1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
|
/*
Copyright (c) 2005-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif
#include "common/config.h"
#include "tbb/flow_graph.h"
#include "tbb/spin_rw_mutex.h"
#include "tbb/global_control.h"
#include "common/test.h"
#include "common/utils.h"
#include "common/graph_utils.h"
#include "common/test_follows_and_precedes_api.h"
#include "common/concepts_common.h"
//! \file test_function_node.cpp
//! \brief Test for [flow_graph.function_node] specification
#define N 100
#define MAX_NODES 4
//! Performs test on function nodes with limited concurrency and buffering
/** These tests check:
1) that the number of executing copies never exceed the concurrency limit
2) that the node never rejects
3) that no items are lost
and 4) all of this happens even if there are multiple predecessors and successors
*/
template<typename IO>
struct pass_through {
IO operator()(const IO& i) { return i; }
};
template< typename InputType, typename OutputType, typename Body >
void buffered_levels( size_t concurrency, Body body ) {
// Do for lc = 1 to concurrency level
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
// Set the execute_counter back to zero in the harness
harness_graph_executor<InputType, OutputType>::execute_count = 0;
// Set the number of current executors to zero.
harness_graph_executor<InputType, OutputType>::current_executors = 0;
// Set the max allowed executors to lc. There is a check in the functor to make sure this is never exceeded.
harness_graph_executor<InputType, OutputType>::max_executors = lc;
// Create the function_node with the appropriate concurrency level, and use default buffering
tbb::flow::function_node< InputType, OutputType > exe_node( g, lc, body );
tbb::flow::function_node<InputType, InputType> pass_thru( g, tbb::flow::unlimited, pass_through<InputType>());
// Create a vector of identical exe_nodes and pass_thrus
std::vector< tbb::flow::function_node< InputType, OutputType > > exe_vec(2, exe_node);
std::vector< tbb::flow::function_node< InputType, InputType > > pass_thru_vec(2, pass_thru);
// Attach each pass_thru to its corresponding exe_node
for (size_t node_idx=0; node_idx<exe_vec.size(); ++node_idx) {
tbb::flow::make_edge(pass_thru_vec[node_idx], exe_vec[node_idx]);
}
// TODO: why the test is executed serially for the node pairs, not concurrently?
for (size_t node_idx=0; node_idx<exe_vec.size(); ++node_idx) {
// For num_receivers = 1 to MAX_NODES
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
// Create num_receivers counting receivers and connect the exe_vec[node_idx] to them.
std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; i++) {
receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( exe_vec[node_idx], *receivers[r] );
}
// Do the test with varying numbers of senders
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
// Create num_senders senders, set there message limit each to N, and connect them to
// pass_thru_vec[node_idx]
senders.clear();
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
senders.back()->my_limit = N;
senders.back()->register_successor(pass_thru_vec[node_idx] );
}
// Initialize the receivers so they know how many senders and messages to check for
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->initialize_map( N, num_senders );
}
// Do the test
utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
g.wait_for_all();
// confirm that each sender was requested from N times
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK( n == N );
CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &pass_thru_vec[node_idx] );
}
// validate the receivers
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( exe_vec[node_idx], *receivers[r] );
}
CHECK( exe_vec[node_idx].try_put( InputType() ) == true );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
// since it's detached, nothing should have changed
receivers[r]->validate();
}
} // for num_receivers
} // for node_idx
} // for concurrency level lc
}
const size_t Offset = 123;
std::atomic<size_t> global_execute_count;
struct inc_functor {
std::atomic<size_t> local_execute_count;
inc_functor( ) { local_execute_count = 0; }
inc_functor( const inc_functor &f ) { local_execute_count = size_t(f.local_execute_count); }
void operator=( const inc_functor &f ) { local_execute_count = size_t(f.local_execute_count); }
int operator()( int i ) {
++global_execute_count;
++local_execute_count;
return i;
}
};
template< typename InputType, typename OutputType >
void buffered_levels_with_copy( size_t concurrency ) {
// Do for lc = 1 to concurrency level
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
inc_functor cf;
cf.local_execute_count = Offset;
global_execute_count = Offset;
tbb::flow::function_node< InputType, OutputType > exe_node( g, lc, cf );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; i++) {
receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( exe_node, *receivers[r] );
}
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
senders.clear();
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
senders.back()->my_limit = N;
tbb::flow::make_edge( *senders.back(), exe_node );
}
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->initialize_map( N, num_senders );
}
utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
g.wait_for_all();
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK( n == N );
CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node );
}
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( exe_node, *receivers[r] );
}
CHECK( exe_node.try_put( InputType() ) == true );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
// validate that the local body matches the global execute_count and both are correct
inc_functor body_copy = tbb::flow::copy_body<inc_functor>( exe_node );
const size_t expected_count = N/2 * MAX_NODES * MAX_NODES * ( MAX_NODES + 1 ) + MAX_NODES + Offset;
size_t global_count = global_execute_count;
size_t inc_count = body_copy.local_execute_count;
CHECK(global_count == expected_count);
CHECK(global_count == inc_count );
g.reset(tbb::flow::rf_reset_bodies);
body_copy = tbb::flow::copy_body<inc_functor>( exe_node );
inc_count = body_copy.local_execute_count;
CHECK_MESSAGE( Offset == inc_count, "reset(rf_reset_bodies) did not reset functor" );
}
}
template< typename InputType, typename OutputType >
void run_buffered_levels( int c ) {
buffered_levels<InputType,OutputType>( c, []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::func(i); } );
buffered_levels<InputType,OutputType>( c, &harness_graph_executor<InputType, OutputType>::func );
buffered_levels<InputType,OutputType>( c, typename harness_graph_executor<InputType, OutputType>::functor() );
buffered_levels_with_copy<InputType,OutputType>( c );
}
//! Performs test on executable nodes with limited concurrency
/** These tests check:
1) that the nodes will accepts puts up to the concurrency limit,
2) the nodes do not exceed the concurrency limit even when run with more threads (this is checked in the harness_graph_executor),
3) the nodes will receive puts from multiple successors simultaneously,
and 4) the nodes will send to multiple predecessors.
There is no checking of the contents of the messages for corruption.
*/
template< typename InputType, typename OutputType, typename Body >
void concurrency_levels( size_t concurrency, Body body ) {
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
// Set the execute_counter back to zero in the harness
harness_graph_executor<InputType, OutputType>::execute_count = 0;
// Set the number of current executors to zero.
harness_graph_executor<InputType, OutputType>::current_executors = 0;
// Set the max allowed executors to lc. There is a check in the functor to make sure this is never exceeded.
harness_graph_executor<InputType, OutputType>::max_executors = lc;
typedef tbb::flow::function_node< InputType, OutputType, tbb::flow::rejecting > fnode_type;
fnode_type exe_node( g, lc, body );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; ++i) {
receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( exe_node, *receivers[r] );
}
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
senders.clear();
{
// Exclusively lock m to prevent exe_node from finishing
tbb::spin_rw_mutex::scoped_lock l(
harness_graph_executor<InputType, OutputType>::template mutex_holder<tbb::spin_rw_mutex>::mutex
);
// put to lc level, it will accept and then block at m
for ( size_t c = 0 ; c < lc ; ++c ) {
CHECK( exe_node.try_put( InputType() ) == true );
}
// it only accepts to lc level
CHECK( exe_node.try_put( InputType() ) == false );
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
// register a sender
senders.back()->my_limit = N;
exe_node.register_predecessor( *senders.back() );
}
} // release lock at end of scope, setting the exe node free to continue
// wait for graph to settle down
g.wait_for_all();
// confirm that each sender was requested from N times
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK( n == N );
CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node );
}
// confirm that each receivers got N * num_senders + the initial lc puts
for (size_t r = 0; r < num_receivers; ++r ) {
size_t n = receivers[r]->my_count;
CHECK( n == num_senders*N+lc );
receivers[r]->my_count = 0;
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( exe_node, *receivers[r] );
}
CHECK( exe_node.try_put( InputType() ) == true );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
CHECK( int(receivers[r]->my_count) == 0 );
}
}
}
}
template< typename InputType, typename OutputType >
void run_concurrency_levels( int c ) {
concurrency_levels<InputType,OutputType>( c, []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::template tfunc<tbb::spin_rw_mutex>(i); } );
concurrency_levels<InputType,OutputType>( c, &harness_graph_executor<InputType, OutputType>::template tfunc<tbb::spin_rw_mutex> );
concurrency_levels<InputType,OutputType>( c, typename harness_graph_executor<InputType, OutputType>::template tfunctor<tbb::spin_rw_mutex>() );
}
struct empty_no_assign {
empty_no_assign() {}
empty_no_assign( int ) {}
operator int() { return 0; }
};
template< typename InputType >
struct parallel_puts : private utils::NoAssign {
tbb::flow::receiver< InputType > * const my_exe_node;
parallel_puts( tbb::flow::receiver< InputType > &exe_node ) : my_exe_node(&exe_node) {}
void operator()( int ) const {
for ( int i = 0; i < N; ++i ) {
// the nodes will accept all puts
CHECK( my_exe_node->try_put( InputType() ) == true );
}
}
};
//! Performs test on executable nodes with unlimited concurrency
/** These tests check:
1) that the nodes will accept all puts
2) the nodes will receive puts from multiple predecessors simultaneously,
and 3) the nodes will send to multiple successors.
