1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
|
/*
Copyright (c) 2018-2024 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif
#include "common/config.h"
#include "tbb/flow_graph.h"
#include "tbb/parallel_for.h"
#include "tbb/global_control.h"
#include "tbb/task_arena.h"
#include "common/test.h"
#include "common/utils.h"
#include "common/utils_concurrency_limit.h"
#include "common/spin_barrier.h"
#include <vector>
#include <cstdlib>
#include <random>
#include <algorithm>
#include <memory>
//! \file test_flow_graph_priorities.cpp
//! \brief Test for [flow_graph.copy_body flow_graph.function_node flow_graph.multifunction_node flow_graph.continue_node flow_graph.async_node] specification
using namespace tbb::flow;
struct TaskInfo {
TaskInfo() : my_priority(-1), my_task_index(-1) {}
TaskInfo( int priority, int task_index )
: my_priority(priority), my_task_index(task_index) {}
int my_priority;
int my_task_index;
};
std::vector<TaskInfo> g_task_info;
std::atomic<unsigned> g_task_num;
void spin_for( double delta ) {
tbb::tick_count start = tbb::tick_count::now();
while( (tbb::tick_count::now() - start).seconds() < delta ) ;
}
namespace PriorityNodesTakePrecedence {
std::atomic<bool> g_work_submitted;
const unsigned node_num = 100;
const unsigned start_index = node_num / 3;
const unsigned end_index = node_num * 2 / 3;
std::atomic<unsigned> g_priority_task_index;
void body_func( int priority, utils::SpinBarrier& my_barrier ) {
while( !g_work_submitted.load(std::memory_order_acquire) )
tbb::detail::d0::yield();
int current_task_index = g_task_num++;
if( priority != no_priority )
g_task_info[g_priority_task_index++] = TaskInfo( priority, current_task_index );
const bool all_threads_will_come =
unsigned(current_task_index) < node_num - (node_num % tbb::this_task_arena::max_concurrency());
if( all_threads_will_come )
my_barrier.wait();
}
typedef multifunction_node< int, std::tuple<int> > multi_node;
template <typename T>
struct Body {
Body( int priority, utils::SpinBarrier& barrier )
: my_priority( priority ), my_barrier( barrier ) {}
T operator()( const T& msg ) const {
body_func( my_priority, my_barrier );
return msg;
}
void operator()( int msg, multi_node::output_ports_type& op ) const {
body_func( my_priority, my_barrier );
std::get<0>(op).try_put( msg );
}
private:
int my_priority;
utils::SpinBarrier& my_barrier;
};
template<typename NodeType, typename BodyType>
struct node_creator_t {
NodeType* operator()( graph& g, unsigned index, utils::SpinBarrier& barrier ) {
if( start_index <= index && index < end_index )
return new NodeType( g, unlimited, BodyType(index, barrier), node_priority_t(index) );
else
return new NodeType( g, unlimited, BodyType(no_priority, barrier) );
}
};
template<typename BodyType>
struct node_creator_t< continue_node<continue_msg>, BodyType > {
continue_node<continue_msg>* operator()( graph& g, unsigned index, utils::SpinBarrier& barrier ) {
if( start_index <= index && index < end_index )
return new continue_node<continue_msg>( g, BodyType(index, barrier), node_priority_t(index) );
else
return new continue_node<continue_msg>( g, BodyType(no_priority, barrier) );
}
};
struct passthru_body {
template<typename T>
continue_msg operator()( T ) const { return continue_msg(); }
};
template<typename NodeType, typename NodeTypeCreator>
void test_node( NodeTypeCreator node_creator ) {
const int num_threads = tbb::this_task_arena::max_concurrency();
utils::SpinBarrier barrier( num_threads );
graph g;
broadcast_node<typename NodeType::input_type> bn(g);
function_node<typename NodeType::input_type> tn(g, unlimited, passthru_body());
// Using pointers to nodes to avoid errors on compilers, which try to generate assignment
// operator for the nodes
std::vector< std::unique_ptr<NodeType> > nodes;
for( unsigned i = 0; i < node_num; ++i ) {
nodes.push_back(std::unique_ptr<NodeType>( node_creator(g, i, barrier) ));
make_edge( bn, *nodes.back() );
make_edge( *nodes.back(), tn );
}
const size_t repeats = 10;
const size_t priority_nodes_num = end_index - start_index;
size_t global_order_failures = 0;
for( size_t repeat = 0; repeat < repeats; ++repeat ) {
g_work_submitted.store( false, std::memory_order_release );
g_task_num = g_priority_task_index = 0;
g_task_info.clear(); g_task_info.resize( priority_nodes_num );
bn.try_put( typename NodeType::input_type{} );
// Setting of the flag is based on the knowledge that the calling thread broadcasts the
// message to successor nodes. Thus, once the calling thread returns from try_put() call all
// necessary tasks are spawned. Thus, this makes this test to be a whitebox test to some
// extent.
