1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/*
Copyright (c) 2005-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "common/config.h"
#include "tbb/flow_graph.h"
#include "common/test.h"
#include "common/utils.h"
#include "common/utils_assert.h"
#include "common/graph_utils.h"
//! \file test_split_node.cpp
//! \brief Test for [flow_graph.split_node] specification
#if defined(_MSC_VER) && _MSC_VER < 1600
#pragma warning (disable : 4503) //disabling the "decorated name length exceeded" warning for VS2008 and earlier
#endif
//
// Tests
//
const int Count = 300;
const int MaxPorts = 10;
const int MaxNInputs = 5; // max # of input_nodes to register for each split_node input in parallel test
std::vector<bool> flags; // for checking output
template<typename T>
class name_of {
public:
static const char* name() { return "Unknown"; }
};
template<>
class name_of<int> {
public:
static const char* name() { return "int"; }
};
template<>
class name_of<float> {
public:
static const char* name() { return "float"; }
};
template<>
class name_of<double> {
public:
static const char* name() { return "double"; }
};
template<>
class name_of<long> {
public:
static const char* name() { return "long"; }
};
template<>
class name_of<short> {
public:
static const char* name() { return "short"; }
};
// T must be arithmetic, and shouldn't wrap around for reasonable sizes of Count (which is now 150, and maxPorts is 10,
// so the max number generated right now is 1500 or so.) Input will generate a series of TT with value
// (init_val + (i-1)*addend) * my_mult, where i is the i-th invocation of the body. We are attaching addend
// input nodes to a join_port, and each will generate part of the numerical series the port is expecting
// to receive. If there is only one input node, the series order will be maintained; if more than one,
// this is not guaranteed.
template<int N>
struct tuple_helper {
template<typename TupleType>
static void set_element( TupleType &t, int i) {
std::get<N-1>(t) = (typename std::tuple_element<N-1,TupleType>::type)(i * (N+1));
tuple_helper<N-1>::set_element(t, i);
}
};
template<>
struct tuple_helper<1> {
template<typename TupleType>
static void set_element(TupleType &t, int i) {
std::get<0>(t) = (typename std::tuple_element<0,TupleType>::type)(i * 2);
}
};
// if we start N input_bodys they will all have the addend N, and my_count should be initialized to 0 .. N-1.
// the output tuples should have all the sequence, but the order will in general vary.
template<typename TupleType>
class my_input_body {
typedef TupleType TT;
static const int N = std::tuple_size<TT>::value;
int my_count;
int addend;
public:
my_input_body(int init_val, int addto) : my_count(init_val), addend(addto) { }
TT operator()( tbb::flow_control &fc) {
if(my_count >= Count){
fc.stop();
return TT();
}
TT v;
tuple_helper<N>::set_element(v, my_count);
my_count += addend;
return v;
}
};
// allocator for split_node.
template<int N, typename SType>
class makeSplit {
public:
static SType *create(tbb::flow::graph& g) {
SType *temp = new SType(g);
return temp;
}
static void destroy(SType *p) { delete p; }
};
// holder for sink_node pointers for eventual deletion
static void* all_sink_nodes[MaxPorts];
template<int ELEM, typename SType>
class sink_node_helper {
public:
typedef typename SType::input_type TT;
typedef typename std::tuple_element<ELEM-1,TT>::type IT;
typedef typename tbb::flow::queue_node<IT> my_sink_node_type;
static void print_parallel_remark() {
sink_node_helper<ELEM-1,SType>::print_parallel_remark();
