File: test_parallel_pipeline.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (682 lines) | stat: -rw-r--r-- 25,995 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/*
    Copyright (c) 2005-2022 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

// Before including parallel_pipeline.h, set up the variable to count heap allocated
// filter_node objects, and make it known for the header.
#include "common/test.h"
#include "common/utils.h"
#include "common/checktype.h"

int filter_node_count = 0;
#define __TBB_TEST_FILTER_NODE_COUNT filter_node_count
#include "tbb/parallel_pipeline.h"
#include "tbb/global_control.h"
#include "tbb/spin_mutex.h"
#include "tbb/task_group.h"

#include <atomic>
#include <string.h>
#include <memory> // std::unique_ptr

//! \file test_parallel_pipeline.cpp
//! \brief Test for [algorithms.parallel_pipeline algorithms.parallel_pipeline.flow_control] specification

const unsigned n_tokens = 8;
// we can conceivably have two buffers used in the middle filter for every token in flight, so
// we must allocate two buffers for every token.  Unlikely, but possible.
const unsigned n_buffers = 2*n_tokens;
const int max_counter = 16;

static std::size_t concurrency = 0;

static std::atomic<int> output_counter;
static std::atomic<int> input_counter;
static std::atomic<int> non_pointer_specialized_calls;
static std::atomic<int> pointer_specialized_calls;
static std::atomic<int> first_pointer_specialized_calls;
static std::atomic<int> second_pointer_specialized_calls;

static int intbuffer[max_counter];  // store results for <int,int> parallel pipeline test
static bool check_intbuffer;

static void* buffers[n_buffers];
static std::atomic_flag buf_in_use[n_buffers] = {ATOMIC_FLAG_INIT};

void *fetchNextBuffer() {
    for(size_t icnt = 0; icnt < n_buffers; ++icnt) {
        if(!buf_in_use[icnt].test_and_set()) {
            return buffers[icnt];
        }
    }
    CHECK_MESSAGE(false, "Ran out of buffers, p:"<< concurrency);
    return nullptr;
}
void freeBuffer(void *buf) {
    for(size_t i=0; i < n_buffers;++i) {
        if(buffers[i] == buf) {
            buf_in_use[i].clear();
            return;
        }
    }
    CHECK_MESSAGE(false, "Tried to free a buffer not in our list, p:" << concurrency);
}

template<typename T>
class free_on_scope_exit {
public:
    free_on_scope_exit(T *p) : my_p(p) {}
    ~free_on_scope_exit() { if(!my_p) return; my_p->~T(); freeBuffer(my_p); }
private:
    T *my_p;
};

// methods for testing CheckType< >, that return okay values for other types.
template<typename T>
bool middle_is_ready(T &/*p*/) { return false; }

template<typename U>
bool middle_is_ready(CheckType<U> &p) { return p.is_ready(); }

template<typename T>
bool output_is_ready(T &/*p*/) { return true; }

template<typename U>
bool output_is_ready(CheckType<U> &p) { return p.is_ready(); }

template<typename T>
int middle_my_id( T &/*p*/) { return 0; }

template<typename U>
int middle_my_id(CheckType<U> &p) { return p.id(); }

template<typename T>
int output_my_id( T &/*p*/) { return 1; }

template<typename U>
int output_my_id(CheckType<U> &p) { return p.id(); }

template<typename T>
void my_function(T &p) { p = 0; }

template<typename U>
void my_function(CheckType<U> &p) { p.get_ready(); }

// Filters must be copy-constructible, and be const-qualifiable.
template<typename U>
class input_filter : DestroyedTracker {
public:
    U operator()( tbb::flow_control& control ) const {
        CHECK(is_alive());
        if( --input_counter < 0 ) {
            control.stop();
        }
        else  // only count successful reads
            ++non_pointer_specialized_calls;
        return U();  // default constructed
    }

};

