File: test_parallel_phase.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (358 lines) | stat: -rw-r--r-- 13,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
/*
    Copyright (c) 2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

//! \file test_parallel_phase.cpp
//! \brief Test for [preview] functionality

#define TBB_PREVIEW_PARALLEL_PHASE 1

#include <chrono>

#include "common/test.h"
#include "common/utils.h"
#include "common/utils_concurrency_limit.h"
#include "common/spin_barrier.h"

#include "tbb/task_arena.h"

void active_wait_for(std::chrono::microseconds duration) {
    for (auto t1 = std::chrono::steady_clock::now(), t2 = t1;
        std::chrono::duration_cast<std::chrono::microseconds>(t2 - t1) < duration;
        t2 = std::chrono::steady_clock::now())
    {
        utils::doDummyWork(100);
    }
}

struct dummy_func {
    void operator()() const {
    }
};

template <typename F1 = dummy_func, typename F2 = dummy_func>
std::size_t measure_median_start_time(tbb::task_arena* ta, const F1& start = F1{}, const F2& end = F2{}) {
    std::size_t num_threads = ta ? ta->max_concurrency() : tbb::this_task_arena::max_concurrency();
    // TODO: propagate worker threads blocking time to the test
    std::size_t max_wait = 1000;
    std::size_t num_runs = 100;
    std::vector<std::size_t> longest_start_times;
    longest_start_times.reserve(num_runs);

    std::vector<std::chrono::steady_clock::time_point> start_times(num_threads);
    utils::SpinBarrier barrier(num_threads);
    auto measure_start_time = [&] {
        start_times[tbb::this_task_arena::current_thread_index()] = std::chrono::steady_clock::now();
        barrier.wait();
    };

    auto get_longest_start = [&] (std::chrono::steady_clock::time_point start_time) {
        std::size_t longest_time = 0;
        for (auto& time : start_times) {
            auto diff = std::chrono::duration_cast<std::chrono::microseconds>(time - start_time);
            longest_time = std::max(longest_time, std::size_t(diff.count()));
        }
        return longest_time;
    };

    auto work = [&] {
        auto start_time = std::chrono::steady_clock::now();
        start();
        for(std::size_t thr = 0; thr < num_threads-1; ++thr) {
            tbb::this_task_arena::enqueue(measure_start_time);
        }
        start_times[tbb::this_task_arena::current_thread_index()] = std::chrono::steady_clock::now();
        barrier.wait();
        end();
        longest_start_times.push_back(get_longest_start(start_time));
    };

    std::size_t step = max_wait / num_runs;
    for (std::size_t i = 0; i <= max_wait; i += step) {
        if (ta) {
            ta->execute(work);
        } else {
            work();
        }
        active_wait_for(std::chrono::microseconds(i));
    }
    return utils::median(longest_start_times.begin(), longest_start_times.end());
}

template <typename Impl>
class start_time_collection_base {
    friend Impl;
public:
    start_time_collection_base(tbb::task_arena& ta, std::size_t ntrials) :
        arena(&ta), num_trials(ntrials), start_times(ntrials) {}

    explicit start_time_collection_base(std::size_t ntrials) :
        arena(nullptr), num_trials(ntrials), start_times(ntrials) {}

    std::vector<std::size_t> measure() {
        for (std::size_t i = 0; i < num_trials; ++i) {
            std::size_t median_start_time = static_cast<Impl*>(this)->measure_impl();
            start_times[i] = median_start_time;
        }
        return start_times;
    }
protected:
    tbb::task_arena* arena;
    std::size_t num_trials;
    std::vector<std::size_t> start_times;
};

class start_time_collection : public start_time_collection_base<start_time_collection> {
    using base = start_time_collection_base<start_time_collection>;
    using base::base;
    friend base;

    std::size_t measure_impl() {
        return measure_median_start_time(arena);
    }
};

class start_time_collection_phase_wrapped
    : public start_time_collection_base<start_time_collection_phase_wrapped>
{
    using base = start_time_collection_base<start_time_collection_phase_wrapped>;
    using base::base;
    friend base;