INFO(", " << name_of<IT>::name());
}
static void print_serial_remark() {
sink_node_helper<ELEM-1,SType>::print_serial_remark();
INFO(", " << name_of<IT>::name());
}
static void add_sink_nodes(SType &my_split, tbb::flow::graph &g) {
my_sink_node_type *new_node = new my_sink_node_type(g);
tbb::flow::make_edge( tbb::flow::output_port<ELEM-1>(my_split) , *new_node);
all_sink_nodes[ELEM-1] = (void *)new_node;
sink_node_helper<ELEM-1, SType>::add_sink_nodes(my_split, g);
}
static void check_sink_values() {
my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[ELEM-1]);
for(int i = 0; i < Count; ++i) {
IT v{};
CHECK_MESSAGE(dp->try_get(v), "");
flags[((int)v) / (ELEM+1)] = true;
}
for(int i = 0; i < Count; ++i) {
CHECK_MESSAGE(flags[i], "");
flags[i] = false; // reset for next test
}
sink_node_helper<ELEM-1,SType>::check_sink_values();
}
static void remove_sink_nodes(SType& my_split) {
my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[ELEM-1]);
tbb::flow::remove_edge( tbb::flow::output_port<ELEM-1>(my_split) , *dp);
delete dp;
sink_node_helper<ELEM-1, SType>::remove_sink_nodes(my_split);
}
};
template<typename SType>
class sink_node_helper<1, SType> {
typedef typename SType::input_type TT;
typedef typename std::tuple_element<0,TT>::type IT;
typedef typename tbb::flow::queue_node<IT> my_sink_node_type;
public:
static void print_parallel_remark() {
INFO("Parallel test of split_node< " << name_of<IT>::name());
}
static void print_serial_remark() {
INFO("Serial test of split_node< " << name_of<IT>::name());
}
static void add_sink_nodes(SType &my_split, tbb::flow::graph &g) {
my_sink_node_type *new_node = new my_sink_node_type(g);
tbb::flow::make_edge( tbb::flow::output_port<0>(my_split) , *new_node);
all_sink_nodes[0] = (void *)new_node;
}
static void check_sink_values() {
my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[0]);
for(int i = 0; i < Count; ++i) {
IT v{};
CHECK_MESSAGE(dp->try_get(v), "");
flags[((int)v) / 2] = true;
}
for(int i = 0; i < Count; ++i) {
CHECK_MESSAGE(flags[i], "");
flags[i] = false; // reset for next test
}
}
static void remove_sink_nodes(SType& my_split) {
my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[0]);
tbb::flow::remove_edge( tbb::flow::output_port<0>(my_split) , *dp);
delete dp;
}
};
// parallel_test: create input_nodes that feed tuples into the split node
// and queue_nodes that receive the output.
template<typename SType>
class parallel_test {
public:
typedef typename SType::input_type TType;
typedef tbb::flow::input_node<TType> input_type;
static const int N = std::tuple_size<TType>::value;
static void test() {
input_type* all_input_nodes[MaxNInputs];
sink_node_helper<N,SType>::print_parallel_remark();
INFO(" >\n");
for(int i=0; i < MaxPorts; ++i) {
all_sink_nodes[i] = nullptr;
}
// try test for # inputs 1 .. MaxNInputs
for(int nInputs = 1; nInputs <= MaxNInputs; ++nInputs) {
tbb::flow::graph g;
SType* my_split = makeSplit<N,SType>::create(g);
// add sinks first so when inputs start spitting out values they are there to catch them
sink_node_helper<N, SType>::add_sink_nodes((*my_split), g);
// now create nInputs input_nodes, each spitting out i, i+nInputs, i+2*nInputs ...
// each element of the tuple is i*(n+1), where n is the tuple element index (1-N)
for(int i = 0; i < nInputs; ++i) {
// create input node
input_type *s = new input_type(g, my_input_body<TType>(i, nInputs) );
tbb::flow::make_edge(*s, *my_split);
all_input_nodes[i] = s;
s->activate();
}
g.wait_for_all();
// check that we got Count values in each output queue, and all the index values
// are there.