// specialization for pointer
template<typename U>
class input_filter<U*> : DestroyedTracker {
public:
    U* operator()(tbb::flow_control& control) const {
        CHECK(is_alive());
        int ival = --input_counter;
        if(ival < 0) {
            control.stop();
            return nullptr;
        }
        ++pointer_specialized_calls;
        if(ival == max_counter / 2) {
            return nullptr;  // non-stop nullptr
        }
        U* myReturn = new(fetchNextBuffer()) U();
        if (myReturn) {  // may have been passed in a nullptr
            CHECK_MESSAGE(!middle_my_id(*myReturn), "bad id value, p:" << concurrency);
            CHECK_MESSAGE(!middle_is_ready(*myReturn), "Already ready, p:" << concurrency);
        }
        return myReturn;
    }
};

template<>
class input_filter<void> : DestroyedTracker {
public:
    void operator()( tbb::flow_control& control ) const {
        CHECK(is_alive());
        if( --input_counter < 0 ) {
            control.stop();
        }
        else
            ++non_pointer_specialized_calls;
    }

};

// specialization for int that passes back a sequence of integers
template<>
class input_filter<int> : DestroyedTracker {
public:
    int
    operator()(tbb::flow_control& control ) const {
        CHECK(is_alive());
        int oldval = --input_counter;
        if( oldval < 0 ) {
            control.stop();
        }
        else
            ++non_pointer_specialized_calls;
        return oldval+1;
    }
};

template<typename T, typename U>
class middle_filter : DestroyedTracker {
public:
    U operator()(T t) const {
        CHECK(is_alive());
        CHECK_MESSAGE(!middle_my_id(t), "bad id value, p:" << concurrency);
        CHECK_MESSAGE(!middle_is_ready(t), "Already ready, p:" << concurrency );
        U out;
        my_function(out);
        ++non_pointer_specialized_calls;
        return out;
    }
};

template<typename T, typename U>
class middle_filter<T*,U> : DestroyedTracker {
public:
    U operator()(T* my_storage) const {
        free_on_scope_exit<T> my_ptr(my_storage);  // free_on_scope_exit marks the buffer available
        CHECK(is_alive());
        if(my_storage) {  // may have been passed in a nullptr
            CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency);
            CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency );
        }
        ++first_pointer_specialized_calls;
        U out;
        my_function(out);
        return out;
    }
};

template<typename T, typename U>
class middle_filter<T,U*> : DestroyedTracker {
public:
    U* operator()(T my_storage) const {
        CHECK(is_alive());
        CHECK_MESSAGE(!middle_my_id(my_storage), "bad id value, p:" << concurrency);
        CHECK_MESSAGE(!middle_is_ready(my_storage), "Already ready, p:" << concurrency );
        // allocate new space from buffers
        U* my_return = new(fetchNextBuffer()) U();
        my_function(*my_return);
        ++second_pointer_specialized_calls;
        return my_return;
    }
};

template<typename T, typename U>
class middle_filter<T*,U*> : DestroyedTracker {
public:
    U* operator()(T* my_storage) const {
        free_on_scope_exit<T> my_ptr(my_storage);  // free_on_scope_exit marks the buffer available
        CHECK(is_alive());
        if(my_storage) {
            CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency);
            CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency );
        }
        // may have been passed a nullptr
        ++pointer_specialized_calls;
        if(!my_storage) return nullptr;
        CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency);
        CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency );
        U* my_return = new(fetchNextBuffer()) U();
        my_function(*my_return);
        return my_return;
    }
};

// specialization for int that squares the input and returns that.
template<>
class middle_filter<int,int> : DestroyedTracker {
public:
    int operator()(int my_input) const {
        CHECK(is_alive());
        ++non_pointer_specialized_calls;
        return my_input*my_input;
    }
};

// ---------------------------------
template<typename T>
class output_filter : DestroyedTracker {
public:
    void operator()(T c) const {
        CHECK(is_alive());
        CHECK_MESSAGE(output_my_id(c), "unset id value, p:" << concurrency);
        CHECK_MESSAGE(output_is_ready(c), "not yet ready, p:" << concurrency);
        ++non_pointer_specialized_calls;
        output_counter++;
    }
};

