1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
|
/*
Copyright (c) 2005-2021 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#if __INTEL_COMPILER && _MSC_VER
#pragma warning(disable : 2586) // decorated name length exceeded, name was truncated
#endif
#include "common/config.h"
#include "tbb/flow_graph.h"
#include "tbb/spin_rw_mutex.h"
#include "common/test.h"
#include "common/utils.h"
#include "common/graph_utils.h"
#include "common/test_follows_and_precedes_api.h"
#include "common/concepts_common.h"
//! \file test_multifunction_node.cpp
//! \brief Test for [flow_graph.multifunction_node] specification
#if TBB_USE_DEBUG
#define N 16
#else
#define N 100
#endif
#define MAX_NODES 4
//! Performs test on function nodes with limited concurrency and buffering
/** These tests check:
1) that the number of executing copies never exceed the concurrency limit
2) that the node never rejects
3) that no items are lost
and 4) all of this happens even if there are multiple predecessors and successors
*/
//! exercise buffered multifunction_node.
template< typename InputType, typename OutputTuple, typename Body >
void buffered_levels( size_t concurrency, Body body ) {
typedef typename std::tuple_element<0,OutputTuple>::type OutputType;
// Do for lc = 1 to concurrency level
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
// Set the execute_counter back to zero in the harness
harness_graph_multifunction_executor<InputType, OutputTuple>::execute_count = 0;
// Set the number of current executors to zero.
harness_graph_multifunction_executor<InputType, OutputTuple>::current_executors = 0;
// Set the max allowed executors to lc. There is a check in the functor to make sure this is never exceeded.
harness_graph_multifunction_executor<InputType, OutputTuple>::max_executors = lc;
// Create the function_node with the appropriate concurrency level, and use default buffering
tbb::flow::multifunction_node< InputType, OutputTuple > exe_node( g, lc, body );
//Create a vector of identical exe_nodes
std::vector< tbb::flow::multifunction_node< InputType, OutputTuple > > exe_vec(2, exe_node);
// exercise each of the copied nodes
for (size_t node_idx=0; node_idx<exe_vec.size(); ++node_idx) {
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
// Create num_receivers counting receivers and connect the exe_vec[node_idx] to them.
std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; i++) {
receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( tbb::flow::output_port<0>(exe_vec[node_idx]), *receivers[r] );
}
// Do the test with varying numbers of senders
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
// Create num_senders senders, set their message limit each to N, and connect
// them to the exe_vec[node_idx]
senders.clear();
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
senders.back()->my_limit = N;
tbb::flow::make_edge( *senders.back(), exe_vec[node_idx] );
}
// Initialize the receivers so they know how many senders and messages to check for
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->initialize_map( N, num_senders );
}
// Do the test
utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
g.wait_for_all();
// confirm that each sender was requested from N times
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK_MESSAGE( n == N, "" );
CHECK_MESSAGE( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_vec[node_idx], "" );
}
// validate the receivers
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( tbb::flow::output_port<0>(exe_vec[node_idx]), *receivers[r] );
}
CHECK_MESSAGE( exe_vec[node_idx].try_put( InputType() ) == true, "" );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
// since it's detached, nothing should have changed
receivers[r]->validate();
}
}
}
}
}
const size_t Offset = 123;
std::atomic<size_t> global_execute_count;
struct inc_functor {
std::atomic<size_t> local_execute_count;
inc_functor( ) { local_execute_count = 0; }
inc_functor( const inc_functor &f ) { local_execute_count = size_t(f.local_execute_count); }
template<typename output_ports_type>
void operator()( int i, output_ports_type &p ) {
++global_execute_count;
++local_execute_count;
(void)std::get<0>(p).try_put(i);
}
};
