1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "common/test.h"
#include "common/utils.h"
#include "common/utils_report.h"
#include "common/checktype.h"
#include "oneapi/tbb/detail/_utils.h"
#include "tbb/enumerable_thread_specific.h"
#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
#include "tbb/tbb_allocator.h"
#include "tbb/global_control.h"
#include "tbb/cache_aligned_allocator.h"
#include <cstring>
#include <cstdio>
#include <vector>
#include <deque>
#include <list>
#include <map>
#include <utility>
#include <atomic>
//! \file test_enumerable_thread_specific.cpp
//! \brief Test for [tls.enumerable_thread_specific] specification
//! Minimum number of threads
static int MinThread = 1;
//! Maximum number of threads
static int MaxThread = 4;
static std::atomic<int> construction_counter;
static std::atomic<int> destruction_counter;
const int VALID_NUMBER_OF_KEYS = 100;
//! A minimal class that occupies N bytes.
/** Defines default and copy constructor, and allows implicit operator&. Hides operator=. */
template<size_t N = tbb::detail::max_nfs_size>
class minimalN: utils::NoAssign {
private:
int my_value;
bool is_constructed;
char pad[N-sizeof(int) - sizeof(bool)];
public:
minimalN() : utils::NoAssign(), my_value(0) { ++construction_counter; is_constructed = true; }
minimalN( const minimalN&m ) : utils::NoAssign(), my_value(m.my_value) { ++construction_counter; is_constructed = true; }
~minimalN() { ++destruction_counter; REQUIRE(is_constructed); is_constructed = false; }
void set_value( const int i ) { REQUIRE(is_constructed); my_value = i; }
int value( ) const { REQUIRE(is_constructed); return my_value; }
};
static size_t AlignMask = 0; // set to cache-line-size - 1
template<typename T>
T& check_alignment(T& t, const char *aname) {
if( !tbb::detail::is_aligned(&t, AlignMask)) {
// TBB_REVAMP_TODO: previously was REPORT_ONCE
REPORT("alignment error with %s allocator (%x)\n", aname, (int)size_t(&t) & (AlignMask-1));
}
return t;
}
template<typename T>
const T& check_alignment(const T& t, const char *aname) {
if( !tbb::detail::is_aligned(&t, AlignMask)) {
// TBB_REVAMP_TODO: previously was REPORT_ONCE
REPORT("alignment error with %s allocator (%x)\n", aname, (int)size_t(&t) & (AlignMask-1));
}
return t;
}
//
// A helper class that simplifies writing the tests since minimalN does not
// define = or + operators.
//
const size_t line_size = tbb::detail::max_nfs_size;
typedef tbb::enumerable_thread_specific<minimalN<line_size> > flogged_ets;
class set_body {
flogged_ets *a;
public:
set_body( flogged_ets*_a ) : a(_a) { }
void operator() ( ) const {
for (int i = 0; i < VALID_NUMBER_OF_KEYS; ++i) {
check_alignment(a[i].local(), "default").set_value(i + 1);
}
}
};
void do_std_threads( int max_threads, flogged_ets a[] ) {
std::vector< std::thread * > threads;
for (int p = 0; p < max_threads; ++p) {
threads.push_back( new std::thread ( set_body( a ) ) );
}
for (int p = 0; p < max_threads; ++p) {
threads[p]->join();
}
for(int p = 0; p < max_threads; ++p) {
delete threads[p];
}
}
void flog_key_creation_and_deletion() {
const int FLOG_REPETITIONS = 100;
for (int p = MinThread; p <= MaxThread; ++p) {
for (int j = 0; j < FLOG_REPETITIONS; ++j) {
construction_counter = 0;
destruction_counter = 0;
// causes VALID_NUMBER_OF_KEYS exemplar instances to be constructed
flogged_ets* a = new flogged_ets[VALID_NUMBER_OF_KEYS];
REQUIRE(int(construction_counter) == 0); // no exemplars or actual locals have been constructed
REQUIRE(int(destruction_counter) == 0); // and none have been destroyed
// causes p * VALID_NUMBER_OF_KEYS minimals to be created
do_std_threads(p, a);
for (int i = 0; i < VALID_NUMBER_OF_KEYS; ++i) {
int pcnt = 0;
for ( flogged_ets::iterator tli = a[i].begin(); tli != a[i].end(); ++tli ) {
REQUIRE( (*tli).value() == i+1 );
++pcnt;
}
REQUIRE( pcnt == p); // should be one local per thread.
