File: test_split_node.cpp

package info (click to toggle)
onetbb 2022.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,440 kB
  • sloc: cpp: 129,228; ansic: 9,745; python: 808; xml: 183; objc: 176; makefile: 66; sh: 66; awk: 41; javascript: 37
file content (531 lines) | stat: -rw-r--r-- 18,584 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*
    Copyright (c) 2005-2025 Intel Corporation

    Licensed under the Apache License, Version 2.0 (the "License");
    you may not use this file except in compliance with the License.
    You may obtain a copy of the License at

        http://www.apache.org/licenses/LICENSE-2.0

    Unless required by applicable law or agreed to in writing, software
    distributed under the License is distributed on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    See the License for the specific language governing permissions and
    limitations under the License.
*/

#include "common/config.h"

#include "tbb/flow_graph.h"

#include "common/test.h"
#include "common/utils.h"
#include "common/utils_assert.h"
#include "common/graph_utils.h"


//! \file test_split_node.cpp
//! \brief Test for [flow_graph.split_node] specification


#if defined(_MSC_VER) && _MSC_VER < 1600
    #pragma warning (disable : 4503) //disabling the "decorated name length exceeded" warning for VS2008 and earlier
#endif

//
// Tests
//

const int Count = 300;
const int MaxPorts = 10;
const int MaxNInputs = 5; // max # of input_nodes to register for each split_node input in parallel test

std::vector<bool> flags;   // for checking output

template<typename T>
class name_of {
public:
    static const char* name() { return  "Unknown"; }
};
template<>
class name_of<int> {
public:
    static const char* name() { return  "int"; }
};
template<>
class name_of<float> {
public:
    static const char* name() { return  "float"; }
};
template<>
class name_of<double> {
public:
    static const char* name() { return  "double"; }
};
template<>
class name_of<long> {
public:
    static const char* name() { return  "long"; }
};
template<>
class name_of<short> {
public:
    static const char* name() { return  "short"; }
};

// T must be arithmetic, and shouldn't wrap around for reasonable sizes of Count (which is now 150, and maxPorts is 10,
// so the max number generated right now is 1500 or so.)  Input will generate a series of TT with value
// (init_val + (i-1)*addend) * my_mult, where i is the i-th invocation of the body.  We are attaching addend
// input nodes to a join_port, and each will generate part of the numerical series the port is expecting
// to receive.  If there is only one input node, the series order will be maintained; if more than one,
// this is not guaranteed.

template<int N>
struct tuple_helper {
    template<typename TupleType>
    static void set_element( TupleType &t, int i) {
        std::get<N-1>(t) = (typename std::tuple_element<N-1,TupleType>::type)(i * (N+1));
        tuple_helper<N-1>::set_element(t, i);
    }
};

template<>
struct tuple_helper<1> {
    template<typename TupleType>
    static void set_element(TupleType &t, int i) {
        std::get<0>(t) = (typename std::tuple_element<0,TupleType>::type)(i * 2);
    }
};

// if we start N input_bodys they will all have the addend N, and my_count should be initialized to 0 .. N-1.
// the output tuples should have all the sequence, but the order will in general vary.
template<typename TupleType>
class my_input_body {
    typedef TupleType TT;
    static const int N = std::tuple_size<TT>::value;
    int my_count;
    int addend;
public:
    my_input_body(int init_val, int addto) : my_count(init_val), addend(addto) { }
    TT operator()( tbb::flow_control &fc) {
        if(my_count >= Count){
            fc.stop();
            return TT();
        }
        TT v;
        tuple_helper<N>::set_element(v, my_count);
        my_count += addend;
        return v;
    }
};

// allocator for split_node.

template<int N, typename SType>
class makeSplit {
public:
    static SType *create(tbb::flow::graph& g) {
        SType *temp = new SType(g);
        return temp;
    }
    static void destroy(SType *p) { delete p; }
};