template< typename InputType, typename OutputTuple >
void buffered_levels_with_copy( size_t concurrency ) {
typedef typename std::tuple_element<0,OutputTuple>::type OutputType;
// Do for lc = 1 to concurrency level
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
inc_functor cf;
cf.local_execute_count = Offset;
global_execute_count = Offset;
tbb::flow::multifunction_node< InputType, OutputTuple > exe_node( g, lc, cf );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_mapped_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; i++) {
receivers.push_back( std::make_shared<harness_mapped_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
senders.clear();
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
senders.back()->my_limit = N;
tbb::flow::make_edge( *senders.back(), exe_node );
}
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->initialize_map( N, num_senders );
}
utils::NativeParallelFor( (int)num_senders, parallel_put_until_limit<InputType>(senders) );
g.wait_for_all();
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK_MESSAGE( n == N, "" );
CHECK_MESSAGE( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node, "" );
}
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
CHECK_MESSAGE( exe_node.try_put( InputType() ) == true, "" );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
receivers[r]->validate();
}
}
// validate that the local body matches the global execute_count and both are correct
inc_functor body_copy = tbb::flow::copy_body<inc_functor>( exe_node );
const size_t expected_count = N/2 * MAX_NODES * MAX_NODES * ( MAX_NODES + 1 ) + MAX_NODES + Offset;
size_t global_count = global_execute_count;
size_t inc_count = body_copy.local_execute_count;
CHECK_MESSAGE( (global_count == expected_count && global_count == inc_count), "" );
}
}
template< typename InputType, typename OutputTuple >
void run_buffered_levels( int c ) {
typedef typename tbb::flow::multifunction_node<InputType,OutputTuple>::output_ports_type output_ports_type;
buffered_levels<InputType,OutputTuple>( c, []( InputType i, output_ports_type &p ) { harness_graph_multifunction_executor<InputType, OutputTuple>::func(i,p); } );
buffered_levels<InputType,OutputTuple>( c, &harness_graph_multifunction_executor<InputType, OutputTuple>::func );
buffered_levels<InputType,OutputTuple>( c, typename harness_graph_multifunction_executor<InputType, OutputTuple>::functor() );
buffered_levels_with_copy<InputType,OutputTuple>( c );
}
//! Performs test on executable nodes with limited concurrency
/** These tests check:
1) that the nodes will accepts puts up to the concurrency limit,
2) the nodes do not exceed the concurrency limit even when run with more threads (this is checked in the harness_graph_executor),
3) the nodes will receive puts from multiple successors simultaneously,
and 4) the nodes will send to multiple predecessors.
There is no checking of the contents of the messages for corruption.
*/
template< typename InputType, typename OutputTuple, typename Body >
void concurrency_levels( size_t concurrency, Body body ) {
typedef typename std::tuple_element<0,OutputTuple>::type OutputType;
for ( size_t lc = 1; lc <= concurrency; ++lc ) {
tbb::flow::graph g;
// Set the execute_counter back to zero in the harness
harness_graph_multifunction_executor<InputType, OutputTuple>::execute_count = 0;
// Set the number of current executors to zero.
harness_graph_multifunction_executor<InputType, OutputTuple>::current_executors = 0;
// Set the max allowed executors to lc. There is a check in the functor to make sure this is never exceeded.
harness_graph_multifunction_executor<InputType, OutputTuple>::max_executors = lc;
tbb::flow::multifunction_node< InputType, OutputTuple, tbb::flow::rejecting > exe_node( g, lc, body );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; ++i) {
receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
std::vector< std::shared_ptr<harness_counting_sender<InputType>> > senders;
for (size_t num_senders = 1; num_senders <= MAX_NODES; ++num_senders ) {
{
// Exclusively lock m to prevent exe_node from finishing
tbb::spin_rw_mutex::scoped_lock l(
harness_graph_multifunction_executor< InputType, OutputTuple>::template mutex_holder<tbb::spin_rw_mutex>::mutex
