
    TestQueueIteratorComparisonsBasic<typename QueueType::iterator>(q);
    const QueueType& cq = q;
    TestQueueIteratorComparisonsBasic<typename QueueType::const_iterator>(cq);
}

//! Test constructors
//! \brief \ref interface \ref requirement
TEST_CASE("testing constructors") {
    TestQueueConstructors();
}

//! Test work with empty queue
//! \brief \ref interface \ref requirement
TEST_CASE("testing work with empty queue") {
    TestEmptiness();
}

//! Test set capacity operation
//! \brief \ref interface \ref requirement
TEST_CASE("testing set capacity operation") {
    TestFullness();
}

//! Test clean operation
//! \brief \ref interface \ref requirement
TEST_CASE("testing clean operation") {
    TestClearWorks();
}

//! Test move constructors
//! \brief \ref interface \ref requirement
TEST_CASE("testing move constructor") {
    TestMoveConstruction();
}

//! Test move support in push and pop
//! \brief \ref requirement
TEST_CASE("testing move support in push and pop") {
    TestMoveSupportInPushPop();
}

//! Test emplace operation
//! \brief \ref interface \ref requirement
TEST_CASE("testing emplace") {
    TestEmplace();
}

//! Test concurrent_queues member types
//! \brief \ref interface \ref requirement
TEST_CASE("testing concurrent_queues member types"){
    test_member_types<oneapi::tbb::concurrent_queue>();
    test_member_types<oneapi::tbb::concurrent_bounded_queue>();

    // Test size_type
    static_assert(std::is_unsigned<typename oneapi::tbb::concurrent_queue<int>::size_type>::value,
                  "Incorrect oneapi::tbb::concurrent_queue::size_type member type");
    static_assert(std::is_signed<typename oneapi::tbb::concurrent_bounded_queue<int>::size_type>::value,
                  "Incorrect oneapi::tbb::concurrent_bounded_queue::size_type member type");
}

//! Test iterators
//! \brief \ref interface \ref requirement
TEST_CASE("testing iterators") {
    TestQueueIteratorWorks();
}

//! Test concurrent operations support
//! \brief \ref requirement
TEST_CASE("testing concurrent operations support") {
    TestConcurrentPushPop();
}

#if TBB_USE_EXCEPTIONS
//! Test exception safety
//! \brief \ref requirement
TEST_CASE("testing exception safety") {
    TestExceptions();
}

//! Test abort operation
//! \brief \ref interface \ref requirement
TEST_CASE("testing abort operation") {
    TestAbort();
}
#endif

#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
//! Test deduction guides
//! \brief \ref interface
TEST_CASE("testing deduction guides") {
    TestDeductionGuides<oneapi::tbb::concurrent_queue>();
    TestDeductionGuides<oneapi::tbb::concurrent_bounded_queue>();
}
#endif

//! \brief \ref interface \ref requirement
TEST_CASE("concurrent_queue iterator comparisons") {
    TestQueueIteratorComparisons<oneapi::tbb::concurrent_queue<int>>();
}

//! \brief \ref interface \ref requirement
TEST_CASE("concurrent_bounded_queue iterator comparisons") {
    TestQueueIteratorComparisons<oneapi::tbb::concurrent_bounded_queue<int>>();
}

class MinimalisticObject {
public:
    struct flag {};

    MinimalisticObject() = delete;
    MinimalisticObject(flag) : underlying_obj(default_obj) {}

    MinimalisticObject(const MinimalisticObject&) = delete;
    MinimalisticObject& operator=(const MinimalisticObject&) = delete;

    std::size_t get_obj() const { return underlying_obj; }
    std::size_t get_default_obj() const { return default_obj; }

protected:
    static constexpr std::size_t default_obj = 42;
    std::size_t underlying_obj;
    friend struct MoveAssignableMinimalisticObject;
};

struct MoveAssignableMinimalisticObject : MinimalisticObject {
public:
    using MinimalisticObject::MinimalisticObject;

