File: test_function_node.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (830 lines) | stat: -rw-r--r-- 35,497 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
    Copyright (c) 2005-2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif

#include "common/config.h"

#include "tbb/flow_graph.h"
#include "tbb/spin_rw_mutex.h"
#include "tbb/global_control.h"

#include "common/test.h"
#include "common/utils.h"
#include "common/graph_utils.h"
#include "common/test_follows_and_precedes_api.h"
#include "common/concepts_common.h"


//! \file test_function_node.cpp
//! \brief Test for [flow_graph.function_node] specification


#define N 100
#define MAX_NODES 4

//! Performs test on function nodes with limited concurrency and buffering
/** These tests check:
    1) that the number of executing copies never exceed the concurrency limit
    2) that the node never rejects
    3) that no items are lost
    and 4) all of this happens even if there are multiple predecessors and successors
*/

template<typename IO>
struct pass_through {
    IO operator()(const IO& i) { return i; }
};

template< typename InputType, typename OutputType, typename Body >
void buffered_levels( size_t concurrency, Body body ) {

   // Do for lc = 1 to concurrency level
   for ( size_t lc = 1; lc <= concurrency; ++lc ) {
   tbb::flow::graph g;

   // Set the execute_counter back to zero in the harness
   harness_graph_executor<InputType, OutputType>::execute_count = 0;
   // Set the number of current executors to zero.
   harness_graph_executor<InputType, OutputType>::current_executors = 0;
   // Set the max allowed executors to lc.  There is a check in the functor to make sure this is never exceeded.
   harness_graph_executor<InputType, OutputType>::max_executors = lc;

   // Create the function_node with the appropriate concurrency level, and use default buffering
   tbb::flow::function_node< InputType, OutputType > exe_node( g, lc, body );
   tbb::flow::function_node<InputType, InputType> pass_thru( g, tbb::flow::unlimited, pass_through<InputType>());

   // Create a vector of identical exe_nodes and pass_thrus
   std::vector< tbb::flow::function_node< InputType, OutputType > > exe_vec(2, exe_node);
   std::vector< tbb::flow::function_node< InputType, InputType > > pass_thru_vec(2, pass_thru);
   // Attach each pass_thru to its corresponding exe_node
   for (size_t node_idx=0; node_idx<exe_vec.size(); ++node_idx) {
       tbb::flow::make_edge(pass_thru_vec[node_idx], exe_vec[node_idx]);
   }

   // TODO: why the test is executed serially for the node pairs, not concurrently?
   for (size_t node_idx=0; node_idx<exe_vec.size(); ++node_idx) {
   // For num_receivers = 1 to MAX_NODES
       for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
           // Create num_receivers counting receivers and connect the exe_vec[node_idx] to them.
           std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
           for (size_t i = 0; i < num_receivers; i++) {
               receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
           }

           for (size_t r = 0; r < num_receivers; ++r ) {
               tbb::flow::make_edge( exe_vec[node_idx], *receivers[r] );
           }

           // Do the test with varying numbers of senders
           std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
           for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
               // Create num_senders senders, set there message limit each to N, and connect them to
               // pass_thru_vec[node_idx]
               senders.clear();
               for (size_t s = 0; s < num_senders; ++s ) {
                   senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
                   senders.back()->my_limit = N;
                   senders.back()->register_successor(pass_thru_vec[node_idx] );
               }

               // Initialize the receivers so they know how many senders and messages to check for
               for (size_t r = 0; r < num_receivers; ++r ) {
                   receivers[r]->initialize_map( N, num_senders );
               }

               // Do the test
               utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
               g.wait_for_all();

               // confirm that each sender was requested from N times
               for (size_t s = 0; s < num_senders; ++s ) {
                   size_t n = senders[s]->my_received;
                   CHECK( n == N );
                   CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &pass_thru_vec[node_idx] );
               }
               // validate the receivers
               for (size_t r = 0; r < num_receivers; ++r ) {
                   receivers[r]->validate();
               }
           }
           for (size_t r = 0; r < num_receivers; ++r ) {
               tbb::flow::remove_edge( exe_vec[node_idx], *receivers[r] );
           }
           CHECK( exe_vec[node_idx].try_put( InputType() ) == true );
           g.wait_for_all();
           for (size_t r = 0; r < num_receivers; ++r ) {
               // since it's detached, nothing should have changed
               receivers[r]->validate();
           }