);
// put to lc level, it will accept and then block at m
for ( size_t c = 0 ; c < lc ; ++c ) {
CHECK_MESSAGE( exe_node.try_put( InputType() ) == true, "" );
}
// it only accepts to lc level
CHECK_MESSAGE( exe_node.try_put( InputType() ) == false, "" );
senders.clear();
for (size_t s = 0; s < num_senders; ++s ) {
senders.push_back( std::make_shared<harness_counting_sender<InputType>>() );
senders.back()->my_limit = N;
exe_node.register_predecessor( *senders.back() );
}
} // release lock at end of scope, setting the exe node free to continue
// wait for graph to settle down
g.wait_for_all();
// confirm that each sender was requested from N times
for (size_t s = 0; s < num_senders; ++s ) {
size_t n = senders[s]->my_received;
CHECK_MESSAGE( n == N, "" );
CHECK_MESSAGE( senders[s]->my_receiver.load(std::memory_order_relaxed) == &exe_node, "" );
}
// confirm that each receivers got N * num_senders + the initial lc puts
for (size_t r = 0; r < num_receivers; ++r ) {
size_t n = receivers[r]->my_count;
CHECK_MESSAGE( n == num_senders*N+lc, "" );
receivers[r]->my_count = 0;
}
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
CHECK_MESSAGE( exe_node.try_put( InputType() ) == true, "" );
g.wait_for_all();
for (size_t r = 0; r < num_receivers; ++r ) {
CHECK_MESSAGE( int(receivers[r]->my_count) == 0, "" );
}
}
}
}
template< typename InputType, typename OutputTuple >
void run_concurrency_levels( int c ) {
typedef typename tbb::flow::multifunction_node<InputType,OutputTuple>::output_ports_type output_ports_type;
concurrency_levels<InputType,OutputTuple>( c, []( InputType i, output_ports_type &p ) { harness_graph_multifunction_executor<InputType, OutputTuple>::template tfunc<tbb::spin_rw_mutex>(i,p); } );
concurrency_levels<InputType,OutputTuple>( c, &harness_graph_multifunction_executor<InputType, OutputTuple>::template tfunc<tbb::spin_rw_mutex> );
concurrency_levels<InputType,OutputTuple>( c, typename harness_graph_multifunction_executor<InputType, OutputTuple>::template tfunctor<tbb::spin_rw_mutex>() );
}
struct empty_no_assign {
empty_no_assign() {}
empty_no_assign( int ) {}
operator int() { return 0; }
operator int() const { return 0; }
};
template< typename InputType >
struct parallel_puts : private utils::NoAssign {
tbb::flow::receiver< InputType > * const my_exe_node;
parallel_puts( tbb::flow::receiver< InputType > &exe_node ) : my_exe_node(&exe_node) {}
void operator()( int ) const {
for ( int i = 0; i < N; ++i ) {
// the nodes will accept all puts
CHECK_MESSAGE( my_exe_node->try_put( InputType() ) == true, "" );
}
}
};
//! Performs test on executable nodes with unlimited concurrency
/** These tests check:
1) that the nodes will accept all puts
2) the nodes will receive puts from multiple predecessors simultaneously,
and 3) the nodes will send to multiple successors.
There is no checking of the contents of the messages for corruption.
*/
template< typename InputType, typename OutputTuple, typename Body >
void unlimited_concurrency( Body body ) {
typedef typename std::tuple_element<0,OutputTuple>::type OutputType;
for (unsigned int p = 1; p < 2*utils::MaxThread; ++p) {
tbb::flow::graph g;
tbb::flow::multifunction_node< InputType, OutputTuple, tbb::flow::rejecting > exe_node( g, tbb::flow::unlimited, body );
for (size_t num_receivers = 1; num_receivers <= MAX_NODES; ++num_receivers ) {
std::vector< std::shared_ptr<harness_counting_receiver<OutputType>> > receivers;
for (size_t i = 0; i < num_receivers; ++i) {
receivers.push_back( std::make_shared<harness_counting_receiver<OutputType>>(g) );
}
harness_graph_multifunction_executor<InputType, OutputTuple>::execute_count = 0;
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::make_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
utils::NativeParallelFor( p, parallel_puts<InputType>(exe_node) );
g.wait_for_all();
// 2) the nodes will receive puts from multiple predecessors simultaneously,
size_t ec = harness_graph_multifunction_executor<InputType, OutputTuple>::execute_count;
CHECK_MESSAGE( (unsigned int)ec == p*N, "" );
for (size_t r = 0; r < num_receivers; ++r ) {
size_t c = receivers[r]->my_count;
// 3) the nodes will send to multiple successors.
