1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/*
Copyright (c) 2020-2023 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif
#define SEQUENCER_NODE
#include "conformance_flowgraph.h"
#include "common/test_invoke.h"
//! \file conformance_sequencer_node.cpp
//! \brief Test for [flow_graph.sequencer_node] specification
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
template <typename Body>
void test_deduction_guides_common(Body body) {
using namespace tbb::flow;
graph g;
broadcast_node<int> br(g);
sequencer_node s1(g, body);
static_assert(std::is_same_v<decltype(s1), sequencer_node<int>>);
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
sequencer_node s2(follows(br), body);
static_assert(std::is_same_v<decltype(s2), sequencer_node<int>>);
#endif
sequencer_node s3(s1);
static_assert(std::is_same_v<decltype(s3), sequencer_node<int>>);
}
std::size_t sequencer_body_f(const int&) { return 1; }
void test_deduction_guides() {
test_deduction_guides_common([](const int&)->std::size_t { return 1; });
test_deduction_guides_common([](const int&) mutable ->std::size_t { return 1; });
test_deduction_guides_common(sequencer_body_f);
}
#endif
//! Test deduction guides
//! \brief \ref interface \ref requirement
TEST_CASE("Deduction guides"){
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
test_deduction_guides();
#endif
}
//! Test sequencer_node single_push
//! \brief \ref requirement
TEST_CASE("sequencer_node single_push"){
conformance::sequencer_functor<int> sequencer;
conformance::test_forwarding_single_push<oneapi::tbb::flow::sequencer_node<int>>(sequencer);
}
//! Test function_node buffering
//! \brief \ref requirement
TEST_CASE("sequencer_node buffering"){
conformance::sequencer_functor<int> sequencer;
conformance::test_buffering<oneapi::tbb::flow::sequencer_node<int>, int>(sequencer);
}
//! Constructs an empty sequencer_node that belongs to the same graph g as src.
//! Any intermediate state of src, including its links to predecessors and successors, is not copied.
//! \brief \ref requirement
TEST_CASE("sequencer_node copy constructor"){
conformance::sequencer_functor<int> sequencer;
conformance::test_copy_ctor_for_buffering_nodes<oneapi::tbb::flow::sequencer_node<int>>(sequencer);
}
//! Test inheritance relations
//! \brief \ref interface
TEST_CASE("sequencer_node superclasses"){
conformance::test_inheritance<oneapi::tbb::flow::sequencer_node<int>, int, int>();
conformance::test_inheritance<oneapi::tbb::flow::sequencer_node<void*>, void*, void*>();
}
//! Test the sequencer_node rejects duplicate sequencer numbers
//! \brief \ref interface
TEST_CASE("sequencer_node rejects duplicate"){
oneapi::tbb::flow::graph g;
conformance::sequencer_functor<int> sequencer;
oneapi::tbb::flow::sequencer_node<int> node(g, sequencer);
node.try_put(1);
CHECK_MESSAGE((node.try_put(1) == false), "sequencer_node must rejects duplicate sequencer numbers");
g.wait_for_all();
}
//! Test queue_node node `try_put()` and `try_get()`
//! \brief \ref requirement
TEST_CASE("queue_node methods"){
oneapi::tbb::flow::graph g;
conformance::sequencer_functor<int> sequencer;
oneapi::tbb::flow::sequencer_node<int> node(g, sequencer);
node.try_put(1);
node.try_put(0);
node.try_put(1);
g.wait_for_all();
int tmp = -1;
CHECK_MESSAGE((node.try_get(tmp) == true), "Getting from sequencer should succeed");
CHECK_MESSAGE((tmp == 0), "Received value should be correct");
tmp = -1;
CHECK_MESSAGE((node.try_get(tmp) == true), "Getting from sequencer should succeed");
CHECK_MESSAGE((tmp == 1), "Received value should be correct");
tmp = -1;
CHECK_MESSAGE((node.try_get(tmp) == false), "Getting from sequencer should not succeed");
}
//! The example demonstrates ordering capabilities of the sequencer_node.
//! While being processed in parallel, the data is passed to the successor node in the exact same order it was read.
//! \brief \ref requirement
TEST_CASE("sequencer_node ordering"){
using namespace oneapi::tbb::flow;
using message = conformance::sequencer_functor<int>::seq_message;
graph g;
// Due to parallelism the node can push messages to its successors in any order
function_node<message, message> process(g, unlimited, [] (message msg) {
msg.data++;
return msg;
});
sequencer_node<message> ordering(g, conformance::sequencer_functor<int>());
std::atomic<std::size_t> counter{0};
function_node<message> writer(g, tbb::flow::serial, [&] (const message& msg) {
CHECK_MESSAGE((msg.id == counter++), "The data is passed to the successor node in the exact same order it was read");
});
tbb::flow::make_edge(process, ordering);
tbb::flow::make_edge(ordering, writer);
for (std::size_t i = 0; i < 100; ++i) {
message msg = {i, 0};
process.try_put(msg);
}
g.wait_for_all();
}
#if __TBB_CPP17_INVOKE_PRESENT
//! Test that sequencer node uses std::invoke to execute the body
//! \brief \ref requirement
TEST_CASE("sequencer_node and std::invoke") {
using namespace oneapi::tbb::flow;
graph g;
function_node<std::size_t, test_invoke::SmartID<std::size_t>> starter(g, unlimited, [](std::size_t x) { return test_invoke::SmartID(x); });
sequencer_node<test_invoke::SmartID<std::size_t>> seq1(g, &test_invoke::SmartID<std::size_t>::get_id); // Member function
sequencer_node<test_invoke::SmartID<std::size_t>> seq2(g, &test_invoke::SmartID<std::size_t>::id); // Member object
std::size_t expected_item = 0;
function_node<test_invoke::SmartID<std::size_t>, std::size_t> check(g, serial, [&](const test_invoke::SmartID<std::size_t>& x) {
CHECK(x.id == expected_item);
++expected_item;
return x.id;
});
// Build the first graph
make_edge(starter, seq1);
make_edge(seq1, check);
std::size_t objects_count = 10;
for (std::size_t i = 0; i < objects_count; ++i) {
starter.try_put(objects_count - i - 1);
}
g.wait_for_all();
CHECK(expected_item == objects_count);
// Rebuild the graph
g.reset(reset_flags::rf_clear_edges);
make_edge(starter, seq2);
make_edge(seq2, check);
expected_item = 0;
for (std::size_t i = 0; i < objects_count; ++i) {
starter.try_put(objects_count - i - 1);
}
g.wait_for_all();
CHECK(expected_item == objects_count);
}
#endif // __TBB_CPP17_INVOKE_PRESENT
|