1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif
#include "common/config.h"
#include "tbb/flow_graph.h"
#include "common/test.h"
#include "common/utils.h"
#include "common/graph_utils.h"
#include <tuple>
#include <cmath>
#include <vector>
//! \file test_composite_node.cpp
//! \brief Test for [flow_graph.composite_node] specification
struct passthru_body {
int operator()( int i ) {
return i;
}
};
class my_input_body{
int start;
int finish;
int step;
public:
my_input_body(int f, int s) : start(1), finish(f), step(s) {}
int operator()(tbb::flow_control& fc) {
int a = start;
if (start <= finish) {
a = start;
start+=step;
return a;
}
else {
fc.stop();
return int();
};
}
};
struct m_fxn_body{
void operator()(int, tbb::flow::multifunction_node<int, std::tuple<int,int> >::output_ports_type ) {}
};
struct ct_body {
ct_body(){}
void operator()(tbb::flow::continue_msg){}
};
struct seq_body {
std::size_t operator()(int i) { return i; }
};
template<int N, typename T1, typename T2>
struct compare {
static void compare_refs(T1 tuple1, T2 tuple2) {
CHECK_MESSAGE( ( &std::get<N>(tuple1) == &std::get<N>(tuple2)), "ports not set correctly");
compare<N-1, T1, T2>::compare_refs(tuple1, tuple2);
}
};
template<typename T1, typename T2>
struct compare<1, T1, T2> {
static void compare_refs(T1 tuple1, T2 tuple2) {
CHECK_MESSAGE( (&std::get<0>(tuple1) == &std::get<0>(tuple2)), "port 0 not correctly set");
}
};
struct tiny_node : public tbb::flow::composite_node< std::tuple< int >, std::tuple< int > > {
tbb::flow::function_node< int, int > f1;
tbb::flow::function_node< int, int > f2;
typedef tbb::flow::composite_node< std::tuple< int >, std::tuple< int > > base_type;
public:
tiny_node(tbb::flow::graph &g, bool hidden = false) : base_type(g), f1(g, tbb::flow::unlimited, passthru_body() ), f2(g, tbb::flow::unlimited, passthru_body() ) {
tbb::flow::make_edge(f1, f2);
std::tuple<tbb::flow::function_node< int, int >& > input_tuple(f1);
std::tuple<tbb::flow::function_node< int, int >& > output_tuple(f2);
base_type::set_external_ports(input_tuple, output_tuple);
if(hidden)
base_type::add_nodes(f1, f2);
else
base_type::add_visible_nodes(f1, f2);
}
};
int test_tiny(bool hidden = false) {
tbb::flow::graph g;
tbb::flow::function_node< int, int > f0( g, tbb::flow::unlimited, passthru_body() );
tiny_node t(g, hidden);
CHECK_MESSAGE( (&tbb::flow::input_port<0>(t) == &t.f1), "f1 not bound to input port 0 in composite_node t");
CHECK_MESSAGE( (&tbb::flow::output_port<0>(t) == &t.f2), "f2 not bound to output port 0 in composite_node t");
tiny_node t1(g, hidden);
CHECK_MESSAGE( (&std::get<0>(t1.input_ports()) == &t1.f1), "f1 not bound to input port 0 in composite_node t1");
CHECK_MESSAGE( (&std::get<0>(t1.output_ports()) == &t1.f2), "f2 not bound to output port 0 in composite_node t1");
test_input_ports_return_ref(t1);
test_output_ports_return_ref(t1);
tiny_node t2(g, hidden);
CHECK_MESSAGE( (&tbb::flow::input_port<0>(t2) == &t2.f1), "f1 not bound to input port 0 in composite_node t2");
CHECK_MESSAGE( (&tbb::flow::output_port<0>(t2) == &t2.f2), "f2 not bound to output port 0 in composite_node t2");
tbb::flow::function_node< int, int > f3( g, tbb::flow::unlimited, passthru_body() );
tbb::flow::make_edge( f0, t );
tbb::flow::make_edge( t, t1 );
tbb::flow::make_edge( t1, t2 );
tbb::flow::make_edge( t2 , f3 );
tbb::flow::queue_node<int> q(g);
tbb::flow::make_edge(f3, q);
f0.try_put(1);
g.wait_for_all();
int i, j =0;
q.try_get(i);
CHECK_MESSAGE( ( i == 1), "item did not go through graph");
q.try_get(j);
CHECK_MESSAGE( ( !j), "unexpected item in graph");
g.wait_for_all();