       } // for num_receivers
    } // for node_idx
    } // for concurrency level lc
}

const size_t Offset = 123;
std::atomic<size_t> global_execute_count;

struct inc_functor {

    std::atomic<size_t> local_execute_count;
    inc_functor( ) { local_execute_count = 0; }
    inc_functor( const inc_functor &f ) { local_execute_count = size_t(f.local_execute_count); }
    void operator=( const inc_functor &f ) { local_execute_count = size_t(f.local_execute_count); }

    int operator()( int i ) {
       ++global_execute_count;
       ++local_execute_count;
       return i;
    }

};

template< typename InputType, typename OutputType >
void buffered_levels_with_copy( size_t concurrency ) {

    // Do for lc = 1 to concurrency level
    for ( size_t lc = 1; lc <= concurrency; ++lc ) {
        tbb::flow::graph g;

        inc_functor cf;
        cf.local_execute_count = Offset;
        global_execute_count = Offset;

        tbb::flow::function_node< InputType, OutputType > exe_node( g, lc, cf );

        for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {

            std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
            for (size_t i = 0; i < num_receivers; i++) {
                receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
            }

            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::make_edge( exe_node, *receivers[r] );
            }

            std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
            for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
                senders.clear();
                for (size_t s = 0; s < num_senders; ++s ) {
                    senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
                    senders.back()->my_limit = N;
                    tbb::flow::make_edge( *senders.back(), exe_node );
                }

                for (size_t r = 0; r < num_receivers; ++r ) {
                    receivers[r]->initialize_map( N, num_senders );
                }

                utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
                g.wait_for_all();

                for (size_t s = 0; s < num_senders; ++s ) {
                    size_t n = senders[s]->my_received;
                    CHECK( n == N );
                    CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node );
                }
                for (size_t r = 0; r < num_receivers; ++r ) {
                    receivers[r]->validate();
                }
            }
            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::remove_edge( exe_node, *receivers[r] );
            }
            CHECK( exe_node.try_put( InputType() ) == true );
            g.wait_for_all();
            for (size_t r = 0; r < num_receivers; ++r ) {
                receivers[r]->validate();
            }
        }

        // validate that the local body matches the global execute_count and both are correct
        inc_functor body_copy = tbb::flow::copy_body<inc_functor>( exe_node );
        const size_t expected_count = N/2 * MAX_NODES * MAX_NODES * ( MAX_NODES + 1 ) + MAX_NODES + Offset;
        size_t global_count = global_execute_count;
        size_t inc_count = body_copy.local_execute_count;
        CHECK(global_count == expected_count);
        CHECK(global_count == inc_count );
        g.reset(tbb::flow::rf_reset_bodies);
        body_copy = tbb::flow::copy_body<inc_functor>( exe_node );
        inc_count = body_copy.local_execute_count;
        CHECK_MESSAGE( Offset == inc_count, "reset(rf_reset_bodies) did not reset functor" );
    }
}

template< typename InputType, typename OutputType >
void run_buffered_levels( int c ) {
    buffered_levels<InputType,OutputType>( c, []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::func(i); } );
    buffered_levels<InputType,OutputType>( c, &harness_graph_executor<InputType, OutputType>::func );
    buffered_levels<InputType,OutputType>( c, typename harness_graph_executor<InputType, OutputType>::functor() );
    buffered_levels_with_copy<InputType,OutputType>( c );
}


//! Performs test on executable nodes with limited concurrency
/** These tests check:
    1) that the nodes will accepts puts up to the concurrency limit,
    2) the nodes do not exceed the concurrency limit even when run with more threads (this is checked in the harness_graph_executor),
    3) the nodes will receive puts from multiple successors simultaneously,
    and 4) the nodes will send to multiple predecessors.
    There is no checking of the contents of the messages for corruption.
*/

template< typename InputType, typename OutputType, typename Body >
void concurrency_levels( size_t concurrency, Body body ) {

    for ( size_t lc = 1; lc <= concurrency; ++lc ) {
        tbb::flow::graph g;