}
delete[] a;
}
REQUIRE( int(construction_counter) == (p)*VALID_NUMBER_OF_KEYS );
REQUIRE( int(destruction_counter) == (p)*VALID_NUMBER_OF_KEYS );
construction_counter = 0;
destruction_counter = 0;
// causes VALID_NUMBER_OF_KEYS exemplar instances to be constructed
flogged_ets* a = new flogged_ets[VALID_NUMBER_OF_KEYS];
for (int j = 0; j < FLOG_REPETITIONS; ++j) {
// causes p * VALID_NUMBER_OF_KEYS minimals to be created
do_std_threads(p, a);
for (int i = 0; i < VALID_NUMBER_OF_KEYS; ++i) {
for ( flogged_ets::iterator tli = a[i].begin(); tli != a[i].end(); ++tli ) {
REQUIRE( (*tli).value() == i+1 );
}
a[i].clear();
REQUIRE( static_cast<int>(a[i].end() - a[i].begin()) == 0 );
}
}
delete[] a;
REQUIRE( int(construction_counter) == (FLOG_REPETITIONS*p)*VALID_NUMBER_OF_KEYS );
REQUIRE( int(destruction_counter) == (FLOG_REPETITIONS*p)*VALID_NUMBER_OF_KEYS );
}
}
template <typename inner_container>
void flog_segmented_interator() {
bool found_error = false;
typedef typename inner_container::value_type T;
typedef std::vector< inner_container > nested_vec;
inner_container my_inner_container;
my_inner_container.clear();
nested_vec my_vec;
// simple nested vector (neither level empty)
const int maxval = 10;
for(int i=0; i < maxval; i++) {
my_vec.push_back(my_inner_container);
for(int j = 0; j < maxval; j++) {
my_vec.at(i).push_back((T)(maxval * i + j));
}
}
tbb::detail::d1::segmented_iterator<nested_vec, T> my_si(my_vec);
T ii;
for(my_si=my_vec.begin(), ii=0; my_si != my_vec.end(); ++my_si, ++ii) {
if((*my_si) != ii) {
found_error = true;
}
}
// outer level empty
my_vec.clear();
for(my_si=my_vec.begin(); my_si != my_vec.end(); ++my_si) {
found_error = true;
}
// inner levels empty
my_vec.clear();
for(int i =0; i < maxval; ++i) {
my_vec.push_back(my_inner_container);
}
for(my_si = my_vec.begin(); my_si != my_vec.end(); ++my_si) {
found_error = true;
}
// every other inner container is empty
my_vec.clear();
for(int i=0; i < maxval; ++i) {
my_vec.push_back(my_inner_container);
if(i%2) {
for(int j = 0; j < maxval; ++j) {
my_vec.at(i).push_back((T)(maxval * (i/2) + j));
}
}
}
for(my_si = my_vec.begin(), ii=0; my_si != my_vec.end(); ++my_si, ++ii) {
if((*my_si) != ii) {
found_error = true;
}
}
tbb::detail::d1::segmented_iterator<nested_vec, const T> my_csi(my_vec);
for(my_csi=my_vec.begin(), ii=0; my_csi != my_vec.end(); ++my_csi, ++ii) {
if((*my_csi) != ii) {
found_error = true;
}
}
// outer level empty
my_vec.clear();
for(my_csi=my_vec.begin(); my_csi != my_vec.end(); ++my_csi) {
found_error = true;
}
// inner levels empty
my_vec.clear();
for(int i =0; i < maxval; ++i) {
my_vec.push_back(my_inner_container);
}
for(my_csi = my_vec.begin(); my_csi != my_vec.end(); ++my_csi) {
found_error = true;
}
// every other inner container is empty
my_vec.clear();
for(int i=0; i < maxval; ++i) {
my_vec.push_back(my_inner_container);
if(i%2) {
for(int j = 0; j < maxval; ++j) {
my_vec.at(i).push_back((T)(maxval * (i/2) + j));
}
}
}
for(my_csi = my_vec.begin(), ii=0; my_csi != my_vec.end(); ++my_csi, ++ii) {
if((*my_csi) != ii) {
found_error = true;
}
}
if(found_error) REPORT("segmented_iterator failed\n");
}
template <typename Key, typename Val>
void flog_segmented_iterator_map() {
typedef typename std::map<Key, Val> my_map;
typedef std::vector< my_map > nested_vec;
my_map my_inner_container;
my_inner_container.clear();
nested_vec my_vec;
my_vec.clear();
bool found_error = false;
// simple nested vector (neither level empty)
const int maxval = 4;
for(int i=0; i < maxval; i++) {
my_vec.push_back(my_inner_container);
for(int j = 0; j < maxval; j++) {
my_vec.at(i).insert(std::make_pair<Key,Val>(maxval * i + j, 2*(maxval*i + j)));
}
}
tbb::detail::d1::segmented_iterator<nested_vec, std::pair<const Key, Val> > my_si(my_vec);
Key ii;
for(my_si=my_vec.begin(), ii=0; my_si != my_vec.end(); ++my_si, ++ii) {
if(((*my_si).first != ii) || ((*my_si).second != 2*ii)) {
found_error = true;
}
}
tbb::detail::d1::segmented_iterator<nested_vec, const std::pair<const Key, Val> > my_csi(my_vec);
for(my_csi=my_vec.begin(), ii=0; my_csi != my_vec.end(); ++my_csi, ++ii) {
if(((*my_csi).first != ii) || ((*my_csi).second != 2*ii)) {
found_error = true;
// INFO( "ii=%d, (*my_csi).first=%d, second=%d\n",ii, int((*my_csi).first), int((*my_csi).second));
}
}
if(found_error) REPORT("segmented_iterator_map failed\n");
}
void run_segmented_iterator_tests() {
// only the following containers can be used with the segmented iterator.