g_work_submitted.store( true, std::memory_order_release );
g.wait_for_all();
CHECK_MESSAGE( (g_priority_task_index == g_task_info.size()), "Incorrect number of tasks with priority." );
CHECK_MESSAGE( (priority_nodes_num == g_task_info.size()), "Incorrect number of tasks with priority executed." );
for( unsigned i = 0; i < g_priority_task_index; i += num_threads ) {
bool found = false;
unsigned highest_priority_within_group = end_index - i - 1;
for( unsigned j = i; j < i+num_threads; ++j ) {
if( g_task_info[j].my_priority == int(highest_priority_within_group) ) {
found = true;
break;
}
}
CHECK_MESSAGE( found, "Highest priority task within a group was not found" );
}
for( unsigned i = 0; i < g_priority_task_index; ++i ) {
// This check might fail because priorities do not guarantee ordering, i.e. assumption
// that all priority nodes should increment the task counter before any subsequent
// no-priority node is not correct. In the worst case, a thread that took a priority
// node might be preempted and become the last to increment the counter. That's why the
// test passing is based on statistics, which could be affected by machine overload
// unfortunately.
// TODO revamp: reconsider the following check for this test
if( g_task_info[i].my_task_index > int(priority_nodes_num + num_threads) )
++global_order_failures;
}
}
float failure_ratio = float(global_order_failures) / float(repeats*priority_nodes_num);
CHECK_MESSAGE(
failure_ratio <= 0.1f,
"Nodes with priorities executed in wrong order too frequently over non-prioritized nodes."
);
}
template<typename NodeType, typename NodeBody>
void call_within_arena( tbb::task_arena& arena ) {
arena.execute(
[&]() {
test_node<NodeType>( node_creator_t<NodeType, NodeBody>() );
}
);
}
void test( int num_threads ) {
INFO( "Testing execution of nodes with priority takes precedence (num_threads=" << num_threads << ") - " );
tbb::task_arena arena(num_threads);
call_within_arena< function_node<int,int>, Body<int> >( arena );
call_within_arena< multi_node, Body<int> >( arena );
call_within_arena< continue_node<continue_msg>, Body<continue_msg> >( arena );
}
} /* namespace PriorityNodesTakePrecedence */
namespace ThreadsEagerReaction {
// TODO revamp: combine with similar queue from test_async_node
template <typename T>
class concurrent_queue {
public:
bool try_pop(T& item) {
std::lock_guard<queue_mutex> lock(mutex);
if ( q.empty() )
return false;
item = q.front();
q.pop();
return true;
}
void push(const T& item) {
std::lock_guard<queue_mutex> lock(mutex);
q.push(item);
}
private:
std::queue<T> q;
using queue_mutex = std::mutex;
std::mutex mutex;
};
using utils::SpinBarrier;
enum task_type_t { no_task, regular_task, async_task };
struct profile_t {
task_type_t task_type;
unsigned global_task_id;
double elapsed;
};
std::vector<unsigned> g_async_task_ids;
typedef unsigned data_type;
typedef async_node<data_type, data_type> async_node_type;
typedef multifunction_node<
data_type, std::tuple<data_type, data_type> > decider_node_type;
struct AsyncActivity {
typedef async_node_type::gateway_type gateway_type;
struct work_type { data_type input; gateway_type* gateway; };
std::atomic<bool> done;
concurrent_queue<work_type> my_queue;
std::thread my_service_thread;
struct ServiceThreadFunc {
SpinBarrier& my_barrier;
ServiceThreadFunc(SpinBarrier& barrier) : my_barrier(barrier) {}
void operator()(AsyncActivity* activity) {
while (!activity->done) {
work_type work;
while (activity->my_queue.try_pop(work)) {
g_async_task_ids.push_back( ++g_task_num );
work.gateway->try_put(work.input);