        // Set the execute_counter back to zero in the harness
        harness_graph_executor<InputType, OutputType>::execute_count = 0;
        // Set the number of current executors to zero.
        harness_graph_executor<InputType, OutputType>::current_executors = 0;
        // Set the max allowed executors to lc. There is a check in the functor to make sure this is never exceeded.
        harness_graph_executor<InputType, OutputType>::max_executors = lc;

        typedef tbb::flow::function_node< InputType, OutputType, tbb::flow::rejecting > fnode_type;
        fnode_type exe_node( g, lc, body );

        for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {

            std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
            for (size_t i = 0; i < num_receivers; ++i) {
                receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
            }

            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::make_edge( exe_node, *receivers[r] );
            }

            std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;

            for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
                senders.clear();
                {
                    // Exclusively lock m to prevent exe_node from finishing
                    tbb::spin_rw_mutex::scoped_lock l(
                        harness_graph_executor<InputType, OutputType>::template mutex_holder<tbb::spin_rw_mutex>::mutex
                    );

                    // put to lc level, it will accept and then block at m
                    for ( size_t c = 0 ; c < lc ; ++c ) {
                        CHECK( exe_node.try_put( InputType() ) == true );
                    }
                    // it only accepts to lc level
                    CHECK( exe_node.try_put( InputType() ) == false );

                    for (size_t s = 0; s < num_senders; ++s ) {
                        senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
                        // register a sender
                        senders.back()->my_limit = N;
                        exe_node.register_predecessor( *senders.back() );
                    }

                } // release lock at end of scope, setting the exe node free to continue
                // wait for graph to settle down
                g.wait_for_all();

                // confirm that each sender was requested from N times
                for (size_t s = 0; s < num_senders; ++s ) {
                    size_t n = senders[s]->my_received;
                    CHECK( n == N );
                    CHECK( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node );
                }
                // confirm that each receivers got N * num_senders + the initial lc puts
                for (size_t r = 0; r < num_receivers; ++r ) {
                    size_t n = receivers[r]->my_count;
                    CHECK( n == num_senders*N+lc );
                    receivers[r]->my_count = 0;
                }
            }
            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::remove_edge( exe_node, *receivers[r] );
            }
            CHECK( exe_node.try_put( InputType() ) == true );
            g.wait_for_all();
            for (size_t r = 0; r < num_receivers; ++r ) {
                CHECK( int(receivers[r]->my_count) == 0 );
            }
        }
    }
}


template< typename InputType, typename OutputType >
void run_concurrency_levels( int c ) {
    concurrency_levels<InputType,OutputType>( c, []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::template tfunc<tbb::spin_rw_mutex>(i); } );
    concurrency_levels<InputType,OutputType>( c, &harness_graph_executor<InputType, OutputType>::template tfunc<tbb::spin_rw_mutex> );
    concurrency_levels<InputType,OutputType>( c, typename harness_graph_executor<InputType, OutputType>::template tfunctor<tbb::spin_rw_mutex>() );
}


struct empty_no_assign {
   empty_no_assign() {}
   empty_no_assign( int ) {}
   operator int() { return 0; }
};

template< typename InputType >
struct parallel_puts : private utils::NoAssign {

    tbb::flow::receiver< InputType > * const my_exe_node;

    parallel_puts( tbb::flow::receiver< InputType > &exe_node ) : my_exe_node(&exe_node) {}

    void operator()( int ) const  {
        for ( int i = 0; i < N; ++i ) {
            // the nodes will accept all puts
            CHECK( my_exe_node->try_put( InputType() ) == true );
        }
    }

};

//! Performs test on executable nodes with unlimited concurrency
/** These tests check:
    1) that the nodes will accept all puts
    2) the nodes will receive puts from multiple predecessors simultaneously,
    and 3) the nodes will send to multiple successors.
    There is no checking of the contents of the messages for corruption.
*/

template< typename InputType, typename OutputType, typename Body >
void unlimited_concurrency( Body body ) {

    for (unsigned p = 1; p < 2*utils::MaxThread; ++p) {
        tbb::flow::graph g;
        tbb::flow::function_node< InputType, OutputType, tbb::flow::rejecting > exe_node( g, tbb::flow::unlimited, body );

        for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {

            std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
            for (size_t i = 0; i < num_receivers; ++i) {
                receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
            }

            harness_graph_executor<InputType, OutputType>::execute_count = 0;