There is no checking of the contents of the messages for corruption.
*/
template< typename InputType, typename OutputType, typename Body >
void unlimited_concurrency( Body body ) {
for (unsigned p = 1; p < 2*utils::MaxThread; ++p) {
tbb::flow::graph g;
tbb::flow::function_node< InputType, OutputType, tbb::flow::rejecting > exe_node( g, tbb::flow::unlimited, body );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; ++i) {
receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
}
harness_graph_executor<InputType, OutputType>::execute_count = 0;
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( exe_node, *receivers[r] );
}
utils::NativeParallelFor( p, parallel_puts<InputType>(exe_node) );
g.wait_for_all();
// 2) the nodes will receive puts from multiple predecessors simultaneously,
size_t ec = harness_graph_executor<InputType, OutputType>::execute_count;
CHECK( ec == p*N );
for (size_t r = 0; r < num_receivers; ++r ) {
size_t c = receivers[r]->my_count;
// 3) the nodes will send to multiple successors.
CHECK( c == p*N );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( exe_node, *receivers[r] );
}
}
}
}
template< typename InputType, typename OutputType >
void run_unlimited_concurrency() {
harness_graph_executor<InputType, OutputType>::max_executors = 0;
unlimited_concurrency<InputType,OutputType>( []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::func(i); } );
unlimited_concurrency<InputType,OutputType>( &harness_graph_executor<InputType, OutputType>::func );
unlimited_concurrency<InputType,OutputType>( typename harness_graph_executor<InputType, OutputType>::functor() );
}
struct continue_msg_to_int {
int my_int;
continue_msg_to_int(int x) : my_int(x) {}
int operator()(tbb::flow::continue_msg) { return my_int; }
};
void test_function_node_with_continue_msg_as_input() {
// If this function terminates, then this test is successful
tbb::flow::graph g;
tbb::flow::broadcast_node<tbb::flow::continue_msg> Start(g);
tbb::flow::function_node<tbb::flow::continue_msg, int, tbb::flow::rejecting> FN1( g, tbb::flow::serial, continue_msg_to_int(42));
tbb::flow::function_node<tbb::flow::continue_msg, int, tbb::flow::rejecting> FN2( g, tbb::flow::serial, continue_msg_to_int(43));
tbb::flow::make_edge( Start, FN1 );
tbb::flow::make_edge( Start, FN2 );
Start.try_put( tbb::flow::continue_msg() );
g.wait_for_all();
}
//! Tests limited concurrency cases for nodes that accept data messages
void test_concurrency(int num_threads) {
tbb::global_control thread_limit(tbb::global_control::max_allowed_parallelism, num_threads);
run_concurrency_levels<int,int>(num_threads);
run_concurrency_levels<int,tbb::flow::continue_msg>(num_threads);
run_buffered_levels<int, int>(num_threads);
run_unlimited_concurrency<int,int>();
run_unlimited_concurrency<int,empty_no_assign>();
run_unlimited_concurrency<empty_no_assign,int>();
run_unlimited_concurrency<empty_no_assign,empty_no_assign>();
run_unlimited_concurrency<int,tbb::flow::continue_msg>();
run_unlimited_concurrency<empty_no_assign,tbb::flow::continue_msg>();
test_function_node_with_continue_msg_as_input();
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
#include <array>
#include <vector>
void test_follows_and_precedes_api() {
using msg_t = tbb::flow::continue_msg;
std::array<msg_t, 3> messages_for_follows = { {msg_t(), msg_t(), msg_t()} };
std::vector<msg_t> messages_for_precedes = { msg_t() };
pass_through<msg_t> pass_msg;
follows_and_precedes_testing::test_follows
<msg_t, tbb::flow::function_node<msg_t, msg_t>>
(messages_for_follows, tbb::flow::unlimited, pass_msg);
follows_and_precedes_testing::test_precedes
<msg_t, tbb::flow::function_node<msg_t, msg_t>>
(messages_for_precedes, tbb::flow::unlimited, pass_msg, tbb::flow::node_priority_t(1));
}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
// Basic idea of the following tests is to check that try_put_and_wait(message) call for function_node
// with one of the policies (lightweight, queueing and rejecting) with different concurrency limits
// processes all of the previous jobs required to process message, the message itself, but does
// not process the elements submitted later or not required to process the message
// These tests submit start_work_items using the regular try_put and then submit wait_message
// with try_put_and_wait. During the completion of the graph, new_work_items would be submitted
// once the wait_message arrives.