work.gateway->release_wait();
my_barrier.wait();
}
}
}
};
void stop_and_wait() { done = true; my_service_thread.join(); }
void submit(data_type input, gateway_type* gateway) {
work_type work = { input, gateway };
gateway->reserve_wait();
my_queue.push(work);
}
AsyncActivity(SpinBarrier& barrier)
: done(false), my_service_thread(ServiceThreadFunc(barrier), this) {}
};
struct StartBody {
bool has_run;
data_type operator()(tbb::flow_control& fc) {
if (has_run){
fc.stop();
return data_type();
}
has_run = true;
return 1;
}
StartBody() : has_run(false) {}
};
struct ParallelForBody {
SpinBarrier& my_barrier;
const data_type& my_input;
ParallelForBody(SpinBarrier& barrier, const data_type& input)
: my_barrier(barrier), my_input(input) {}
void operator()(const data_type&) const {
my_barrier.wait();
++g_task_num;
}
};
struct CpuWorkBody {
SpinBarrier& my_barrier;
const int my_tasks_count;
data_type operator()(const data_type& input) {
tbb::parallel_for(0, my_tasks_count, ParallelForBody(my_barrier, input), tbb::simple_partitioner());
return input;
}
CpuWorkBody(SpinBarrier& barrier, int tasks_count)
: my_barrier(barrier), my_tasks_count(tasks_count) {}
};
struct DeciderBody {
const data_type my_limit;
DeciderBody( const data_type& limit ) : my_limit( limit ) {}
void operator()(data_type input, decider_node_type::output_ports_type& ports) {
if (input < my_limit)
std::get<0>(ports).try_put(input + 1);
}
};
struct AsyncSubmissionBody {
AsyncActivity* my_activity;
// It is important that async_node in the test executes without spawning a TBB task, because
// it passes the work to asynchronous thread, which unlocks the barrier that is waited
// by every execution thread (asynchronous thread and any TBB worker or main thread).
// This is why async_node's body marked noexcept.
void operator()(data_type input, async_node_type::gateway_type& gateway) noexcept {
my_activity->submit(input, &gateway);
}
AsyncSubmissionBody(AsyncActivity* activity) : my_activity(activity) {}
};
void test( unsigned num_threads ) {
INFO( "Testing threads react eagerly on asynchronous tasks (num_threads=" << num_threads << ") - " );
if( num_threads == std::thread::hardware_concurrency() ) {
// one thread is required for asynchronous compute resource
INFO("skipping test since it is designed to work on less number of threads than "
"hardware concurrency allows\n");
return;
}
const unsigned cpu_threads = unsigned(num_threads);
const unsigned cpu_tasks_per_thread = 4;
const unsigned nested_cpu_tasks = cpu_tasks_per_thread * cpu_threads;
const unsigned async_subgraph_reruns = 8;
const unsigned cpu_subgraph_reruns = 2;
SpinBarrier barrier(cpu_threads + /*async thread=*/1);
g_task_num = 0;
g_async_task_ids.clear();
g_async_task_ids.reserve(async_subgraph_reruns);
tbb::task_arena arena(cpu_threads);
arena.execute(
[&]() {
AsyncActivity activity(barrier);
graph g;
input_node<data_type> starter_node(g, StartBody());
function_node<data_type, data_type> cpu_work_node(
g, unlimited, CpuWorkBody(barrier, nested_cpu_tasks));
decider_node_type cpu_restarter_node(g, unlimited, DeciderBody(cpu_subgraph_reruns));
async_node_type async_node(g, unlimited, AsyncSubmissionBody(&activity));
decider_node_type async_restarter_node(
g, unlimited, DeciderBody(async_subgraph_reruns), node_priority_t(1)
);
make_edge(starter_node, cpu_work_node);
make_edge(cpu_work_node, cpu_restarter_node);
make_edge(output_port<0>(cpu_restarter_node), cpu_work_node);
make_edge(starter_node, async_node);
make_edge(async_node, async_restarter_node);