            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::make_edge( exe_node, *receivers[r] );
            }

            utils::NativeParallelFor( p, parallel_puts<InputType>(exe_node) );
            g.wait_for_all();

            // 2) the nodes will receive puts from multiple predecessors simultaneously,
            size_t ec = harness_graph_executor<InputType, OutputType>::execute_count;
            CHECK( ec == p*N );
            for (size_t r = 0; r < num_receivers; ++r ) {
                size_t c = receivers[r]->my_count;
                // 3) the nodes will send to multiple successors.
                CHECK( c == p*N );
            }
            for (size_t r = 0; r < num_receivers; ++r ) {
                tbb::flow::remove_edge( exe_node, *receivers[r] );
            }
            }
        }
    }

template< typename InputType, typename OutputType >
void run_unlimited_concurrency() {
    harness_graph_executor<InputType, OutputType>::max_executors = 0;
    unlimited_concurrency<InputType,OutputType>( []( InputType i ) -> OutputType { return harness_graph_executor<InputType, OutputType>::func(i); } );
    unlimited_concurrency<InputType,OutputType>( &harness_graph_executor<InputType, OutputType>::func );
    unlimited_concurrency<InputType,OutputType>( typename harness_graph_executor<InputType, OutputType>::functor() );
}

struct continue_msg_to_int {
    int my_int;
    continue_msg_to_int(int x) : my_int(x) {}
    int operator()(tbb::flow::continue_msg) { return my_int; }
};

void test_function_node_with_continue_msg_as_input() {
    // If this function terminates, then this test is successful
    tbb::flow::graph g;

    tbb::flow::broadcast_node<tbb::flow::continue_msg> Start(g);

    tbb::flow::function_node<tbb::flow::continue_msg, int, tbb::flow::rejecting> FN1( g, tbb::flow::serial, continue_msg_to_int(42));
    tbb::flow::function_node<tbb::flow::continue_msg, int, tbb::flow::rejecting> FN2( g, tbb::flow::serial, continue_msg_to_int(43));

    tbb::flow::make_edge( Start, FN1 );
    tbb::flow::make_edge( Start, FN2 );

    Start.try_put( tbb::flow::continue_msg() );
    g.wait_for_all();
}

//! Tests limited concurrency cases for nodes that accept data messages
void test_concurrency(int num_threads) {
    tbb::global_control thread_limit(tbb::global_control::max_allowed_parallelism, num_threads);
    run_concurrency_levels<int,int>(num_threads);
    run_concurrency_levels<int,tbb::flow::continue_msg>(num_threads);
    run_buffered_levels<int, int>(num_threads);
    run_unlimited_concurrency<int,int>();
    run_unlimited_concurrency<int,empty_no_assign>();
    run_unlimited_concurrency<empty_no_assign,int>();
    run_unlimited_concurrency<empty_no_assign,empty_no_assign>();
    run_unlimited_concurrency<int,tbb::flow::continue_msg>();
    run_unlimited_concurrency<empty_no_assign,tbb::flow::continue_msg>();
    test_function_node_with_continue_msg_as_input();
}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
#include <array>
#include <vector>
void test_follows_and_precedes_api() {
    using msg_t = tbb::flow::continue_msg;

    std::array<msg_t, 3> messages_for_follows = { {msg_t(), msg_t(), msg_t()} };
    std::vector<msg_t> messages_for_precedes = { msg_t() };

    pass_through<msg_t> pass_msg;

    follows_and_precedes_testing::test_follows
        <msg_t, tbb::flow::function_node<msg_t, msg_t>>
        (messages_for_follows, tbb::flow::unlimited, pass_msg);
    follows_and_precedes_testing::test_precedes
        <msg_t, tbb::flow::function_node<msg_t, msg_t>>
        (messages_for_precedes, tbb::flow::unlimited, pass_msg, tbb::flow::node_priority_t(1));
}
#endif