tbb::flow::remove_edge(f3, q);
tbb::flow::remove_edge(t2, f3);
tbb::flow::remove_edge(t1, t2);
tbb::flow::make_edge( t1 , f3 );
tbb::flow::make_edge(f3, q);
f0.try_put(2);
g.wait_for_all();
q.try_get(i);
CHECK_MESSAGE( ( i == 2), "item did not go through graph after removal of edge");
q.try_get(j);
CHECK_MESSAGE( ( !j), "unexpected item in graph after removal of edge");
return 0;
}
class adder_node : public tbb::flow::composite_node< std::tuple< int, int >, std::tuple< int > > {
public:
tbb::flow::join_node< std::tuple< int, int >, tbb::flow::queueing > j;
tbb::flow::function_node< std::tuple< int, int >, int > f;
private:
typedef tbb::flow::composite_node< std::tuple< int, int >, std::tuple< int > > base_type;
struct f_body {
int operator()( const std::tuple< int, int > &t ) {
return std::get<0>(t) + std::get<1>(t);
}
};
public:
adder_node(tbb::flow::graph &g, bool hidden = false) : base_type(g), j(g), f(g, tbb::flow::unlimited, f_body() ) {
tbb::flow::make_edge( j, f );
base_type::set_external_ports(base_type::input_ports_type(tbb::flow::input_port<0>(j), tbb::flow::input_port<1>(j)), base_type::output_ports_type(f));
if (hidden)
base_type::add_nodes(j, f);
else
base_type::add_visible_nodes(j, f);
}
};
struct square_body { int operator()(int v) { return v*v; } };
struct cube_body { int operator()(int v) { return v*v*v; } };
int adder_sum(int i) {
return (int)(pow(3*pow(i,3) + pow(i, 2),2));
}
int test_adder(bool hidden = false) {
tbb::flow::graph g;
tbb::flow::function_node<int,int> s(g, tbb::flow::unlimited, square_body());
tbb::flow::function_node<int,int> c(g, tbb::flow::unlimited, cube_body());
tbb::flow::function_node<int,int> p(g, tbb::flow::unlimited, passthru_body());
adder_node a0(g, hidden);
CHECK_MESSAGE( (&tbb::flow::input_port<0>(a0) == &tbb::flow::input_port<0>(a0.j)), "input_port 0 of j not bound to input port 0 in composite_node a0");
CHECK_MESSAGE( (&tbb::flow::input_port<1>(a0) == &tbb::flow::input_port<1>(a0.j)), "input_port 1 of j not bound to input port 1 in composite_node a0");
CHECK_MESSAGE( (&tbb::flow::output_port<0>(a0) == &a0.f), "f not bound to output port 0 in composite_node a0");
adder_node a1(g, hidden);
CHECK_MESSAGE( (&std::get<0>(a0.input_ports()) == &tbb::flow::input_port<0>(a0.j)), "input_port 0 of j not bound to input port 0 in composite_node a1");
CHECK_MESSAGE( (&std::get<1>(a0.input_ports()) == &tbb::flow::input_port<1>(a0.j)), "input_port1 of j not bound to input port 1 in composite_node a1");
CHECK_MESSAGE( (&std::get<0>(a0.output_ports()) == &a0.f), "f not bound to output port 0 in composite_node a1");
adder_node a2(g, hidden);
CHECK_MESSAGE( (&tbb::flow::input_port<0>(a2) == &tbb::flow::input_port<0>(a2.j)), "input_port 0 of j not bound to input port 0 in composite_node a2");
CHECK_MESSAGE( (&tbb::flow::input_port<1>(a2) == &tbb::flow::input_port<1>(a2.j)), "input_port 1 of j not bound to input port 1 in composite_node a2");
CHECK_MESSAGE( (&tbb::flow::output_port<0>(a2) == &a2.f), "f not bound to output port 0 in composite_node a2");
adder_node a3(g, hidden);
CHECK_MESSAGE( (&std::get<0>(a3.input_ports()) == &tbb::flow::input_port<0>(a3.j)), "input_port 0 of j not bound to input port 0 in composite_node a3");
CHECK_MESSAGE( (&std::get<1>(a3.input_ports()) == &tbb::flow::input_port<1>(a3.j)), "input_port1 of j not bound to input port 1 in composite_node a3");
CHECK_MESSAGE( (&std::get<0>(a3.output_ports()) == &a3.f), "f not bound to output port 0 in composite_node a3");
tbb::flow::function_node<int,int> s2(g, tbb::flow::unlimited, square_body());
tbb::flow::queue_node<int> q(g);