    std::size_t measure_impl() {
        arena->start_parallel_phase();
        auto median_start_time = measure_median_start_time(arena);
        arena->end_parallel_phase(/*with_fast_leave*/true);
        return median_start_time;
    }
};

class start_time_collection_scoped_phase_wrapped
    : public start_time_collection_base<start_time_collection_scoped_phase_wrapped>
{
    using base = start_time_collection_base<start_time_collection_scoped_phase_wrapped>;
    using base::base;
    friend base;

    std::size_t measure_impl() {
        tbb::task_arena::scoped_parallel_phase phase{*arena};
        auto median_start_time = measure_median_start_time(arena);
        return median_start_time;
    }
};

class start_time_collection_sequenced_phases
    : public start_time_collection_base<start_time_collection_sequenced_phases>
{
    using base = start_time_collection_base<start_time_collection_sequenced_phases>;
    friend base;

    bool with_fast_leave;

    std::size_t measure_impl() {
        std::size_t median_start_time;
        utils::SpinBarrier barrier;
        auto body = [&] {
            barrier.wait();
        };
        if (arena) {
            barrier.initialize(arena->max_concurrency());
            median_start_time = measure_median_start_time(arena,
                [&] {
                    std::size_t num_threads = arena->max_concurrency();
                    arena->start_parallel_phase();
                    arena->execute([&] {
                        for(std::size_t thr = 0; thr < num_threads-1; ++thr) {
                            tbb::this_task_arena::enqueue(body);
                        }
                        barrier.wait();
                    });
                    arena->end_parallel_phase(with_fast_leave);
                }
            );
        } else {
            barrier.initialize(tbb::this_task_arena::max_concurrency());
            median_start_time = measure_median_start_time(arena,
                [&] {
                    std::size_t num_threads = tbb::this_task_arena::max_concurrency();
                    tbb::this_task_arena::start_parallel_phase();
                    for(std::size_t thr = 0; thr < num_threads-1; ++thr) {
                        tbb::this_task_arena::enqueue(body);
                    }
                    barrier.wait();
                    tbb::this_task_arena::end_parallel_phase(with_fast_leave); 
                }
            );
        }
        return median_start_time;
    }

public:
    start_time_collection_sequenced_phases(tbb::task_arena& ta, std::size_t ntrials, bool fast_leave = false) :
        base(ta, ntrials), with_fast_leave(fast_leave)
    {}

    explicit start_time_collection_sequenced_phases(std::size_t ntrials, bool fast_leave = false) :
        base(ntrials), with_fast_leave(fast_leave)
    {}
};

class start_time_collection_sequenced_scoped_phases
    : public start_time_collection_base<start_time_collection_sequenced_scoped_phases>
{
    using base = start_time_collection_base<start_time_collection_sequenced_scoped_phases>;
    friend base;

    bool with_fast_leave;

    std::size_t measure_impl() {
        utils::SpinBarrier barrier{static_cast<std::size_t>(arena->max_concurrency())};
        auto body = [&] {
            barrier.wait();
        };
        auto median_start_time = measure_median_start_time(arena,
            [&] {
                std::size_t num_threads = arena->max_concurrency();
                {
                    tbb::task_arena::scoped_parallel_phase phase{*arena, with_fast_leave};
                    arena->execute([&] {
                        for(std::size_t thr = 0; thr < num_threads-1; ++thr) {
                            tbb::this_task_arena::enqueue(body);
                        }
                        barrier.wait();
                    });
                }
            }
        );
        return median_start_time;
    }

public:
    start_time_collection_sequenced_scoped_phases(tbb::task_arena& ta, std::size_t ntrials, bool fast_leave = false) :
        base(ta, ntrials), with_fast_leave(fast_leave)
    {}

    explicit start_time_collection_sequenced_scoped_phases(std::size_t ntrials, bool fast_leave = false) :
        base(ntrials), with_fast_leave(fast_leave)
    {}
};