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
// Basic idea of the following tests is to check that try_put_and_wait(message) call for function_node
// with one of the policies (lightweight, queueing and rejecting) with different concurrency limits
// processes all of the previous jobs required to process message, the message itself, but does
// not process the elements submitted later or not required to process the message
// These tests submit start_work_items using the regular try_put and then submit wait_message
// with try_put_and_wait. During the completion of the graph, new_work_items would be submitted
// once the wait_message arrives.
void test_try_put_and_wait_lightweight(std::size_t concurrency_limit) {
    tbb::task_arena arena(1);

    arena.execute([&]{
        tbb::flow::graph g;

        std::vector<int> start_work_items;
        std::vector<int> processed_items;
        std::vector<int> new_work_items;

        int wait_message = 10;

        for (int i = 0; i < wait_message; ++i) {
            start_work_items.emplace_back(i);
            new_work_items.emplace_back(i + 1 + wait_message);
        }

        using function_node_type = tbb::flow::function_node<int, int, tbb::flow::lightweight>;
        function_node_type* start_node = nullptr;

        function_node_type function(g, concurrency_limit,
            [&](int input) noexcept {
                if (input == wait_message) {
                    for (int item : new_work_items) {
                        start_node->try_put(item);
                    }
                }
                return input;
            });

        start_node = &function;

        function_node_type writer(g, concurrency_limit,
            [&](int input) noexcept {
                processed_items.emplace_back(input);
                return 0;
            });

        tbb::flow::make_edge(function, writer);

        for (int i = 0; i < wait_message; ++i) {
            function.try_put(i);
        }

        function.try_put_and_wait(wait_message);

        std::size_t check_index = 0;

        // For lightweight function_node, start_work_items are expected to be processed first
        // while putting items into the first node.
        for (auto item : start_work_items) {
            CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
        }

        if (concurrency_limit == tbb::flow::serial) {
            // If the lightweight function_node is serial, it should process the wait_message but add items from new_work_items
            // into the queue since the concurrency limit is occupied.
            CHECK_MESSAGE(processed_items.size() == start_work_items.size() + 1, "Unexpected number of elements processed");
            CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");
        } else {
            // If the node is unlimited, it should process new_work_items immediately while processing the wait_message
            // Hence they should be processed before exiting the try_put_and_wait
            CHECK_MESSAGE(processed_items.size() == start_work_items.size() + new_work_items.size() + 1,
                          "Unexpected number of elements processed");
            for (auto item : new_work_items) {
                CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
            }
            // wait_message would be processed only after new_work_items
            CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");
        }

        g.wait_for_all();

        if (concurrency_limit == tbb::flow::serial) {
            // For the serial node, processing of new_work_items would be postponed to wait_for_all since they
            // would be queued and spawned after working with wait_message
            for (auto item : new_work_items) {
                CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
            }
        }
        CHECK(check_index == processed_items.size());
    });
}

void test_try_put_and_wait_queueing(std::size_t concurrency_limit) {
    tbb::task_arena arena(1);
    arena.execute([&]{
        tbb::flow::graph g;

        std::vector<int> start_work_items;
        std::vector<int> processed_items;
        std::vector<int> new_work_items;

        int wait_message = 10;

        for (int i = 0; i < wait_message; ++i) {
            start_work_items.emplace_back(i);
            new_work_items.emplace_back(i + 1 + wait_message);
        }

        using function_node_type = tbb::flow::function_node<int, int, tbb::flow::queueing>;
        function_node_type* start_node = nullptr;

        function_node_type function(g, concurrency_limit,
            [&](int input) noexcept {
                if (input == wait_message) {
                    for (int item : new_work_items) {
                        start_node->try_put(item);
                    }
                }
                return input;
            });

        start_node = &function;

        function_node_type writer(g, concurrency_limit,
            [&](int input) noexcept {
                processed_items.emplace_back(input);
                return 0;
            });

        tbb::flow::make_edge(function, writer);

        for (int i = 0; i < wait_message; ++i) {
            function.try_put(i);
        }

        function.try_put_and_wait(wait_message);

        std::size_t check_index = 0;

        if (concurrency_limit == tbb::flow::serial) {
            // Serial queueing function_node should add all start_work_items except the first one into the queue
            // and then process them in FIFO order.
            // wait_message would also be added to the queue, but would be processed later
            CHECK_MESSAGE(processed_items.size() == start_work_items.size() + 1, "Unexpected number of elements processed");
            for (auto item : start_work_items) {
                CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
            }
        } else {
            CHECK_MESSAGE(processed_items.size() == 1, "Unexpected number of elements processed");
        }