flog_segmented_interator<std::vector< int > >();
flog_segmented_interator<std::vector< double > >();
flog_segmented_interator<std::deque< int > >();
flog_segmented_interator<std::deque< double > >();
flog_segmented_interator<std::list< int > >();
flog_segmented_interator<std::list< double > >();
flog_segmented_iterator_map<int, int>();
flog_segmented_iterator_map<int, double>();
}
int align_val(void * const p) {
size_t tmp = (size_t)p;
int a = 1;
while((tmp&0x1) == 0) { a <<=1; tmp >>= 1; }
return a;
}
bool is_between(void* lowp, void *highp, void *testp) {
if((size_t)lowp < (size_t)testp && (size_t)testp < (size_t)highp) return true;
return (size_t)lowp > (size_t)testp && (size_t)testp > (size_t)highp;
}
template<class U> struct alignment_of {
typedef struct { char t; U padded; } test_alignment;
static const size_t value = sizeof(test_alignment) - sizeof(U);
};
using tbb::detail::d1::ets_element;
template<typename T, typename OtherType>
void allocate_ets_element_on_stack(const char* /* name */) {
typedef T aligning_element_type;
const size_t my_align = alignment_of<aligning_element_type>::value;
OtherType c1;
ets_element<aligning_element_type> my_stack_element;
OtherType c2;
ets_element<aligning_element_type> my_stack_element2;
struct {
OtherType cxx;
ets_element<aligning_element_type> my_struct_element;
} mystruct1;
tbb::detail::suppress_unused_warning(c1,c2);
REQUIRE_MESSAGE(tbb::detail::is_aligned(my_stack_element.value(), my_align), "Error in first stack alignment" );
REQUIRE_MESSAGE(tbb::detail::is_aligned(my_stack_element2.value(), my_align), "Error in second stack alignment" );
REQUIRE_MESSAGE(tbb::detail::is_aligned(mystruct1.my_struct_element.value(), my_align), "Error in struct element alignment" );
}
class BigType {
public:
BigType() { /* avoid cl warning C4345 about default initialization of POD types */ }
char my_data[12 * 1024 * 1024];
};
template<template<class> class Allocator>
void TestConstructorWithBigType(const char* allocator_name) {
typedef tbb::enumerable_thread_specific<BigType, Allocator<BigType> > CounterBigType;
// Test default constructor
CounterBigType MyCounters;
// Create a local instance.
typename CounterBigType::reference my_local = MyCounters.local();
my_local.my_data[0] = 'a';
// Test copy constructor
CounterBigType MyCounters2(MyCounters);
REQUIRE(check_alignment(MyCounters2.local(), allocator_name).my_data[0]=='a');
}
size_t init_tbb_alloc_mask() {
// TODO: use __TBB_alignof(T) to check for local() results instead of using internal knowledges of ets element padding
if(tbb::tbb_allocator<int>::allocator_type() == tbb::tbb_allocator<int>::standard) {
// scalable allocator is not available.
// INFO("tbb::tbb_allocator is not available\n");
return 1;
}
else {
// this value is for large objects, but will be correct for small.
return 64; // TBB_REVAMP_TODO: enable as estimatedCacheLineSize when tbbmalloc is available;
}
}
static const size_t cache_allocator_mask = tbb::detail::r1::cache_line_size();
static const size_t tbb_allocator_mask = init_tbb_alloc_mask();
//! Test for internal segmented_iterator type, used inside flattened2d class
//! \brief \ref error_guessing
TEST_CASE("Segmented iterator") {
AlignMask = tbb_allocator_mask;
run_segmented_iterator_tests();
}
//! Test ETS keys creation/deletion
//! \brief \ref error_guessing \ref boundary
TEST_CASE("Key creation and deletion") {
AlignMask = tbb_allocator_mask;
flog_key_creation_and_deletion();
}
//! Test construction with big ETS types
//! \brief \ref error_guessing
TEST_CASE("Constructor with big type") {
AlignMask = cache_allocator_mask;
TestConstructorWithBigType<tbb::cache_aligned_allocator>("tbb::cache_aligned_allocator");
AlignMask = tbb_allocator_mask;
TestConstructorWithBigType<tbb::tbb_allocator>("tbb::tbb_allocator");
}
//! Test allocation of ETS elements on the stack (internal types)
//! \brief \ref error_guessing
TEST_CASE("Allocate ETS on stack") {
AlignMask = tbb_allocator_mask;
allocate_ets_element_on_stack<int,char>("int vs. char");
allocate_ets_element_on_stack<int,short>("int vs. short");
allocate_ets_element_on_stack<int,char[3]>("int vs. char[3]");
allocate_ets_element_on_stack<float,char>("float vs. char");
allocate_ets_element_on_stack<float,short>("float vs. short");
allocate_ets_element_on_stack<float,char[3]>("float vs. char[3]");
}
|