CHECK_MESSAGE( (unsigned int)c == p*N, "" );
}
for (size_t r = 0; r < num_receivers; ++r ) {
tbb::flow::remove_edge( tbb::flow::output_port<0>(exe_node), *receivers[r] );
}
}
}
}
template< typename InputType, typename OutputTuple >
void run_unlimited_concurrency() {
harness_graph_multifunction_executor<InputType, OutputTuple>::max_executors = 0;
typedef typename tbb::flow::multifunction_node<InputType,OutputTuple>::output_ports_type output_ports_type;
unlimited_concurrency<InputType,OutputTuple>( []( InputType i, output_ports_type &p ) { harness_graph_multifunction_executor<InputType, OutputTuple>::func(i,p); } );
unlimited_concurrency<InputType,OutputTuple>( &harness_graph_multifunction_executor<InputType, OutputTuple>::func );
unlimited_concurrency<InputType,OutputTuple>( typename harness_graph_multifunction_executor<InputType, OutputTuple>::functor() );
}
template<typename InputType, typename OutputTuple>
struct oddEvenBody {
typedef typename tbb::flow::multifunction_node<InputType,OutputTuple>::output_ports_type output_ports_type;
typedef typename std::tuple_element<0,OutputTuple>::type EvenType;
typedef typename std::tuple_element<1,OutputTuple>::type OddType;
void operator() (const InputType &i, output_ports_type &p) {
if((int)i % 2) {
(void)std::get<1>(p).try_put(OddType(i));
}
else {
(void)std::get<0>(p).try_put(EvenType(i));
}
}
};
template<typename InputType, typename OutputTuple >
void run_multiport_test(int num_threads) {
typedef typename tbb::flow::multifunction_node<InputType, OutputTuple> mo_node_type;
typedef typename std::tuple_element<0,OutputTuple>::type EvenType;
typedef typename std::tuple_element<1,OutputTuple>::type OddType;
tbb::task_arena arena(num_threads);
arena.execute(
[&] () {
tbb::flow::graph g;
mo_node_type mo_node(g, tbb::flow::unlimited, oddEvenBody<InputType, OutputTuple>() );
tbb::flow::queue_node<EvenType> q0(g);
tbb::flow::queue_node<OddType> q1(g);
tbb::flow::make_edge(tbb::flow::output_port<0>(mo_node), q0);
tbb::flow::make_edge(tbb::flow::output_port<1>(mo_node), q1);
for(InputType i = 0; i < N; ++i) {
mo_node.try_put(i);
}
g.wait_for_all();
for(int i = 0; i < N/2; ++i) {
EvenType e{};
OddType o{};
CHECK_MESSAGE( q0.try_get(e), "" );
CHECK_MESSAGE( (int)e % 2 == 0, "" );
CHECK_MESSAGE( q1.try_get(o), "" );
CHECK_MESSAGE( (int)o % 2 == 1, "" );
}
}
);
}
//! Tests limited concurrency cases for nodes that accept data messages
void test_concurrency(int num_threads) {
tbb::task_arena arena(num_threads);
arena.execute(
[&] () {
run_concurrency_levels<int,std::tuple<int> >(num_threads);
run_concurrency_levels<int,std::tuple<tbb::flow::continue_msg> >(num_threads);
run_buffered_levels<int, std::tuple<int> >(num_threads);
run_unlimited_concurrency<int, std::tuple<int> >();
run_unlimited_concurrency<int,std::tuple<empty_no_assign> >();
run_unlimited_concurrency<empty_no_assign,std::tuple<int> >();
run_unlimited_concurrency<empty_no_assign,std::tuple<empty_no_assign> >();
run_unlimited_concurrency<int,std::tuple<tbb::flow::continue_msg> >();
run_unlimited_concurrency<empty_no_assign,std::tuple<tbb::flow::continue_msg> >();
run_multiport_test<int, std::tuple<int, int> >(num_threads);
run_multiport_test<float, std::tuple<int, double> >(num_threads);
}
);
}
template<typename Policy>
void test_ports_return_references() {
tbb::flow::graph g;
typedef int InputType;
typedef std::tuple<int> OutputTuple;
tbb::flow::multifunction_node<InputType, OutputTuple, Policy> mf_node(
g, tbb::flow::unlimited,
&harness_graph_multifunction_executor<InputType, OutputTuple>::empty_func );
test_output_ports_return_ref(mf_node);
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
#include <array>
#include <vector>
void test_precedes() {
using namespace tbb::flow;
using multinode = multifunction_node<int, std::tuple<int, int>>;
graph g;
buffer_node<int> b1(g);
buffer_node<int> b2(g);
multinode node(precedes(b1, b2), unlimited, [](const int& i, multinode::output_ports_type& op) -> void {
if (i % 2)
std::get<0>(op).try_put(i);
else
std::get<1>(op).try_put(i);
}
);
node.try_put(0);
node.try_put(1);
g.wait_for_all();
int storage;
CHECK_MESSAGE((b1.try_get(storage) && !b1.try_get(storage) && b2.try_get(storage) && !b2.try_get(storage)),
"Not exact edge quantity was made");
}
void test_follows_and_precedes_api() {