        // For the unlimited function_node, all of the tasks for start_work_items and wait_message would be spawned
        // and hence processed by the thread in LIFO order.
        // The first processed item is expected to be wait_message since it was spawned last
        CHECK_MESSAGE(processed_items[check_index++] == wait_message, "Unexpected items processing");

        g.wait_for_all();

        if (concurrency_limit == tbb::flow::serial) {
            // For serial queueing function_node, the new_work_items are expected to be processed while calling to wait_for_all
            // They would be queued and processed later in FIFO order
            for (auto item : new_work_items) {
                CHECK_MESSAGE(processed_items[check_index++] == item, "Unexpected items processing");
            }
        } else {
            // Unlimited function_node would always spawn tasks immediately without adding them into the queue
            // They would be processed in LIFO order. Hence it is expected that new_work_items would be processed first in reverse order
            // After them, start_work_items would be processed also in reverse order
            for (std::size_t i = new_work_items.size(); i != 0; --i) {
                CHECK_MESSAGE(processed_items[check_index++] == new_work_items[i - 1], "Unexpected items processing");
            }
            for (std::size_t i = start_work_items.size(); i != 0; --i) {
                CHECK_MESSAGE(processed_items[check_index++] == start_work_items[i - 1], "Unexpected items processing");
            }
        }
        CHECK(check_index == processed_items.size());
    });
}

void test_try_put_and_wait_rejecting(size_t concurrency_limit) {
    tbb::task_arena arena(1);

    arena.execute([&]{
        tbb::flow::graph g;

        std::vector<int> processed_items;
        std::vector<int> new_work_items;

        int wait_message = 0;

        for (int i = 1; i < wait_message; ++i) {
            new_work_items.emplace_back(i);
        }

        using function_node_type = tbb::flow::function_node<int, int, tbb::flow::rejecting>;
        function_node_type* start_node = nullptr;

        function_node_type function(g, concurrency_limit,
            [&](int input) noexcept {
                if (input == wait_message) {
                    for (int item : new_work_items) {
                        start_node->try_put(item);
                    }
                }
                return input;
            });

        start_node = &function;

        function_node_type writer(g, concurrency_limit,
            [&](int input) noexcept {
                processed_items.emplace_back(input);
                return 0;
            });

        tbb::flow::make_edge(function, writer);

        // If the first action is try_put_and_wait, it will occupy concurrency of the function_node
        // All submits of new_work_items inside of the body should be rejected
        bool result = function.try_put_and_wait(wait_message);
        CHECK_MESSAGE(result, "task should not rejected since the node concurrency is not saturated");

        CHECK_MESSAGE(processed_items.size() == 1, nullptr);
        CHECK_MESSAGE(processed_items[0] == wait_message, "Unexpected items processing");

        g.wait_for_all();

        CHECK_MESSAGE(processed_items.size() == 1, nullptr);

        processed_items.clear();

        // If the first action is try_put, try_put_and_wait is expected to return false since the concurrency of the
        // node would be saturated
        function.try_put(0);
        result = function.try_put_and_wait(wait_message);
        CHECK_MESSAGE(!result, "task should be rejected since the node concurrency is saturated");
        CHECK(processed_items.empty());

        g.wait_for_all();

        CHECK(processed_items.size() == 1);
        CHECK_MESSAGE(processed_items[0] == 0, "Unexpected items processing");
    });
}

void test_try_put_and_wait() {
    test_try_put_and_wait_lightweight(tbb::flow::serial);
    test_try_put_and_wait_lightweight(tbb::flow::unlimited);

    test_try_put_and_wait_queueing(tbb::flow::serial);
    test_try_put_and_wait_queueing(tbb::flow::unlimited);

    test_try_put_and_wait_rejecting(tbb::flow::serial);
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT

//! Test various node bodies with concurrency
//! \brief \ref error_guessing
TEST_CASE("Concurrency test") {
    for(unsigned int p = utils::MinThread; p <= utils::MaxThread; ++p ) {
        test_concurrency(p);
    }
}