void test_try_put_and_wait_lightweight(std::size_t concurrency_limit) {
tbb::task_arena arena(1);
arena.execute([&]{
tbb::flow::graph g;
std::vector<int> start_work_items;
std::vector<int> processed_items;
std::vector<int> new_work_items;
int wait_message = 10;
for (int i = 0; i < wait_message; ++i) {
start_work_items.emplace_back(i);
new_work_items.emplace_back(i + 1 + wait_message);
}
using function_node_type = tbb::flow::function_node<int, int, tbb::flow::lightweight>;
function_node_type* start_node = nullptr;
function_node_type function(g, concurrency_limit,
[&](int input) noexcept {
if (input == wait_message) {
for (int item : new_work_items) {
start_node->try_put(item);
}
}
return input;
});
start_node = &function;
function_node_type writer(g, concurrency_limit,
[&](int input) noexcept {
processed_items.emplace_back(input);
return 0;
});
tbb::flow::make_edge(function, writer);
for (int i = 0; i < wait_message; ++i) {
function.try_put(i);
}
function.try_put_and_wait(wait_message);
std::size_t check_index = 0;
// For lightweight function_node, start_work_items are expected to be processed first
// while putting items into the first node.
for (auto item : start_work_items) {
CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
}
if (concurrency_limit == tbb::flow::serial) {
// If the lightweight function_node is serial, it should process the wait_message but add items from new_work_items
// into the queue since the concurrency limit is occupied.
CHECK_MESSAGE(processed_items.size() == start_work_items.size() + 1, "Unexpected number of elements processed");
CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");
} else {
// If the node is unlimited, it should process new_work_items immediately while processing the wait_message
// Hence they should be processed before exiting the try_put_and_wait
CHECK_MESSAGE(processed_items.size() == start_work_items.size() + new_work_items.size() + 1,
"Unexpected number of elements processed");
for (auto item : new_work_items) {
CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
}
// wait_message would be processed only after new_work_items
CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");
}
g.wait_for_all();
if (concurrency_limit == tbb::flow::serial) {
// For the serial node, processing of new_work_items would be postponed to wait_for_all since they
// would be queued and spawned after working with wait_message
for (auto item : new_work_items) {
CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
}
}
CHECK(check_index == processed_items.size());
});
}
void test_try_put_and_wait_queueing(std::size_t concurrency_limit) {
tbb::task_arena arena(1);
arena.execute([&]{
tbb::flow::graph g;
std::vector<int> start_work_items;
std::vector<int> processed_items;
std::vector<int> new_work_items;
int wait_message = 10;
for (int i = 0; i < wait_message; ++i) {
start_work_items.emplace_back(i);
new_work_items.emplace_back(i + 1 + wait_message);
}
using function_node_type = tbb::flow::function_node<int, int, tbb::flow::queueing>;
function_node_type* start_node = nullptr;
function_node_type function(g, concurrency_limit,
[&](int input) noexcept {
if (input == wait_message) {
for (int item : new_work_items) {
start_node->try_put(item);
}
}
return input;
});
start_node = &function;
function_node_type writer(g, concurrency_limit,
[&](int input) noexcept {
processed_items.emplace_back(input);
return 0;
});
tbb::flow::make_edge(function, writer);
for (int i = 0; i < wait_message; ++i) {
function.try_put(i);
}
function.try_put_and_wait(wait_message);
std::size_t check_index = 0;
if (concurrency_limit == tbb::flow::serial) {
// Serial queueing function_node should add all start_work_items except the first one into the queue
// and then process them in FIFO order.