make_edge(output_port<0>(async_restarter_node), async_node);
starter_node.activate();
g.wait_for_all();
activity.stop_and_wait();
const size_t async_task_num = size_t(async_subgraph_reruns);
CHECK_MESSAGE( ( g_async_task_ids.size() == async_task_num), "Incorrect number of async tasks." );
unsigned max_span = unsigned(2 * cpu_threads + 1);
for( size_t idx = 1; idx < async_task_num; ++idx ) {
CHECK_MESSAGE( (g_async_task_ids[idx] - g_async_task_ids[idx-1] <= max_span),
"Async tasks were not able to interfere with CPU tasks." );
}
}
);
INFO("done\n");
}
} /* ThreadsEagerReaction */
namespace LimitingExecutionToPriorityTask {
enum work_type_t { NONPRIORITIZED_WORK, PRIORITIZED_WORK };
struct execution_tracker_t {
execution_tracker_t() { reset(); }
void reset() {
prioritized_work_submitter = std::thread::id();
prioritized_work_started = false;
prioritized_work_finished = false;
prioritized_work_interrupted = false;
}
std::thread::id prioritized_work_submitter;
std::atomic<bool> prioritized_work_started;
bool prioritized_work_finished;
bool prioritized_work_interrupted;
} exec_tracker;
template<work_type_t work_type>
void do_node_work( int work_size );
template<work_type_t>
void do_nested_work( const std::thread::id& tid, const tbb::blocked_range<int>& subrange );
template<work_type_t work_type>
struct CommonBody {
CommonBody() : my_body_size( 0 ) { }
CommonBody( int body_size ) : my_body_size( body_size ) { }
continue_msg operator()( const continue_msg& msg ) const {
do_node_work<work_type>(my_body_size);
return msg;
}
void operator()( const tbb::blocked_range<int>& subrange ) const {
do_nested_work<work_type>( /*tid=*/std::this_thread::get_id(), subrange );
}
int my_body_size;
};
template<work_type_t work_type>
void do_node_work(int work_size) {
tbb::parallel_for( tbb::blocked_range<int>(0, work_size), CommonBody<work_type>(),
tbb::simple_partitioner() );
}
template<work_type_t>
void do_nested_work( const std::thread::id& tid, const tbb::blocked_range<int>& /*subrange*/ ) {
// This is non-prioritized work...
if( !exec_tracker.prioritized_work_started || exec_tracker.prioritized_work_submitter != tid )
return;
// ...being executed by the thread that initially started prioritized one...
CHECK_MESSAGE( exec_tracker.prioritized_work_started,
"Prioritized work should have been started by that time." );
// ...prioritized work has been started already...
if( exec_tracker.prioritized_work_finished )
return;
// ...but has not been finished yet
exec_tracker.prioritized_work_interrupted = true;
}
struct IsolationFunctor {
int work_size;
IsolationFunctor(int ws) : work_size(ws) {}
void operator()() const {
tbb::parallel_for( tbb::blocked_range<int>(0, work_size), CommonBody<PRIORITIZED_WORK>(),
tbb::simple_partitioner() );
}
};
template<>
void do_node_work<PRIORITIZED_WORK>(int work_size) {
exec_tracker.prioritized_work_submitter = std::this_thread::get_id();
exec_tracker.prioritized_work_started = true;
tbb::this_task_arena::isolate( IsolationFunctor(work_size) );
exec_tracker.prioritized_work_finished = true;
}
template<>
void do_nested_work<PRIORITIZED_WORK>( const std::thread::id& tid,
const tbb::blocked_range<int>& /*subrange*/ ) {
if( exec_tracker.prioritized_work_started && exec_tracker.prioritized_work_submitter == tid ) {
CHECK_MESSAGE( !exec_tracker.prioritized_work_interrupted,
"Thread was not fully devoted to processing of prioritized task." );
} else {
// prolong processing of prioritized work so that the thread that started
// prioritized work has higher probability to help with non-prioritized one.