// specialization for int that puts the received value in an array
template<>
class output_filter<int> : DestroyedTracker {
public:
    void operator()(int my_input) const {
        CHECK(is_alive());
        ++non_pointer_specialized_calls;
        int myindx = output_counter++;
        intbuffer[myindx] = my_input;
    }
};

template<typename T>
class output_filter<T*> : DestroyedTracker {
public:
    void operator()(T* c) const {
        free_on_scope_exit<T> my_ptr(c);
        CHECK(is_alive());
        if(c) {
            CHECK_MESSAGE(output_my_id(*c), "unset id value, p:" << concurrency);
            CHECK_MESSAGE(output_is_ready(*c), "not yet ready, p:" << concurrency);
        }
        output_counter++;
        ++pointer_specialized_calls;
    }
};

typedef enum {
    no_pointer_counts,
    assert_nonpointer,
    assert_firstpointer,
    assert_secondpointer,
    assert_allpointer
} final_assert_type;

void resetCounters() {
    output_counter = 0;
    input_counter = max_counter;
    non_pointer_specialized_calls = 0;
    pointer_specialized_calls = 0;
    first_pointer_specialized_calls = 0;
    second_pointer_specialized_calls = 0;
    // we have to reset the buffer flags because our input filters return allocated space on end-of-input,
    // (on eof a default-constructed object is returned) and they do not pass through the filter further.
    for(size_t i = 0; i < n_buffers; ++i)
        buf_in_use[i].clear();
}

void checkCounters(final_assert_type my_t) {
    CHECK_MESSAGE(output_counter == max_counter, "Ran out of buffers, p:" << concurrency);
    switch(my_t) {
        case assert_nonpointer:
            CHECK_MESSAGE(pointer_specialized_calls+first_pointer_specialized_calls+second_pointer_specialized_calls == 0, "non-pointer filters specialized to pointer, p:" << concurrency);
            CHECK_MESSAGE(non_pointer_specialized_calls == 3*max_counter, "bad count for non-pointer filters, p:" << concurrency);
            if(check_intbuffer) {
                for(int i = 1; i <= max_counter; ++i) {
                    int j = i*i;
                    bool found_val = false;
                    for(int k = 0; k < max_counter; ++k) {
                        if(intbuffer[k] == j) {
                            found_val = true;
                            break;
                        }
                    }
                    CHECK_MESSAGE(found_val, "Missing value in output array, p:" << concurrency );
                }
            }
            break;
        case assert_firstpointer:
            {
                bool check = pointer_specialized_calls == max_counter &&  // input filter extra invocation
                    first_pointer_specialized_calls == max_counter &&
                    non_pointer_specialized_calls == max_counter &&
                    second_pointer_specialized_calls == 0;
                CHECK_MESSAGE(check, "incorrect specialization for firstpointer, p:" << concurrency);
            }
            break;
        case assert_secondpointer:
            {
                bool check = pointer_specialized_calls == max_counter &&
                    first_pointer_specialized_calls == 0 &&
                    non_pointer_specialized_calls == max_counter &&  // input filter
                    second_pointer_specialized_calls == max_counter;
                CHECK_MESSAGE(check, "incorrect specialization for firstpointer, p:" << concurrency);
            }
            break;
        case assert_allpointer:
            CHECK_MESSAGE(non_pointer_specialized_calls+first_pointer_specialized_calls+second_pointer_specialized_calls == 0, "pointer filters specialized to non-pointer, p:" << concurrency);
            CHECK_MESSAGE(pointer_specialized_calls == 3*max_counter, "bad count for pointer filters, p:" << concurrency);
            break;
        case no_pointer_counts:
            break;
    }
}

static const tbb::filter_mode filter_table[] = { tbb::filter_mode::parallel, tbb::filter_mode::serial_in_order, tbb::filter_mode::serial_out_of_order};
const unsigned number_of_filter_types = sizeof(filter_table)/sizeof(filter_table[0]);

using filter_chain = tbb::filter<void, void>;
using mode_array =tbb::filter_mode;

// The filters are passed by value, which forces a temporary copy to be created.  This is
// to reproduce the bug where a filter_chain uses refs to filters, which after a call
// would be references to destructed temporaries.
template<typename type1, typename type2>
void fill_chain( filter_chain &my_chain, mode_array *filter_type, input_filter<type1> i_filter,
         middle_filter<type1, type2> m_filter, output_filter<type2> o_filter ) {
    my_chain = tbb::filter<void, type1>(filter_type[0], i_filter) &
        tbb::filter<type1, type2>(filter_type[1], m_filter) &
        tbb::filter<type2, void>(filter_type[2], o_filter);
}