using multinode = tbb::flow::multifunction_node<int, std::tuple<int, int, int>>;
std::array<int, 3> messages_for_follows = { {0, 1, 2} };
follows_and_precedes_testing::test_follows
<int, tbb::flow::multifunction_node<int, std::tuple<int, int, int>>>
(messages_for_follows, tbb::flow::unlimited, [](const int& i, multinode::output_ports_type& op) -> void {
std::get<0>(op).try_put(i);
});
test_precedes();
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test various node bodies with concurrency
//! \brief \ref error_guessing
TEST_CASE("Concurrency test"){
for( unsigned int p=utils::MinThread; p<=utils::MaxThread; ++p ) {
test_concurrency(p);
}
}
//! Test return types of ports
//! \brief \ref error_guessing
TEST_CASE("Test ports retrurn references"){
test_ports_return_references<tbb::flow::queueing>();
test_ports_return_references<tbb::flow::rejecting>();
}
//! NativeParallelFor testing with various concurrency settings
//! \brief \ref error_guessing
TEST_CASE("Lightweight testing"){
lightweight_testing::test<tbb::flow::multifunction_node>(10);
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test follows and precedes API
//! \brief \ref error_guessing
TEST_CASE("Test follows-precedes API"){
test_follows_and_precedes_api();
}
//! Test priority constructor with follows and precedes API
//! \brief \ref error_guessing
TEST_CASE("Test priority with follows and precedes"){
using namespace tbb::flow;
using multinode = multifunction_node<int, std::tuple<int, int>>;
graph g;
buffer_node<int> b1(g);
buffer_node<int> b2(g);
multinode node(precedes(b1, b2), unlimited, [](const int& i, multinode::output_ports_type& op) -> void {
if (i % 2)
std::get<0>(op).try_put(i);
else
std::get<1>(op).try_put(i);
}
, node_priority_t(0));
node.try_put(0);
node.try_put(1);
g.wait_for_all();
int storage;
CHECK_MESSAGE((b1.try_get(storage) && !b1.try_get(storage) && b2.try_get(storage) && !b2.try_get(storage)),
"Not exact edge quantity was made");
}
#endif
#if __TBB_CPP20_CONCEPTS_PRESENT
//! \brief \ref error_guessing
TEST_CASE("constraints for multifunction_node input") {
struct InputObject {
InputObject() = default;
InputObject( const InputObject& ) = default;
};
static_assert(utils::well_formed_instantiation<tbb::flow::multifunction_node, InputObject, int>);
static_assert(utils::well_formed_instantiation<tbb::flow::multifunction_node, int, int>);
static_assert(!utils::well_formed_instantiation<tbb::flow::multifunction_node, test_concepts::NonCopyable, int>);
static_assert(!utils::well_formed_instantiation<tbb::flow::multifunction_node, test_concepts::NonDefaultInitializable, int>);
}
template <typename Input, typename Output, typename Body>
concept can_call_multifunction_node_ctor = requires( tbb::flow::graph& graph, std::size_t concurrency, Body body,
tbb::flow::node_priority_t priority, tbb::flow::buffer_node<int>& f ) {
tbb::flow::multifunction_node<Input, Output>(graph, concurrency, body);
tbb::flow::multifunction_node<Input, Output>(graph, concurrency, body, priority);
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
tbb::flow::multifunction_node<Input, Output>(tbb::flow::follows(f), concurrency, body);
tbb::flow::multifunction_node<Input, Output>(tbb::flow::follows(f), concurrency, body, priority);
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
};
//! \brief \ref error_guessing
TEST_CASE("constraints for multifunction_node body") {
using input_type = int;
using output_type = std::tuple<int>;
using namespace test_concepts::multifunction_node_body;
static_assert(can_call_multifunction_node_ctor<input_type, output_type, Correct<input_type, output_type>>);
static_assert(!can_call_multifunction_node_ctor<input_type, output_type, NonCopyable<input_type, output_type>>);
static_assert(!can_call_multifunction_node_ctor<input_type, output_type, NonDestructible<input_type, output_type>>);
static_assert(!can_call_multifunction_node_ctor<input_type, output_type, NoOperatorRoundBrackets<input_type, output_type>>);
static_assert(!can_call_multifunction_node_ctor<input_type, output_type, WrongFirstInputOperatorRoundBrackets<input_type, output_type>>);
static_assert(!can_call_multifunction_node_ctor<input_type, output_type, WrongSecondInputOperatorRoundBrackets<input_type, output_type>>);
}
#endif // __TBB_CPP20_CONCEPTS_PRESENT
|