//! NativeParallelFor testing with various concurrency settings
//! \brief \ref error_guessing
TEST_CASE("Lightweight testing"){
   lightweight_testing::test<tbb::flow::function_node>(10);
}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test follows and precedes API
//! \brief \ref error_guessing
TEST_CASE("Flowgraph node set test"){
     test_follows_and_precedes_api();
}
#endif

//! try_release and try_consume test
//! \brief \ref error_guessing
TEST_CASE("try_release try_consume"){
    tbb::flow::graph g;

    tbb::flow::function_node<int, int> fn(g, tbb::flow::unlimited, [](const int&v){return v;});

    CHECK_MESSAGE((fn.try_release()==false), "try_release should initially return false on a node");
    CHECK_MESSAGE((fn.try_consume()==false), "try_consume should initially return false on a node");
}

#if __TBB_CPP20_CONCEPTS_PRESENT
//! \brief \ref error_guessing
TEST_CASE("constraints for function_node input and output") {
    struct InputObject {
        InputObject() = default;
        InputObject( const InputObject& ) = default;
    };
    struct OutputObject : test_concepts::Copyable {};

    static_assert(utils::well_formed_instantiation<tbb::flow::function_node, InputObject, OutputObject>);
    static_assert(utils::well_formed_instantiation<tbb::flow::function_node, int, int>);
    static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, test_concepts::NonCopyable, OutputObject>);
    static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, test_concepts::NonDefaultInitializable, OutputObject>);
    static_assert(!utils::well_formed_instantiation<tbb::flow::function_node, InputObject, test_concepts::NonCopyable>);
}

template <typename Input, typename Output, typename Body>
concept can_call_function_node_ctor = requires( tbb::flow::graph& graph, std::size_t concurrency, Body body,
                                                tbb::flow::node_priority_t priority, tbb::flow::buffer_node<int>& f ) {
    tbb::flow::function_node<Input, Output>(graph, concurrency, body);
    tbb::flow::function_node<Input, Output>(graph, concurrency, body, priority);
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    tbb::flow::function_node<Input, Output>(tbb::flow::follows(f), concurrency, body);
    tbb::flow::function_node<Input, Output>(tbb::flow::follows(f), concurrency, body, priority);
#endif
};

//! \brief \ref error_guessing
TEST_CASE("constraints for function_node body") {
    using input_type = int;
    using output_type = int;
    using namespace test_concepts::function_node_body;

    static_assert(can_call_function_node_ctor<input_type, output_type, Correct<input_type, output_type>>);
    static_assert(!can_call_function_node_ctor<input_type, output_type, NonCopyable<input_type, output_type>>);
    static_assert(!can_call_function_node_ctor<input_type, output_type, NonDestructible<input_type, output_type>>);
    static_assert(!can_call_function_node_ctor<input_type, output_type, NoOperatorRoundBrackets<input_type, output_type>>);
    static_assert(!can_call_function_node_ctor<input_type, output_type, WrongInputRoundBrackets<input_type, output_type>>);
    static_assert(!can_call_function_node_ctor<input_type, output_type, WrongReturnRoundBrackets<input_type, output_type>>);
}
#endif // __TBB_CPP20_CONCEPTS_PRESENT

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! \brief \ref error_guessing
TEST_CASE("test function_node try_put_and_wait") {
    test_try_put_and_wait();
}
#endif

// It was an issue when the critical task wrapper was allocated using the small object pool
// of the task being wrapped. Since the original task creates under the aggregator, there is no
// guarantee that the thread that requested the task creating is the same as actually created the task
// Mismatch between memory pool caused internal assertion failure while deallocating the task
//! \brief \ref regression
TEST_CASE("test critical tasks memory pool correctness") {
    using node_type = tbb::flow::function_node<int, tbb::flow::continue_msg>;
    constexpr int num_iterations = 10000;
    int num_calls = 0;
    auto node_body = [&](int) { ++num_calls; };

    tbb::flow::graph g;
    node_type node(g, tbb::flow::serial, node_body, tbb::flow::node_priority_t{1});

    for (int i = 0; i < num_iterations; ++i) {
        node.try_put(i);
    }

    g.wait_for_all();
    REQUIRE_MESSAGE(num_calls == num_iterations, "Incorrect number of body executions");
}