// wait_message would also be added to the queue, but would be processed later
CHECK_MESSAGE(processed_items.size() == start_work_items.size() + 1, "Unexpected number of elements processed");
for (auto item : start_work_items) {
CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
}
} else {
CHECK_MESSAGE(processed_items.size() == 1, "Unexpected number of elements processed");
}
// For the unlimited function_node, all of the tasks for start_work_items and wait_message would be spawned
// and hence processed by the thread in LIFO order.
// The first processed item is expected to be wait_message since it was spawned last
CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");
g.wait_for_all();
if (concurrency_limit == tbb::flow::serial) {
// For serial queueing function_node, the new_work_items are expected to be processed while calling to wait_for_all
// They would be queued and processed later in FIFO order
for (auto item : new_work_items) {
CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
}
} else {
// Unlimited function_node would always spawn tasks immediately without adding them into the queue
// They would be processed in LIFO order. Hence it is expected that new_work_items would be processed first in reverse order
// After them, start_work_items would be processed also in reverse order
for (std::size_t i = new_work_items.size(); i != 0; --i) {
CHECK_MESSAGE(processed_items[check_index++] == new_work_items[i - 1], "Unexpected items processing");
}
for (std::size_t i = start_work_items.size(); i != 0; --i) {
CHECK_MESSAGE(processed_items[check_index++] == start_work_items[i - 1], "Unexpected items processing");
}
}
CHECK(check_index == processed_items.size());
});
}
void test_try_put_and_wait_rejecting(size_t concurrency_limit) {
tbb::task_arena arena(1);
arena.execute([&]{
tbb::flow::graph g;
std::vector<int> processed_items;
std::vector<int> new_work_items;
int wait_message = 0;
for (int i = 1; i < wait_message; ++i) {
new_work_items.emplace_back(i);
}
using function_node_type = tbb::flow::function_node<int, int, tbb::flow::rejecting>;
function_node_type* start_node = nullptr;
function_node_type function(g, concurrency_limit,
[&](int input) noexcept {
if (input == wait_message) {
for (int item : new_work_items) {
start_node->try_put(item);
}
}
return input;
});
start_node = &function;
function_node_type writer(g, concurrency_limit,
[&](int input) noexcept {
processed_items.emplace_back(input);
return 0;
});
tbb::flow::make_edge(function, writer);
// If the first action is try_put_and_wait, it will occupy concurrency of the function_node
// All submits of new_work_items inside of the body should be rejected
bool result = function.try_put_and_wait(wait_message);
CHECK_MESSAGE(result, "task should not rejected since the node concurrency is not saturated");
CHECK_MESSAGE(processed_items.size() == 1, nullptr);
CHECK_MESSAGE(processed_items[0] == wait_message, "Unexpected items processing");
g.wait_for_all();
CHECK_MESSAGE(processed_items.size() == 1, nullptr);
processed_items.clear();
// If the first action is try_put, try_put_and_wait is expected to return false since the concurrency of the
// node would be saturated
function.try_put(0);
result = function.try_put_and_wait(wait_message);
CHECK_MESSAGE(!result, "task should be rejected since the node concurrency is saturated");
CHECK(processed_items.empty());
g.wait_for_all();
CHECK(processed_items.size() == 1);
CHECK_MESSAGE(processed_items[0] == 0, "Unexpected items processing");
});
}
void test_try_put_and_wait() {
test_try_put_and_wait_lightweight(tbb::flow::serial);
test_try_put_and_wait_lightweight(tbb::flow::unlimited);
test_try_put_and_wait_queueing(tbb::flow::serial);
test_try_put_and_wait_queueing(tbb::flow::unlimited);
test_try_put_and_wait_rejecting(tbb::flow::serial);
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! Test various node bodies with concurrency
//! \brief \ref error_guessing
TEST_CASE("Concurrency test") {
for(unsigned int p = utils::MinThread; p <= utils::MaxThread; ++p ) {
test_concurrency(p);
}
}
//! NativeParallelFor testing with various concurrency settings