tbb::flow::make_edge( s, tbb::flow::input_port<0>(a0) );
tbb::flow::make_edge( c, tbb::flow::input_port<1>(a0) );
tbb::flow::make_edge( c, tbb::flow::input_port<0>(a1) );
tbb::flow::make_edge( c, tbb::flow::input_port<1>(a1) );
tbb::flow::make_edge( tbb::flow::output_port<0>(a0), tbb::flow::input_port<0>(a2) );
tbb::flow::make_edge( tbb::flow::output_port<0>(a1), tbb::flow::input_port<1>(a2) );
tbb::flow::make_edge( tbb::flow::output_port<0>(a2), s2 );
tbb::flow::make_edge( s2, q );
int sum_total=0;
int result=0;
for ( int i = 1; i < 4; ++i ) {
s.try_put(i);
c.try_put(i);
sum_total += adder_sum(i);
g.wait_for_all();
}
int j;
for ( int i = 1; i < 4; ++i ) {
q.try_get(j);
result += j;
}
g.wait_for_all();
CHECK_MESSAGE( (result == sum_total), "the sum from the graph does not match the calculated value");
tbb::flow::remove_edge(s2, q);
tbb::flow::remove_edge( a2, s2 );
tbb::flow::make_edge( a0, a3 );
tbb::flow::make_edge( a1, tbb::flow::input_port<1>(a3) );
tbb::flow::make_edge( a3, s2 );
tbb::flow::make_edge( s2, q );
sum_total=0;
result=0;
for ( int i = 10; i < 20; ++i ) {
s.try_put(i);
c.try_put(i);
sum_total += adder_sum(i);
g.wait_for_all();
}
for ( int i = 10; i < 20; ++i ) {
q.try_get(j);
result += j;
}
g.wait_for_all();
CHECK_MESSAGE( (result == sum_total), "the new sum after the replacement of the nodes does not match the calculated value");
return 0;
}
/*
outer composite node (outer_node)
|-------------------------------------------------------------------|
| |
| |------------------| |------------------| |------------------| |
|---------------------| |--| inner composite | /| inner composite | /| inner composite | | |-------------------|
|broadcast node(input)|/| | node |/ | node |/ | node |-+-| queue node(output)|
|---------------------|\| |(inner_node1) |\ | (inner_node2) |\ | (inner_node3) | | |-------------------|
|--| | \| | \| | |
| |------------------| |------------------| |------------------| |
| |
|-------------------------------------------------------------------|
*/
int test_nested_adder(bool hidden=false) {
tbb::flow::graph g;
tbb::flow::composite_node<std::tuple<int, int>, std::tuple<int> > outer_node(g);
typedef tbb::flow::composite_node<std::tuple<int, int>, std::tuple<int> > base_type;
tbb::flow::broadcast_node<int> input(g);
tbb::flow::queue_node<int> output(g);
adder_node inner_node1(g, hidden);
adder_node inner_node2(g, hidden);
adder_node inner_node3(g, hidden);
outer_node.set_external_ports(base_type::input_ports_type(tbb::flow::input_port<0>(inner_node1), tbb::flow::input_port<1>(inner_node1)), base_type::output_ports_type(tbb::flow::output_port<0>(inner_node3)));
CHECK_MESSAGE( (&tbb::flow::input_port<0>(outer_node) == &tbb::flow::input_port<0>(inner_node1)), "input port 0 of inner_node1 not bound to input port 0 in outer_node");
CHECK_MESSAGE( (&tbb::flow::input_port<1>(outer_node) == &tbb::flow::input_port<1>(inner_node1)), "input port 1 of inner_node1 not bound to input port 1 in outer_node");
CHECK_MESSAGE( (&tbb::flow::output_port<0>(outer_node) == &tbb::flow::output_port<0>(inner_node3)), "output port 0 of inner_node3 not bound to output port 0 in outer_node");
tbb::flow::make_edge(input, tbb::flow::input_port<0>(outer_node)/*inner_node1*/);
tbb::flow::make_edge(input, tbb::flow::input_port<1>(outer_node)/*inner_node1*/);
tbb::flow::make_edge(inner_node1, tbb::flow::input_port<0>(inner_node2));
tbb::flow::make_edge(inner_node1, tbb::flow::input_port<1>(inner_node2));
tbb::flow::make_edge(inner_node2, tbb::flow::input_port<0>(inner_node3));
tbb::flow::make_edge(inner_node2, tbb::flow::input_port<1>(inner_node3));