template<typename... Context>
void run_function_spec(Context&... context) {
    CHECK_MESSAGE(!filter_node_count, "invalid filter_node counter");
    input_filter<void> i_filter;
    // Test pipeline that contains only one filter
    for( unsigned i = 0; i<number_of_filter_types; i++) {
        tbb::filter<void, void> one_filter( filter_table[i], i_filter );
        CHECK_MESSAGE(filter_node_count==1, "some filter nodes left after previous iteration?");
        resetCounters();
        tbb::parallel_pipeline( n_tokens, one_filter, context... );
        // no need to check counters
        std::atomic<int> counter;
        counter = max_counter;
        // Construct filter using lambda-syntax when parallel_pipeline() is being run;
        tbb::parallel_pipeline( n_tokens,
            tbb::filter<void, void>(filter_table[i], [&counter]( tbb::flow_control& control ) {
                    if( counter-- == 0 )
                        control.stop();
                    }
            ),
            context...
        );
    }
    CHECK_MESSAGE(!filter_node_count, "filter_node objects leaked");
}

template<typename t1, typename t2, typename... Context>
void run_filter_set(
        input_filter<t1>& i_filter,
        middle_filter<t1,t2>& m_filter,
        output_filter<t2>& o_filter,
        mode_array *filter_type,
        final_assert_type my_t,
        Context&... context) {
    tbb::filter<void, t1> filter1( filter_type[0], i_filter );
    tbb::filter<t1, t2> filter2( filter_type[1], m_filter );
    tbb::filter<t2, void> filter3( filter_type[2], o_filter );

    CHECK_MESSAGE(filter_node_count==3, "some filter nodes left after previous iteration?");
    resetCounters();
    // Create filters sequence when parallel_pipeline() is being run
    tbb::parallel_pipeline( n_tokens, filter1, filter2, filter3, context...  );
    checkCounters(my_t);

    // Create filters sequence partially outside parallel_pipeline() and also when parallel_pipeline() is being run
    tbb::filter<void, t2> filter12;
    filter12 = filter1 & filter2;
    for( int i = 0; i<3; i++)
    {
        filter12 &= tbb::filter<t2,t2>(filter_type[i], [](t2 x) -> t2 { return x;});
    }
    resetCounters();
    tbb::parallel_pipeline( n_tokens, filter12, filter3, context...  );
    checkCounters(my_t);

    tbb::filter<void, void> filter123 = filter12 & filter3;
    // Run pipeline twice with the same filter sequence
    for( unsigned i = 0; i<2; i++ ) {
        resetCounters();
        tbb::parallel_pipeline( n_tokens, filter123, context...  );
        checkCounters(my_t);
    }

    // Now copy-and-move-construct another filter instance, and use it to run pipeline
    {
        tbb::filter<void, void> copy123( filter123 );
        resetCounters();
        tbb::parallel_pipeline( n_tokens, copy123, context...  );
        checkCounters(my_t);
        tbb::filter<void, void> move123( std::move(filter123) );
        resetCounters();
        tbb::parallel_pipeline( n_tokens, move123, context...  );
        checkCounters(my_t);
    }

    // Construct filters and create the sequence when parallel_pipeline() is being run
    resetCounters();
    tbb::parallel_pipeline( n_tokens,
               tbb::filter<void, t1>(filter_type[0], i_filter),
               tbb::filter<t1, t2>(filter_type[1], m_filter),
               tbb::filter<t2, void>(filter_type[2], o_filter),
               context...  );
    checkCounters(my_t);

    // Construct filters, make a copy, destroy the original filters, and run with the copy
    int cnt = filter_node_count;
    {
        tbb::filter<void, void>* p123 = new tbb::filter<void,void> (
               tbb::filter<void, t1>(filter_type[0], i_filter)&
               tbb::filter<t1, t2>(filter_type[1], m_filter)&
               tbb::filter<t2, void>(filter_type[2], o_filter) );
        CHECK_MESSAGE(filter_node_count==cnt+5, "filter node accounting error?");
        tbb::filter<void, void> copy123( *p123 );
        delete p123;
        CHECK_MESSAGE(filter_node_count==cnt+5, "filter nodes deleted prematurely?");
        resetCounters();
        tbb::parallel_pipeline( n_tokens, copy123, context...  );
        checkCounters(my_t);
    }