//! \brief \ref error_guessing
TEST_CASE("Lightweight testing"){
lightweight_testing::test<tbb::flow::function_node>(10);
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test follows and precedes API
//! \brief \ref error_guessing
TEST_CASE("Flowgraph node set test"){
test_follows_and_precedes_api();
}
#endif
//! try_release and try_consume test
//! \brief \ref error_guessing
TEST_CASE("try_release try_consume"){
tbb::flow::graph g;
tbb::flow::function_node<int, int> fn(g, tbb::flow::unlimited, [](const int&v){return v;});
CHECK_MESSAGE((fn.try_release()==false), "try_release should initially return false on a node");
CHECK_MESSAGE((fn.try_consume()==false), "try_consume should initially return false on a node");
}
#if __TBB_CPP20_CONCEPTS_PRESENT
//! \brief \ref error_guessing
TEST_CASE("constraints for function_node input and output") {
struct InputObject {
InputObject() = default;
InputObject( const InputObject& ) = default;
};
struct OutputObject : test_concepts::Copyable {};
static_assert(utils::well_formed_instantiation<tbb::flow::function_node, InputObject, OutputObject>);
static_assert(utils::well_formed_instantiation<tbb::flow::function_node, int, int>);
static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, test_concepts::NonCopyable, OutputObject>);
static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, test_concepts::NonDefaultInitializable, OutputObject>);
static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, InputObject, test_concepts::NonCopyable>);
}
template <typename Input, typename Output, typename Body>
concept can_call_function_node_ctor = requires( tbb::flow::graph& graph, std::size_t concurrency, Body body,
tbb::flow::node_priority_t priority, tbb::flow::buffer_node<int>& f ) {
tbb::flow::function_node<Input, Output>(graph, concurrency, body);
tbb::flow::function_node<Input, Output>(graph, concurrency, body, priority);
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
tbb::flow::function_node<Input, Output>(tbb::flow::follows(f), concurrency, body);
tbb::flow::function_node<Input, Output>(tbb::flow::follows(f), concurrency, body, priority);
#endif
};
//! \brief \ref error_guessing
TEST_CASE("constraints for function_node body") {
using input_type = int;
using output_type = int;
using namespace test_concepts::function_node_body;
static_assert(can_call_function_node_ctor<input_type, output_type, Correct<input_type, output_type>>);
static_assert(!can_call_function_node_ctor<input_type, output_type, NonCopyable<input_type, output_type>>);
static_assert(!can_call_function_node_ctor<input_type, output_type, NonDestructible<input_type, output_type>>);
static_assert(!can_call_function_node_ctor<input_type, output_type, NoOperatorRoundBrackets<input_type, output_type>>);
static_assert(!can_call_function_node_ctor<input_type, output_type, WrongInputRoundBrackets<input_type, output_type>>);
static_assert(!can_call_function_node_ctor<input_type, output_type, WrongReturnRoundBrackets<input_type, output_type>>);
}
#endif // __TBB_CPP20_CONCEPTS_PRESENT
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! \brief \ref error_guessing
TEST_CASE("test function_node try_put_and_wait") {
test_try_put_and_wait();
}
#endif
// It was an issue when the critical task wrapper was allocated using the small object pool
// of the task being wrapped. Since the original task creates under the aggregator, there is no
// guarantee that the thread that requested the task creating is the same as actually created the task
// Mismatch between memory pool caused internal assertion failure while deallocating the task
//! \brief \ref regression
TEST_CASE("test critical tasks memory pool correctness") {
using node_type = tbb::flow::function_node<int, tbb::flow::continue_msg>;
constexpr int num_iterations = 10000;
int num_calls = 0;
auto node_body = [&](int) { ++num_calls; };
tbb::flow::graph g;
node_type node(g, tbb::flow::serial, node_body, tbb::flow::node_priority_t{1});
for (int i = 0; i < num_iterations; ++i) {
node.try_put(i);
}
g.wait_for_all();
REQUIRE_MESSAGE(num_calls == num_iterations, "Incorrect number of body executions");
}
|