    MoveAssignableMinimalisticObject& operator=(MoveAssignableMinimalisticObject&& other) {
        if (this != &other) {
            underlying_obj = other.underlying_obj;
            other.underlying_obj = 0;
        }
        return *this;
    }
};

template <typename Container>
void test_basics(Container& container, std::size_t desired_size) {
    CHECK(!container.empty());

    std::size_t counter = 0;
    for (auto it = container.unsafe_begin(); it != container.unsafe_end(); ++it) {
        CHECK(it->get_obj() == it->get_default_obj());
        ++counter;
    }
    CHECK(counter == desired_size);

    container.clear();
    CHECK(container.empty());
}

template <template <class...> class Container>
void test_with_minimalistic_objects() {
    // Test with MinimalisticObject and no pop operations
    const std::size_t elements_count = 100;
    {
        Container<MinimalisticObject> default_container;

        for (std::size_t i = 0; i < elements_count; ++i) {
            default_container.emplace(MinimalisticObject::flag{});
        }
        test_basics(default_container, elements_count);
    }
    // Test with MoveAssignableMinimalisticObject with pop operation
    {
        Container<MoveAssignableMinimalisticObject> default_container;

        for (std::size_t i = 0; i < elements_count; ++i) {
            default_container.emplace(MinimalisticObject::flag{});
        }
        test_basics(default_container, elements_count);

        // Refill again
        for (std::size_t i = 0; i < elements_count; ++i) {
            default_container.emplace(MinimalisticObject::flag{});
        }

        MoveAssignableMinimalisticObject result(MinimalisticObject::flag{});

        std::size_t element_counter = 0;
        while (!default_container.empty()) {
            CHECK(default_container.try_pop(result));
            ++element_counter;
        }

        CHECK(element_counter == elements_count);
        CHECK(default_container.empty());
    }
}

//! \brief \ref requirement
TEST_CASE("Test with minimalistic object type") {
    test_with_minimalistic_objects<oneapi::tbb::concurrent_queue>();
    test_with_minimalistic_objects<oneapi::tbb::concurrent_bounded_queue>();
}

//TODO: Once support for std::allocator_traits::propagate_on_container_* is implemented,
//      most of the 4 test cases below can be replaced with move_support_tests::test_*.

template<typename CQ>
void test_queue_helper() {
    int size = 5;
    typename CQ::value_type vec_1(size, 0), vec_2(size, 0), vec_3(size, 0), vec_4(size, 0);
    srand(static_cast<unsigned>(time(0)));
    generate(vec_1.begin(), vec_1.end(), rand);
    generate(vec_2.begin(), vec_2.end(), rand);
    generate(vec_3.begin(), vec_3.end(), rand);
    generate(vec_4.begin(), vec_4.end(), rand);

    CQ q1, q2, q3;
    q3 = {vec_4, vec_2, vec_3};
    CQ q4({vec_1, vec_2, vec_3});

    q1 = q3;
    q2 = std::move(q3);
    CHECK(q3.empty());

    CHECK(q1 != q4);
    q1.swap(q4);
    CHECK(q2 == q4);

    swap(q2, q3);
    CHECK(q2.empty());
    CHECK(q3 == q4);
}

//! Test assignment (copy/move/initializer_list) and swapping
//! \brief \ref interface \ref requirement
TEST_CASE("testing assignment and swapping") {
    test_queue_helper<tbb::concurrent_queue<std::vector<int>>>();
    test_queue_helper<tbb::concurrent_bounded_queue<std::vector<int>>>();
}

template <typename QueueType>
void TestMoveQueue() {
    using allocator_type = typename QueueType::allocator_type;