spin_for(0.1);
}
}
// Using pointers to nodes to avoid errors on compilers, which try to generate assignment operator
// for the nodes
typedef std::vector< std::unique_ptr<continue_node<continue_msg>> > nodes_container_t;
void create_nodes( nodes_container_t& nodes, graph& g, int num, int body_size ) {
for( int i = 0; i < num; ++i )
nodes.push_back(
std::unique_ptr<continue_node<continue_msg>>(
new continue_node<continue_msg>( g, CommonBody<NONPRIORITIZED_WORK>( body_size ) )
)
);
}
void test( int num_threads ) {
INFO( "Testing limit execution to priority tasks (num_threads=" << num_threads << ") - " );
tbb::task_arena arena( num_threads );
arena.execute(
[&]() {
const int nodes_num = 100;
const int priority_node_position_part = 10;
const int pivot = nodes_num / priority_node_position_part;
const int nodes_in_lane = 3 * num_threads;
const int small_problem_size = 100;
const int large_problem_size = 1000;
graph g;
nodes_container_t nodes;
create_nodes( nodes, g, pivot, large_problem_size );
nodes.push_back(
std::unique_ptr<continue_node<continue_msg>>(
new continue_node<continue_msg>(
g, CommonBody<PRIORITIZED_WORK>(small_problem_size), node_priority_t(1)
)
)
);
create_nodes( nodes, g, nodes_num - pivot - 1, large_problem_size );
broadcast_node<continue_msg> bn(g);
for( int i = 0; i < nodes_num; ++i )
if( i % nodes_in_lane == 0 )
make_edge( bn, *nodes[i] );
else
make_edge( *nodes[i-1], *nodes[i] );
exec_tracker.reset();
bn.try_put( continue_msg() );
g.wait_for_all();
}
);
INFO( "done\n" );
}
} /* namespace LimitingExecutionToPriorityTask */
namespace NestedCase {
using tbb::task_arena;
struct InnerBody {
continue_msg operator()( const continue_msg& ) const {
return continue_msg();
}
};
struct OuterBody {
int my_max_threads;
task_arena** my_inner_arena;
OuterBody( int max_threads, task_arena** inner_arena )
: my_max_threads(max_threads), my_inner_arena(inner_arena) {}
// copy constructor to please some old compilers
OuterBody( const OuterBody& rhs )
: my_max_threads(rhs.my_max_threads), my_inner_arena(rhs.my_inner_arena) {}
int operator()( const int& ) {
graph inner_graph;
continue_node<continue_msg> start_node(inner_graph, InnerBody());
continue_node<continue_msg> mid_node1(inner_graph, InnerBody(), node_priority_t(5));
continue_node<continue_msg> mid_node2(inner_graph, InnerBody());
continue_node<continue_msg> end_node(inner_graph, InnerBody(), node_priority_t(15));
make_edge( start_node, mid_node1 );
make_edge( mid_node1, end_node );
make_edge( start_node, mid_node2 );
make_edge( mid_node2, end_node );
(*my_inner_arena)->execute( [&inner_graph]{ inner_graph.reset(); } );
start_node.try_put( continue_msg() );
inner_graph.wait_for_all();
return 13;
}
};
void execute_outer_graph( bool same_arena, task_arena& inner_arena, int max_threads,
graph& outer_graph, function_node<int,int>& start_node ) {
if( same_arena ) {
start_node.try_put( 42 );
outer_graph.wait_for_all();
return;
}
auto threads_range = utils::concurrency_range(max_threads);
for( auto num_threads : threads_range ) {
inner_arena.initialize( static_cast<int>(num_threads) );
start_node.try_put( 42 );
outer_graph.wait_for_all();
inner_arena.terminate();
}
}
void test_in_arena( int max_threads, task_arena& outer_arena, task_arena& inner_arena,
graph& outer_graph, function_node<int, int>& start_node ) {
bool same_arena = &outer_arena == &inner_arena;
auto threads_range = utils::concurrency_range(max_threads);
for( auto num_threads : threads_range ) {
INFO( "Testing nested nodes with specified priority in " << (same_arena? "same" : "different")
<< " arenas, num_threads=" << num_threads << ") - " );