    // construct a filter with temporaries
    {
        tbb::filter<void, void> my_filter;
        fill_chain<t1,t2>( my_filter, filter_type, i_filter, m_filter, o_filter );
        resetCounters();
        tbb::parallel_pipeline( n_tokens, my_filter, context...  );
        checkCounters(my_t);
    }
    CHECK_MESSAGE(filter_node_count==cnt, "scope ended but filter nodes not deleted?");
}

template <typename t1, typename t2, typename... Context>
void run_lambdas_test( mode_array *filter_type, Context&... context ) {
    std::atomic<int> counter;
    counter = max_counter;
    // Construct filters using lambda-syntax and create the sequence when parallel_pipeline() is being run;
    resetCounters();  // only need the output_counter reset.
    tbb::parallel_pipeline( n_tokens,
        tbb::make_filter<void, t1>(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1 {
                if( --counter < 0 )
                    control.stop();
                return t1(); }
        ),
        tbb::make_filter<t1, t2>(filter_type[1], []( t1 /*my_storage*/ ) -> t2 {
                return t2(); }
        ),
        tbb::make_filter<t2,void>(filter_type[2], [] ( t2 ) -> void {
                output_counter++; }
        ),
        context...
    );
    checkCounters(no_pointer_counts);  // don't have to worry about specializations
    counter = max_counter;
    // pointer filters
    resetCounters();
    tbb::parallel_pipeline( n_tokens,
        tbb::filter<void,t1*>(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1* {
                if( --counter < 0 ) {
                    control.stop();
                    return nullptr;
                }
                return new(fetchNextBuffer()) t1(); }
        ),
		tbb::filter<t1*, t2*>(filter_type[1], []( t1* my_storage ) -> t2* {
                my_storage->~t1();
                return new(my_storage) t2(); }
        ),
		tbb::filter<t2*, void>(filter_type[2], [] ( t2* my_storage ) -> void {
                my_storage->~t2();
                freeBuffer(my_storage);
                output_counter++; }
        ),
        context...
    );
    checkCounters(no_pointer_counts);
    // first filter outputs pointer
    counter = max_counter;
    resetCounters();
    tbb::parallel_pipeline( n_tokens,
        tbb::make_filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1* {
                if( --counter < 0 ) {
                    control.stop();
                    return nullptr;
                }
                return new(fetchNextBuffer()) t1(); }
        )&
        tbb::make_filter(filter_type[1], []( t1* my_storage ) -> t2 {
                my_storage->~t1();
                freeBuffer(my_storage);
                return t2(); }
        ),
        tbb::make_filter(filter_type[2], [] ( t2 /*my_storage*/) -> void {
                output_counter++; }
        ),
        context...
    );
    checkCounters(no_pointer_counts);
    // second filter outputs pointer
    counter = max_counter;
    resetCounters();
    tbb::parallel_pipeline( n_tokens,
        tbb::make_filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1 {
                if( --counter < 0 ) {
                    control.stop();
                }
                return t1(); }
        ),
        tbb::filter<t1, t2*>(filter_type[1], []( t1 /*my_storage*/ ) -> t2* {
                return new(fetchNextBuffer()) t2(); }
        )&
        tbb::make_filter<t2*, void>(filter_type[2], [] ( t2* my_storage) -> void {
                my_storage->~t2();
                freeBuffer(my_storage);
                output_counter++; }
        ),
        context...
    );
    checkCounters(no_pointer_counts);
}

template<typename type1, typename type2>
void run_function(const char *l1, const char *l2) {
    CHECK_MESSAGE(!filter_node_count, "invalid filter_node counter");

    check_intbuffer = (!strcmp(l1,"int") && !strcmp(l2,"int"));

    Checker<type1> check1;  // check constructions/destructions
    Checker<type2> check2;  // for type1 or type2 === CheckType<T>

    const size_t number_of_filters = 3;

    input_filter<type1> i_filter;
    input_filter<type1*> p_i_filter;

    middle_filter<type1, type2> m_filter;
    middle_filter<type1*, type2> pr_m_filter;
    middle_filter<type1, type2*> rp_m_filter;
    middle_filter<type1*, type2*> pp_m_filter;

    output_filter<type2> o_filter;
    output_filter<type2*> p_o_filter;