    QueueType q1, q2;
    move_support_tests::Foo obj;
    size_t n1(15), n2(7);

    allocator_type::init_counters();
    for(size_t i =0; i < n1; i++)
        q1.push(obj);
    size_t q1_items_constructed = allocator_type::items_constructed;
    size_t q1_items_allocated =  allocator_type::items_allocated;

    allocator_type::init_counters();
    for(size_t i =0; i < n2; i++)
        q2.push(obj);
    size_t q2_items_allocated =  allocator_type::items_allocated;

    allocator_type::init_counters();
    q1 = std::move(q2);

    CHECK(q1_items_allocated == allocator_type::items_freed);
    CHECK(q1_items_constructed == allocator_type::items_destroyed);
    CHECK(q2_items_allocated >= allocator_type::items_allocated);
}

//! move assignment test for equal counting allocator
//! \brief \ref interface \ref requirement
TEST_CASE("testing move assignment with equal counting allocators") {
    using allocator_type = StaticSharedCountingAllocator<std::allocator<move_support_tests::Foo>>;
    TestMoveQueue<tbb::concurrent_queue<move_support_tests::Foo, allocator_type>>();
    TestMoveQueue<tbb::concurrent_bounded_queue<move_support_tests::Foo, allocator_type>>();
}

template<class T>
struct stateful_allocator {
    typedef T value_type;
    stateful_allocator() = default;
    int state = 0;
    template<class U>
    constexpr stateful_allocator(const stateful_allocator<U>& src) noexcept : state(src.state) {}

    T* allocate(std::size_t n) {
        return static_cast<T*>(::operator new(n * sizeof(T)));
    }

    void deallocate(T* p, std::size_t) noexcept {
        ::operator delete(p);
    }
};

template<class T, class U>
bool operator==(const stateful_allocator<T>& lhs, const stateful_allocator<U>& rhs) { return lhs.state == rhs.state; }

template<class T, class U>
bool operator!=(const stateful_allocator<T>& lhs, const stateful_allocator<U>& rhs) { return lhs.state != rhs.state; }

template <typename QueueType>
void TestMoveQueueUnequal() {
    using allocator_type = typename QueueType::allocator_type;
    allocator_type alloc1, alloc2;
    alloc1.state = 0;
    alloc2.state = 1;

    QueueType q1(alloc1), q2(alloc2);
    move_support_tests::Foo obj;
    size_t n1(15), n2(7);

    allocator_type::init_counters();
    for(size_t i =0; i < n1; i++)
        q1.push(obj);

    allocator_type::init_counters();
    for(size_t i =0; i < n2; i++)
        q2.push(obj);
    size_t q2_items_allocated =  allocator_type::items_allocated;

    allocator_type::init_counters();
    q1 = std::move(q2);

    REQUIRE_MESSAGE(allocator_type::items_allocated == q2_items_allocated, "More than expected memory allocated?");
    REQUIRE_MESSAGE(std::all_of(q1.unsafe_begin(), q1.unsafe_end(), is_state_predicate<move_support_tests::Foo::MoveInitialized>()),
                    "Container did not move construct some elements");
    REQUIRE_MESSAGE(std::all_of(q2.unsafe_begin(), q2.unsafe_end(), is_state_predicate<move_support_tests::Foo::MovedFrom>()),
                    "Container did not move all the elements");
}

//! move assignment test for unequal counting allocator
//! \brief \ref interface \ref requirement
TEST_CASE("testing move assignment with unequal counting allocators") {
    using allocator_type = StaticSharedCountingAllocator<stateful_allocator<move_support_tests::Foo>>;
    TestMoveQueueUnequal<tbb::concurrent_queue<move_support_tests::Foo, allocator_type>>();
    TestMoveQueueUnequal<tbb::concurrent_bounded_queue<move_support_tests::Foo, allocator_type>>();
}

template<typename Container>
void test_check_move_allocator(Container& src, Container& dst, Container& cpy) {
    REQUIRE_MESSAGE(src.empty(), "Source didn't clear");
    REQUIRE_MESSAGE(std::equal(dst.unsafe_begin(), dst.unsafe_end(), cpy.unsafe_begin()), "Elements are not equal");
}