sink_node_helper<N, SType>::check_sink_values();
sink_node_helper<N, SType>::remove_sink_nodes(*my_split);
for(int i = 0; i < nInputs; ++i) {
delete all_input_nodes[i];
}
makeSplit<N,SType>::destroy(my_split);
}
}
};
//
// Single predecessor, single accepting successor at each port
template<typename SType>
void test_one_serial( SType &my_split, tbb::flow::graph &g) {
typedef typename SType::input_type TType;
static const int TUPLE_SIZE = std::tuple_size<TType>::value;
sink_node_helper<TUPLE_SIZE, SType>::add_sink_nodes(my_split,g);
typedef TType q3_input_type;
tbb::flow::queue_node< q3_input_type > q3(g);
tbb::flow::make_edge( q3, my_split );
// fill the queue with its value one-at-a-time
flags.clear();
for (int i = 0; i < Count; ++i ) {
TType v;
tuple_helper<TUPLE_SIZE>::set_element(v, i);
CHECK_MESSAGE(my_split.try_put(v), "");
flags.push_back(false);
}
g.wait_for_all();
sink_node_helper<TUPLE_SIZE,SType>::check_sink_values();
sink_node_helper<TUPLE_SIZE, SType>::remove_sink_nodes(my_split);
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
void test_follows_and_precedes_api() {
using namespace tbb::flow;
using msg_t = std::tuple<int, float, double>;
graph g;
function_node<msg_t, msg_t> f1(g, unlimited, [](msg_t msg) { return msg; } );
auto f2(f1);
auto f3(f1);
std::atomic<int> body_calls;
body_calls = 0;
function_node<int, int> f4(g, unlimited, [&](int val) { ++body_calls; return val; } );
function_node<float, float> f5(g, unlimited, [&](float val) { ++body_calls; return val; } );
function_node<double, double> f6(g, unlimited, [&](double val) { ++body_calls; return val; } );
split_node<msg_t> following_node(follows(f1, f2, f3));
make_edge(output_port<0>(following_node), f4);
make_edge(output_port<1>(following_node), f5);
make_edge(output_port<2>(following_node), f6);
split_node<msg_t> preceding_node(precedes(f4, f5, f6));
make_edge(f1, preceding_node);
make_edge(f2, preceding_node);
make_edge(f3, preceding_node);
msg_t msg(1, 2.2f, 3.3);
f1.try_put(msg);
f2.try_put(msg);
f3.try_put(msg);
g.wait_for_all();
// <number of try puts> * <number of splits by a input node> * <number of input nodes>
CHECK_MESSAGE( ((body_calls == 3*3*2)), "Not exact edge quantity was made");
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
template<typename SType>
class serial_test {
typedef typename SType::input_type TType;
static const int TUPLE_SIZE = std::tuple_size<TType>::value;
static const int ELEMS = 3;
public:
static void test() {
tbb::flow::graph g;
flags.reserve(Count);
SType* my_split = makeSplit<TUPLE_SIZE,SType>::create(g);
sink_node_helper<TUPLE_SIZE, SType>::print_serial_remark(); INFO(" >\n");
test_output_ports_return_ref(*my_split);
test_one_serial<SType>(*my_split, g);
// build the vector with copy construction from the used split node.
std::vector<SType>split_vector(ELEMS, *my_split);
// destroy the tired old split_node in case we're accidentally reusing pieces of it.
makeSplit<TUPLE_SIZE,SType>::destroy(my_split);
for(int e = 0; e < ELEMS; ++e) { // exercise each of the vector elements
test_one_serial<SType>(split_vector[e], g);
}
}
}; // serial_test
template<
template<typename> class TestType, // serial_test or parallel_test
typename TupleType > // type of the input of the split
struct generate_test {
typedef tbb::flow::split_node<TupleType> split_node_type;
static void do_test() {
TestType<split_node_type>::test();
}
}; // generate_test
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
void test_deduction_guides() {
using namespace tbb::flow;
using tuple_type = std::tuple<int, int>;
graph g;
split_node<tuple_type> s0(g);
split_node s1(s0);
static_assert(std::is_same_v<decltype(s1), split_node<tuple_type>>);
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
broadcast_node<tuple_type> b1(g), b2(g);
broadcast_node<int> b3(g), b4(g);
split_node s2(follows(b1, b2));
static_assert(std::is_same_v<decltype(s2), split_node<tuple_type>>);
split_node s3(precedes(b3, b4));
static_assert(std::is_same_v<decltype(s3), split_node<tuple_type>>);
#endif
}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
void test_try_put_and_wait() {
tbb::task_arena arena(1);
arena.execute([] {
tbb::flow::graph g;
std::vector<int> start_work_items;
std::vector<int> processed_items1;
std::vector<int> processed_items2;
std::vector<int> new_work_items;
int wait_message = 10;
for (int i = 0; i < wait_message; ++i) {