tbb::flow::make_edge(outer_node/*inner_node3*/, output);
if(hidden)
outer_node.add_nodes(inner_node1, inner_node2, inner_node3);
else
outer_node.add_visible_nodes(inner_node1, inner_node2, inner_node3);
int out;
for (int i = 1; i < 200000; ++i) {
input.try_put(i);
g.wait_for_all();
output.try_get(out);
CHECK_MESSAGE( (tbb::flow::output_port<0>(outer_node).try_get(out) == output.try_get(out)), "output from outer_node does not match output from graph");
CHECK_MESSAGE( (out == 8*i), "output from outer_node not correct");
}
g.wait_for_all();
return 0;
}
template< typename T >
class prefix_node : public tbb::flow::composite_node< std::tuple< T, T, T, T, T >, std::tuple< T, T, T, T, T > > {
typedef std::tuple< T, T, T, T, T > my_tuple_t;
public:
tbb::flow::join_node< my_tuple_t, tbb::flow::queueing > j;
tbb::flow::split_node< my_tuple_t > s;
private:
tbb::flow::function_node< my_tuple_t, my_tuple_t > f;
typedef tbb::flow::composite_node< my_tuple_t, my_tuple_t > base_type;
struct f_body {
my_tuple_t operator()( const my_tuple_t &t ) {
return my_tuple_t( std::get<0>(t),
std::get<0>(t) + std::get<1>(t),
std::get<0>(t) + std::get<1>(t) + std::get<2>(t),
std::get<0>(t) + std::get<1>(t) + std::get<2>(t) + std::get<3>(t),
std::get<0>(t) + std::get<1>(t) + std::get<2>(t) + std::get<3>(t) + std::get<4>(t) );
}
};
public:
prefix_node(tbb::flow::graph &g, bool hidden = false ) : base_type(g), j(g), s(g), f(g, tbb::flow::serial, f_body() ) {
tbb::flow::make_edge( j, f );
tbb::flow::make_edge( f, s );
typename base_type::input_ports_type input_tuple(tbb::flow::input_port<0>(j), tbb::flow::input_port<1>(j), tbb::flow::input_port<2>(j), tbb::flow::input_port<3>(j), tbb::flow::input_port<4>(j));
typename base_type::output_ports_type output_tuple(tbb::flow::output_port<0>(s), tbb::flow::output_port<1>(s), tbb::flow::output_port<2>(s), tbb::flow::output_port<3>(s), tbb::flow::output_port<4>(s));
base_type::set_external_ports(input_tuple, output_tuple);
if(hidden)
base_type::add_nodes(j,s,f);
else
base_type::add_visible_nodes(j,s,f);
}
};
int test_prefix(bool hidden = false) {
tbb::flow::graph g;
prefix_node<double> p(g, hidden);
CHECK_MESSAGE( (&std::get<0>(p.input_ports()) == &tbb::flow::input_port<0>(p.j)), "input port 0 of j is not bound to input port 0 of composite node p");
CHECK_MESSAGE( (&tbb::flow::input_port<1>(p.j) == &tbb::flow::input_port<1>(p.j)), "input port 1 of j is not bound to input port 1 of composite node p");
CHECK_MESSAGE( (&std::get<2>(p.input_ports()) == &tbb::flow::input_port<2>(p.j)), "input port 2 of j is not bound to input port 2 of composite node p");
CHECK_MESSAGE( (&tbb::flow::input_port<3>(p.j) == &tbb::flow::input_port<3>(p.j)), "input port 3 of j is not bound to input port 3 of composite node p");
CHECK_MESSAGE( (&std::get<4>(p.input_ports()) == &tbb::flow::input_port<4>(p.j)), "input port 4 of j is not bound to input port 4 of composite node p");
CHECK_MESSAGE( (&std::get<0>(p.output_ports()) == &tbb::flow::output_port<0>(p.s)), "output port 0 of s is not bound to output port 0 of composite node p");
CHECK_MESSAGE( (&tbb::flow::output_port<1>(p.s) == &tbb::flow::output_port<1>(p.s)), "output port 1 of s is not bound to output port 1 of composite node p");
CHECK_MESSAGE( (&std::get<2>(p.output_ports()) == &tbb::flow::output_port<2>(p.s)), "output port 2 of s is not bound to output port 2 of composite node p");
CHECK_MESSAGE( (&tbb::flow::output_port<3>(p.s) == &tbb::flow::output_port<3>(p.s)), "output port 3 of s is not bound to output port 3 of composite node p");