outer_arena.initialize( static_cast<int>(num_threads) );
outer_arena.execute( [&outer_graph]{ outer_graph.reset(); } );
execute_outer_graph( same_arena, inner_arena, max_threads, outer_graph, start_node );
outer_arena.terminate();
INFO( "done\n" );
}
}
void test( int max_threads ) {
task_arena outer_arena; task_arena inner_arena;
task_arena* inner_arena_pointer = &outer_arena; // make it same as outer arena in the beginning
graph outer_graph;
const unsigned num_outer_nodes = 10;
const size_t concurrency = unlimited;
std::vector< std::unique_ptr<function_node<int,int>> > outer_nodes;
for( unsigned node_index = 0; node_index < num_outer_nodes; ++node_index ) {
node_priority_t priority = no_priority;
if( node_index == num_outer_nodes / 2 )
priority = 10;
outer_nodes.push_back(
std::unique_ptr< function_node<int, int> >(
new function_node<int,int>(
outer_graph, concurrency, OuterBody(max_threads, &inner_arena_pointer), priority
)
)
);
}
for( unsigned node_index1 = 0; node_index1 < num_outer_nodes; ++node_index1 )
for( unsigned node_index2 = node_index1+1; node_index2 < num_outer_nodes; ++node_index2 )
make_edge( *outer_nodes[node_index1], *outer_nodes[node_index2] );
test_in_arena( max_threads, outer_arena, outer_arena, outer_graph, *outer_nodes[0] );
inner_arena_pointer = &inner_arena;
test_in_arena( max_threads, outer_arena, inner_arena, outer_graph, *outer_nodes[0] );
}
} // namespace NestedCase
namespace BypassPrioritizedTask {
void common_body( int priority ) {
int current_task_index = g_task_num++;
g_task_info.push_back( TaskInfo( priority, current_task_index ) );
}
struct Body {
Body( int priority ) : my_priority( priority ) {}
continue_msg operator()(const continue_msg&) {
common_body( my_priority );
return continue_msg();
}
int my_priority;
};
struct InputNodeBody {
continue_msg operator()( tbb::flow_control& fc ){
static bool is_source_executed = false;
if( is_source_executed ) {
fc.stop();
return continue_msg();
}
common_body( 0 );
is_source_executed = true;
return continue_msg();
}
};
template<typename StarterNodeType>
StarterNodeType create_starter_node(graph& g) {
return continue_node<continue_msg>( g, Body(0) );
}
template<>
input_node<continue_msg> create_starter_node<input_node<continue_msg>>(graph& g) {
return input_node<continue_msg>( g, InputNodeBody() );
}
template<typename StarterNodeType>
void start_graph( StarterNodeType& starter ) {
starter.try_put( continue_msg() );
}
template<>
void start_graph<input_node<continue_msg>>( input_node<continue_msg>& starter ) {
starter.activate();
}
template<typename StarterNodeType>
void test_use_case() {
g_task_info.clear();
g_task_num = 0;
graph g;
StarterNodeType starter = create_starter_node<StarterNodeType>(g);
continue_node<continue_msg> spawn_successor( g, Body(1), node_priority_t(1) );
continue_node<continue_msg> bypass_successor( g, Body(2), node_priority_t(2) );
make_edge( starter, spawn_successor );
make_edge( starter, bypass_successor );
start_graph<StarterNodeType>( starter );
g.wait_for_all();
CHECK_MESSAGE( g_task_info.size() == 3, "" );
CHECK_MESSAGE( g_task_info[0].my_task_index == 0, "" );
CHECK_MESSAGE( g_task_info[1].my_task_index == 1, "" );
CHECK_MESSAGE( g_task_info[2].my_task_index == 2, "" );
CHECK_MESSAGE( g_task_info[0].my_priority == 0, "" );
CHECK_MESSAGE( g_task_info[1].my_priority == 2, "Bypassed task with higher priority executed in wrong order." );
CHECK_MESSAGE( g_task_info[2].my_priority == 1, "" );
}
//! The test checks that the task from the node with higher priority, which task gets bypassed, is
//! executed first than the one spawned with lower priority.