    // allocate the buffers for the filters
    unsigned max_size = (sizeof(type1) > sizeof(type2) ) ? sizeof(type1) : sizeof(type2);
    for(unsigned i = 0; i < (unsigned)n_buffers; ++i) {
        buffers[i] = malloc(max_size);
        buf_in_use[i].clear();
    }

    unsigned limit = 1;
    // Test pipeline that contains number_of_filters filters
    for( unsigned i=0; i<number_of_filters; ++i)
        limit *= number_of_filter_types;
    // Iterate over possible filter sequences
    for( unsigned numeral=0; numeral<limit; ++numeral ) {
        unsigned temp = numeral;
        tbb::filter_mode filter_type[number_of_filter_types];
        for( unsigned i=0; i<number_of_filters; ++i, temp/=number_of_filter_types )
            filter_type[i] = filter_table[temp%number_of_filter_types];

        tbb::task_group_context context;
        run_filter_set<type1,type2>(i_filter, m_filter, o_filter, filter_type, assert_nonpointer);
        run_filter_set<type1,type2>(i_filter, m_filter, o_filter, filter_type, assert_nonpointer, context);
        run_filter_set<type1*,type2>(p_i_filter, pr_m_filter, o_filter, filter_type, assert_firstpointer);
        run_filter_set<type1*,type2>(p_i_filter, pr_m_filter, o_filter, filter_type, assert_firstpointer, context);
        run_filter_set<type1,type2*>(i_filter, rp_m_filter, p_o_filter, filter_type, assert_secondpointer);
        run_filter_set<type1,type2*>(i_filter, rp_m_filter, p_o_filter, filter_type, assert_secondpointer, context);
        run_filter_set<type1*,type2*>(p_i_filter, pp_m_filter, p_o_filter, filter_type, assert_allpointer);
        run_filter_set<type1*,type2*>(p_i_filter, pp_m_filter, p_o_filter, filter_type, assert_allpointer, context);

        run_lambdas_test<type1,type2>(filter_type);
        run_lambdas_test<type1,type2>(filter_type, context);
    }
    CHECK_MESSAGE(!filter_node_count, "filter_node objects leaked");

    for(unsigned i = 0; i < (unsigned)n_buffers; ++i) {
        free(buffers[i]);
    }
}

//! Testing single filter pipeline
//! \brief \ref error_guessing
TEST_CASE("Pipeline testing for single filter") {
    run_function_spec();
    tbb::task_group_context context;
    run_function_spec(context);
}

#define RUN_TYPED_TEST_CASE(type1, type2) TEST_CASE("Pipeline testing with "#type1" and "#type2) { \
                                                for ( std::size_t concurrency_level : {1, 2, 4, 5, 7, 8} ) { \
                                                    if ( concurrency_level > tbb::global_control::active_value(tbb::global_control::max_allowed_parallelism) ) \
                                                        break; \
                                                    concurrency = concurrency_level; \
                                                    tbb::global_control control(tbb::global_control::max_allowed_parallelism, concurrency_level); \
                                                    run_function<type1, type2>(#type1, #type2); \
                                                } \
                                            }
// Run test several times with different types
RUN_TYPED_TEST_CASE(std::size_t, int)
RUN_TYPED_TEST_CASE(int, double)
RUN_TYPED_TEST_CASE(std::size_t, double)
RUN_TYPED_TEST_CASE(std::size_t, bool)
RUN_TYPED_TEST_CASE(int, int)
RUN_TYPED_TEST_CASE(CheckType<unsigned int>, std::size_t)
RUN_TYPED_TEST_CASE(CheckType<unsigned short>, std::size_t)
RUN_TYPED_TEST_CASE(CheckType<unsigned int>, CheckType<unsigned int>)
RUN_TYPED_TEST_CASE(CheckType<unsigned int>, CheckType<unsigned short>)
RUN_TYPED_TEST_CASE(CheckType<unsigned short>, CheckType<unsigned short>)
RUN_TYPED_TEST_CASE(double, CheckType<unsigned short>)
RUN_TYPED_TEST_CASE(std::unique_ptr<int>, std::unique_ptr<int>) // move-only type

#undef RUN_TYPED_TEST_CASE