start_work_items.emplace_back(i);
new_work_items.emplace_back(i + 1 + wait_message);
}
using tuple_type = std::tuple<int, int>;
tbb::flow::split_node<tuple_type> split(g);
tbb::flow::function_node<int, int> function1(g, tbb::flow::unlimited,
[&](int input) noexcept {
if (input == wait_message) {
for (int item : new_work_items) {
split.try_put(tuple_type{item, item});
}
}
processed_items1.emplace_back(input);
return 0;
});
tbb::flow::function_node<int, int> function2(g, tbb::flow::unlimited,
[&](int input) noexcept {
processed_items2.emplace_back(input);
return 0;
});
tbb::flow::make_edge(tbb::flow::output_port<0>(split), function1);
tbb::flow::make_edge(tbb::flow::output_port<1>(split), function2);
for (int i = 0; i < wait_message; ++i) {
split.try_put(tuple_type{i, i});
}
split.try_put_and_wait(tuple_type{wait_message, wait_message});
std::size_t check_index1 = 0;
std::size_t check_index2 = 0;
// Since split node broadcasts items to successors from last to first, start_work_items tasks and wait_message would be spawned
// in the following order {f2 - 1} - {f1 - 1} {f2 - 2} {f1 - 2} ... {f2 - 10}{f1 - 10}
// and processed in reversed order
// Hence {f1 - wait_message} task would be processed first and it would spawn tasks for new_work_items in the same order
// Since new_work_items tasks would processed first and {f2 - 10} would be still in queue
// it is expected that during the try_put_and_wait {f1 - 10} would be processed first, then new_work_items would be processed
// and only when {f2 - 10} would be taken and executed, try_put_and_wait would be exited
// All of the other tasks for start_work_items would be processed during wait_for_all()
CHECK_MESSAGE(processed_items1[check_index1++] == wait_message, "Unexpected items processing");
for (std::size_t i = new_work_items.size(); i != 0; --i) {
CHECK_MESSAGE(processed_items1[check_index1++] == new_work_items[i - 1], "Unexpected items processing");
CHECK_MESSAGE(processed_items2[check_index2++] == new_work_items[i - 1], "Unexpected items processing");
}
CHECK_MESSAGE(processed_items2[check_index2++] == wait_message, "Unexpected items processing");
g.wait_for_all();
for (std::size_t i = start_work_items.size(); i != 0; --i) {
CHECK_MESSAGE(processed_items1[check_index1++] == start_work_items[i - 1], "Unexpected items processing");
CHECK_MESSAGE(processed_items2[check_index2++] == start_work_items[i - 1], "Unexpected items processing");
}
});
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! Test output ports and message passing with different input tuples
//! \brief \ref requirement \ref error_guessing
TEST_CASE("Tuple tests"){
for (int p = 0; p < 2; ++p) {
generate_test<serial_test, std::tuple<float, double> >::do_test();
#if MAX_TUPLE_TEST_SIZE >= 4
generate_test<serial_test, std::tuple<float, double, int, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 6
generate_test<serial_test, std::tuple<double, double, int, long, int, short> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 8
generate_test<serial_test, std::tuple<float, double, double, double, float, int, float, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 10
generate_test<serial_test, std::tuple<float, double, int, double, double, float, long, int, float, long> >::do_test();
#endif
generate_test<parallel_test, std::tuple<float, double> >::do_test();
#if MAX_TUPLE_TEST_SIZE >= 3
generate_test<parallel_test, std::tuple<float, int, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 5
generate_test<parallel_test, std::tuple<double, double, int, int, short> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 7
generate_test<parallel_test, std::tuple<float, int, double, float, long, float, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 9
generate_test<parallel_test, std::tuple<float, double, int, double, double, long, int, float, long> >::do_test();
#endif
}
}
#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test decution guides
//! \brief \ref requirement
TEST_CASE("Test follows and precedes API"){
test_follows_and_precedes_api();
}
#endif
#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
//! Test decution guides
//! \brief \ref requirement
TEST_CASE("Deduction guides"){
test_deduction_guides();
}
#endif
#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! \brief \ref error_guessing
TEST_CASE("test split_node try_put_and_wait") {
test_try_put_and_wait();
}
#endif
|