void test() {
test_use_case<continue_node<continue_msg>>();
test_use_case<input_node<continue_msg>>();
}
} // namespace BypassPrioritizedTask
namespace ManySuccessors {
struct no_priority_node_body {
void operator()(continue_msg) {
CHECK_MESSAGE(
barrier == 0, "Non-priority successor has to be executed after all priority successors"
);
}
std::atomic<int>& barrier;
};
struct priority_node_body {
void operator()(continue_msg) {
--barrier;
while (barrier)
tbb::detail::d0::yield();
}
std::atomic<int>& barrier;
};
void test(int num_threads) {
tbb::task_arena arena( num_threads );
arena.execute(
[&]() {
graph g;
broadcast_node<continue_msg> bn(g);
std::vector< std::unique_ptr<continue_node<continue_msg>> > nodes;
std::atomic<int> barrier;
for (int i = 0; i < 2 * num_threads; ++i)
nodes.push_back(
std::unique_ptr<continue_node<continue_msg>>(
new continue_node<continue_msg>(g, no_priority_node_body{ barrier })
)
);
for (int i = 0; i < num_threads; ++i)
nodes.push_back(
std::unique_ptr<continue_node<continue_msg>>(
new continue_node<continue_msg>(g, priority_node_body{ barrier }, /*priority*/1)
)
);
std::random_device rd;
std::mt19937 gen(rd());
for (int trial = 0; trial < 10; ++trial) {
barrier = num_threads;
std::shuffle(nodes.begin(), nodes.end(), gen);
for (auto& n : nodes)
make_edge(bn, *n);
bn.try_put(continue_msg());
g.wait_for_all();
for (auto& n : nodes)
remove_edge(bn, *n);
}
}
);
}
} // namespace ManySuccessors
#if TBB_USE_EXCEPTIONS
namespace Exceptions {
void test() {
using namespace tbb::flow;
graph g;
std::srand(42);
const unsigned num_messages = 50;
std::vector<unsigned> throwing_msgs;
std::atomic<unsigned> msg_count(0);
continue_node<unsigned> c(g, [&msg_count](continue_msg) {
return ++msg_count;
}, 2);
function_node<unsigned> f(g, unlimited, [&throwing_msgs](unsigned v) {
for( auto i : throwing_msgs ) {
if( i == v )
throw std::runtime_error("Exception::test");
}
}, 1);
make_edge(c, f);
for (int i = 0; i < 10; ++i) {
msg_count = 0;
g.reset();
throwing_msgs.push_back(std::rand() % num_messages);
try {
for (unsigned j = 0; j < num_messages; ++j) {
c.try_put(continue_msg());
}
g.wait_for_all();
FAIL("Unreachable code. The exception is expected");
} catch (std::runtime_error&) {
CHECK(g.is_cancelled());
CHECK(g.exception_thrown());
} catch (...) {
FAIL("Unexpected exception");
}
}
}
} // namespace Exceptions
#endif
//! Test node prioritization
//! \brief \ref requirement
TEST_CASE("Priority nodes take precedence"){
for( auto p : utils::concurrency_range() ) {
PriorityNodesTakePrecedence::test( static_cast<int>(p) );
}
}
#if !EMSCRIPTEN
//! Test thread eager reaction
//! \brief \ref error_guessing
TEST_CASE("Thread eager reaction"){
for( auto p : utils::concurrency_range() ) {
ThreadsEagerReaction::test( static_cast<int>(p) );
}
}
#endif
//! Test prioritization under concurrency limits
//! \brief \ref error_guessing
TEST_CASE("Limiting execution to prioritized work") {
for( auto p : utils::concurrency_range() ) {
LimitingExecutionToPriorityTask::test( static_cast<int>(p) );
}
}
//! Test nested graphs
//! \brief \ref error_guessing
TEST_CASE("Nested test case") {
std::size_t max_threads = utils::get_platform_max_threads();
// The stepping for the threads is done inside.
NestedCase::test( static_cast<int>(max_threads) );
}
//! Test bypassed task with higher priority
//! \brief \ref error_guessing
TEST_CASE("Bypass prioritized task"){
tbb::global_control gc( tbb::global_control::max_allowed_parallelism, 1 );
BypassPrioritizedTask::test();
}
//! Test mixing prioritized and ordinary successors
//! \brief \ref error_guessing
TEST_CASE("Many successors") {
for( auto p : utils::concurrency_range() ) {
ManySuccessors::test( static_cast<int>(p) );
}
}
#if TBB_USE_EXCEPTIONS
//! Test for exceptions
//! \brief \ref error_guessing
TEST_CASE("Exceptions") {
Exceptions::test();
}
#endif
|