void test_move_assignment_test_equal() {
    int n = 5;
    std::vector<int> vect1(n, 10), vect2(n,20), vect3(n, 30);

    tbb::concurrent_queue<std::vector<int>> src({vect1, vect2, vect3});
    tbb::concurrent_queue<std::vector<int>> dst(src.get_allocator());
    tbb::concurrent_queue<std::vector<int>> cpy(src.get_allocator());
    REQUIRE_MESSAGE(src.get_allocator() == dst.get_allocator(), "Incorrect test setup: allocators should be equal");
    cpy = src;
    dst = std::move(src);

    tbb::concurrent_bounded_queue<std::vector<int>> src_bnd({vect1, vect2, vect3});
    tbb::concurrent_bounded_queue<std::vector<int>> dst_bnd(src_bnd.get_allocator());
    tbb::concurrent_bounded_queue<std::vector<int>> cpy_bnd(src_bnd.get_allocator());
    REQUIRE_MESSAGE(src_bnd.get_allocator() == dst_bnd.get_allocator(), "Incorrect test setup: allocators should be equal");
    cpy_bnd = src_bnd;
    dst_bnd = std::move(src_bnd);

    test_check_move_allocator<tbb::concurrent_queue<std::vector<int>>>(src, dst, cpy);
    REQUIRE_MESSAGE(cpy.unsafe_size() == dst.unsafe_size(), "Queues are not equal");

    test_check_move_allocator<tbb::concurrent_bounded_queue<std::vector<int>>>(src_bnd, dst_bnd, cpy_bnd);
    REQUIRE_MESSAGE(cpy_bnd.size() == dst_bnd.size(), "Queues are not equal");
}

void test_move_assignment_test_unequal() {
    stateful_allocator<int> src_alloc;
    src_alloc.state = 0;
    std::vector<int, stateful_allocator<int>> v(8, 0, src_alloc);
    tbb::concurrent_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> src(src_alloc);

    v.push_back(42);
    v.push_back(82);
    src.push(v);
    src.push(v);

    stateful_allocator<int> dst_alloc;
    dst_alloc.state = 1;
    tbb::concurrent_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> dst(dst_alloc);
    tbb::concurrent_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> cpy(src_alloc);
    REQUIRE_MESSAGE(src.get_allocator() != dst.get_allocator(), "Incorrect test setup: allocators should be unequal");
    cpy = src;
    dst = std::move(src);

    tbb::concurrent_bounded_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> src_bnd(src_alloc);
    tbb::concurrent_bounded_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> dst_bnd(dst_alloc);
    tbb::concurrent_bounded_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>> cpy_bnd(src_alloc);
    REQUIRE_MESSAGE(src_bnd.get_allocator() != dst_bnd.get_allocator(), "Incorrect test setup: allocators should be unequal");
    src_bnd.push(v);
    src_bnd.push(v);
    cpy_bnd = src_bnd;
    dst_bnd = std::move(src_bnd);

    test_check_move_allocator<tbb::concurrent_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>>>(src, dst, cpy);
    REQUIRE_MESSAGE(dst.unsafe_size() == cpy.unsafe_size(), "Queues are not equal");

    test_check_move_allocator<tbb::concurrent_bounded_queue<std::vector<int, stateful_allocator<int>>, stateful_allocator<int>>>(src_bnd, dst_bnd, cpy_bnd);
    REQUIRE_MESSAGE(dst_bnd.size() == cpy_bnd.size(), "Queues are not equal");
}

//! move assignment test for equal and unequal allocator
//! \brief \ref interface \ref requirement
TEST_CASE("testing move assignment with equal and unequal allocators") {
    test_move_assignment_test_equal();
    test_move_assignment_test_unequal();
}