//! \brief \ref interface \ref requirement
TEST_CASE("Check that workers leave faster with leave_policy::fast") {
    // Test measures workers start time, so no there is no point to
    // measure it with workerless arena
    if (utils::get_platform_max_threads() < 2) {
        return;
    }
    tbb::task_arena ta_automatic_leave {
        tbb::task_arena::automatic, 1,
        tbb::task_arena::priority::normal,
        tbb::task_arena::leave_policy::automatic
    };
    tbb::task_arena ta_fast_leave { 
        tbb::task_arena::automatic, 1,
        tbb::task_arena::priority::normal,
        tbb::task_arena::leave_policy::fast
    };
    start_time_collection st_collector1{ta_automatic_leave, /*num_trials=*/5};
    start_time_collection st_collector2{ta_fast_leave, /*num_trials=*/5};

    auto times_automatic = st_collector1.measure();
    auto times_fast = st_collector2.measure();

    auto median_automatic = utils::median(times_automatic.begin(), times_automatic.end());
    auto median_fast = utils::median(times_fast.begin(), times_fast.end());

    WARN_MESSAGE(median_automatic < median_fast,
        "Expected workers to start new work slower with fast leave policy");
}

//! \brief \ref interface \ref requirement
TEST_CASE("Parallel Phase retains workers in task_arena") {
    if (utils::get_platform_max_threads() < 2) {
        return;
    }
    tbb::task_arena ta_fast1 {
        tbb::task_arena::automatic, 1,
        tbb::task_arena::priority::normal,
        tbb::task_arena::leave_policy::fast
    };
    tbb::task_arena ta_fast2 { 
        tbb::task_arena::automatic, 1,
        tbb::task_arena::priority::normal,
        tbb::task_arena::leave_policy::fast
    };
    start_time_collection_phase_wrapped st_collector1{ta_fast1, /*num_trials=*/5};
    start_time_collection_scoped_phase_wrapped st_collector_scoped{ta_fast1, /*num_trials=*/5};
    start_time_collection st_collector2{ta_fast2, /*num_trials=*/5};

    auto times1 = st_collector1.measure();
    auto times2 = st_collector2.measure();
    auto times_scoped = st_collector_scoped.measure();

    auto median1 = utils::median(times1.begin(), times1.end());
    auto median2 = utils::median(times2.begin(), times2.end());
    auto median_scoped = utils::median(times_scoped.begin(), times_scoped.end());

    WARN_MESSAGE(median1 < median2,
        "Expected workers start new work faster when using parallel_phase");

    WARN_MESSAGE(median_scoped < median2,
        "Expected workers start new work faster when using scoped parallel_phase");
}

//! \brief \ref interface \ref requirement
TEST_CASE("Test one-time fast leave") {
    if (utils::get_platform_max_threads() < 2) {
        return;
    }
    tbb::task_arena ta1{};
    tbb::task_arena ta2{};
    start_time_collection_sequenced_phases st_collector1{ta1, /*num_trials=*/10};
    start_time_collection_sequenced_phases st_collector2{ta2, /*num_trials=*/10, /*fast_leave*/true};
    start_time_collection_sequenced_scoped_phases st_collector_scoped{ta2, /*num_trials=*/10, /*fast_leave*/true};

    auto times1 = st_collector1.measure();
    auto times2 = st_collector2.measure();
    auto times_scoped = st_collector_scoped.measure();

    auto median1 = utils::median(times1.begin(), times1.end());
    auto median2 = utils::median(times2.begin(), times2.end());
    auto median_scoped = utils::median(times_scoped.begin(), times_scoped.end());

    WARN_MESSAGE(median1 < median2,
        "Expected one-time fast leave setting to slow workers to start new work");

    WARN_MESSAGE(median1 < median_scoped,
        "Expected one-time fast leave setting to slow workers to start new work");
}

//! \brief \ref interface \ref requirement
TEST_CASE("Test parallel phase with this_task_arena") {
    if (utils::get_platform_max_threads() < 2) {
        return;
    }
    start_time_collection_sequenced_phases st_collector1{/*num_trials=*/10};
    start_time_collection_sequenced_phases st_collector2{/*num_trials=*/10, /*fast_leave*/true};

    auto times1 = st_collector1.measure();
    auto times2 = st_collector2.measure();

    auto median1 = utils::median(times1.begin(), times1.end());
    auto median2 = utils::median(times2.begin(), times2.end());

    WARN_MESSAGE(median1 < median2,
        "Expected one-time fast leave setting to slow workers to start new work");
}