CHECK_MESSAGE( (&std::get<4>(p.output_ports()) == &tbb::flow::output_port<4>(p.s)), "output port 4 of s is not bound to output port 4 of composite node p");
std::vector< tbb::flow::queue_node<double> > v( 5, tbb::flow::queue_node<double>(g) );
tbb::flow::make_edge( tbb::flow::output_port<0>(p), v[0] );
tbb::flow::make_edge( tbb::flow::output_port<1>(p), v[1] );
tbb::flow::make_edge( tbb::flow::output_port<2>(p), v[2] );
tbb::flow::make_edge( tbb::flow::output_port<3>(p), v[3] );
tbb::flow::make_edge( tbb::flow::output_port<4>(p), v[4] );
for( double offset = 1; offset < 10000; offset *= 10 ) {
tbb::flow::input_port<0>(p).try_put( offset );
tbb::flow::input_port<1>(p).try_put( offset + 1 );
tbb::flow::input_port<2>(p).try_put( offset + 2 );
tbb::flow::input_port<3>(p).try_put( offset + 3 );
tbb::flow::input_port<4>(p).try_put( offset + 4 );
}
g.wait_for_all();
double x;
while ( v[0].try_get(x) ) {
g.wait_for_all();
for ( int i = 1; i < 5; ++i ) {
v[i].try_get(x);
g.wait_for_all();
}
}
return 0;
}
struct input_only_output_only_seq {
std::size_t operator()(int i) {
CHECK(i > 0);
return std::size_t((i + 3) / 4 - 1);
}
};
void input_only_output_only_composite(bool hidden) {
tbb::flow::graph g;
tbb::flow::composite_node<std::tuple<int>, std::tuple<int> > input_output(g);
typedef tbb::flow::composite_node<std::tuple<int>, std::tuple<> > input_only_composite;
typedef tbb::flow::composite_node<std::tuple<>, std::tuple<int> > output_only_composite;
typedef tbb::flow::input_node<int> src_type;
typedef tbb::flow::queue_node<int> q_type;
typedef tbb::flow::function_node<int, int> f_type;
typedef tbb::flow::sequencer_node<int> sequencer_type;
int num = 0;
int finish=1000;
int step = 4;
input_only_composite a_in(g);
output_only_composite a_out(g);
src_type src(g, my_input_body(finish, step));
q_type que(g);
f_type f(g, 1, passthru_body());
// Sequencer_node is needed, because serial function_node guarantees only serial body execution,
// not a sequential order of messages dispatch
sequencer_type seq(g, input_only_output_only_seq());
std::tuple<f_type& > input_tuple(f);
a_in.set_external_ports(input_tuple);
CHECK_MESSAGE( (&std::get<0>(a_in.input_ports()) == &f), "f not bound to input port 0 in composite_node a_in");
std::tuple<src_type&> output_tuple(src);
a_out.set_external_ports(output_tuple);
CHECK_MESSAGE( (&std::get<0>(a_out.output_ports()) == &src), "src not bound to output port 0 in composite_node a_out");
if(hidden) {
a_in.add_nodes(f, seq, que);
a_out.add_nodes(src);
} else {
a_in.add_visible_nodes(f, seq, que);
a_out.add_visible_nodes(src);
}
tbb::flow::make_edge(a_out, a_in);
tbb::flow::make_edge(f, seq);
tbb::flow::make_edge(seq, que);
src.activate();
g.wait_for_all();
for(int i = 1; i<finish/step; ++i) {
que.try_get(num);
CHECK_MESSAGE( (num == 4*i - 3), "number does not match position in sequence");
}
g.wait_for_all();
}
//! Test single node inside composite nodes
//! \brief \ref error_guessing
TEST_CASE("Tiny tests"){
test_tiny(false);
test_tiny(true);
}
//! Test basic adders in composite node
//! \brief \ref error_guessing
TEST_CASE("Adder tests"){
test_adder(false);
test_adder(true);
}
//! Test nested adders in composite node
//! \brief \ref error_guessing
TEST_CASE("Nested adder tests"){
test_nested_adder(true);
test_nested_adder(false);
}
//! Test returning a subset of inputs
//! \brief \ref error_guessing
TEST_CASE("Prefix test"){
test_prefix(false);
test_prefix(true);
}
//! Test input-only composite node
//! \brief \ref error_guessing \ref boundary
TEST_CASE("Input-only composite"){
input_only_output_only_composite(true);
input_only_output_only_composite(false);
}
|