// holder for sink_node pointers for eventual deletion

static void* all_sink_nodes[MaxPorts];


template<int ELEM, typename SType>
class sink_node_helper {
public:
    typedef typename SType::input_type TT;
    typedef typename std::tuple_element<ELEM-1,TT>::type IT;
    typedef typename tbb::flow::queue_node<IT> my_sink_node_type;
    static void print_parallel_remark() {
        sink_node_helper<ELEM-1,SType>::print_parallel_remark();
        INFO(", " << name_of<IT>::name());
    }
    static void print_serial_remark() {
        sink_node_helper<ELEM-1,SType>::print_serial_remark();
        INFO(", " << name_of<IT>::name());
    }
    static void add_sink_nodes(SType &my_split, tbb::flow::graph &g) {
        my_sink_node_type *new_node = new my_sink_node_type(g);
        tbb::flow::make_edge( tbb::flow::output_port<ELEM-1>(my_split) , *new_node);
        all_sink_nodes[ELEM-1] = (void *)new_node;
        sink_node_helper<ELEM-1, SType>::add_sink_nodes(my_split, g);
    }

    static void check_sink_values() {
        my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[ELEM-1]);
        for(int i = 0; i < Count; ++i) {
            IT v{};
            CHECK_MESSAGE(dp->try_get(v), "");
            flags[((int)v) / (ELEM+1)] = true;
        }
        for(int i = 0; i < Count; ++i) {
            CHECK_MESSAGE(flags[i], "");
            flags[i] = false;  // reset for next test
        }
        sink_node_helper<ELEM-1,SType>::check_sink_values();
    }
    static void remove_sink_nodes(SType& my_split) {
        my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[ELEM-1]);
        tbb::flow::remove_edge( tbb::flow::output_port<ELEM-1>(my_split) , *dp);
        delete dp;
        sink_node_helper<ELEM-1, SType>::remove_sink_nodes(my_split);
    }
};

template<typename SType>
class sink_node_helper<1, SType> {
    typedef typename SType::input_type TT;
    typedef typename std::tuple_element<0,TT>::type IT;
    typedef typename tbb::flow::queue_node<IT> my_sink_node_type;
public:
    static void print_parallel_remark() {
        INFO("Parallel test of split_node< " << name_of<IT>::name());
    }
    static void print_serial_remark() {
        INFO("Serial test of split_node< " << name_of<IT>::name());
    }
    static void add_sink_nodes(SType &my_split, tbb::flow::graph &g) {
        my_sink_node_type *new_node = new my_sink_node_type(g);
        tbb::flow::make_edge( tbb::flow::output_port<0>(my_split) , *new_node);
        all_sink_nodes[0] = (void *)new_node;
    }
    static void check_sink_values() {
        my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[0]);
        for(int i = 0; i < Count; ++i) {
            IT v{};
            CHECK_MESSAGE(dp->try_get(v), "");
            flags[((int)v) / 2] = true;
        }
        for(int i = 0; i < Count; ++i) {
            CHECK_MESSAGE(flags[i], "");
            flags[i] = false;  // reset for next test
        }
    }
    static void remove_sink_nodes(SType& my_split) {
        my_sink_node_type *dp = reinterpret_cast<my_sink_node_type *>(all_sink_nodes[0]);
        tbb::flow::remove_edge( tbb::flow::output_port<0>(my_split) , *dp);
        delete dp;
    }
};

// parallel_test: create input_nodes that feed tuples into the split node
//    and queue_nodes that receive the output.
template<typename SType>
class parallel_test {
public:
    typedef typename SType::input_type TType;
    typedef tbb::flow::input_node<TType> input_type;
    static const int N = std::tuple_size<TType>::value;

    static void test() {
        input_type* all_input_nodes[MaxNInputs];
        sink_node_helper<N,SType>::print_parallel_remark();
        INFO(" >\n");
        for(int i=0; i < MaxPorts; ++i) {
            all_sink_nodes[i] = nullptr;
        }
        // try test for # inputs 1 .. MaxNInputs
        for(int nInputs = 1; nInputs <= MaxNInputs; ++nInputs) {
            tbb::flow::graph g;
            SType* my_split = makeSplit<N,SType>::create(g);

            // add sinks first so when inputs start spitting out values they are there to catch them
            sink_node_helper<N, SType>::add_sink_nodes((*my_split), g);

            // now create nInputs input_nodes, each spitting out i, i+nInputs, i+2*nInputs ...
            // each element of the tuple is i*(n+1), where n is the tuple element index (1-N)
            for(int i = 0; i < nInputs; ++i) {
                // create input node
                input_type *s = new input_type(g, my_input_body<TType>(i, nInputs) );
                tbb::flow::make_edge(*s, *my_split);
                all_input_nodes[i] = s;
                s->activate();
            }

            g.wait_for_all();

            // check that we got Count values in each output queue, and all the index values
            // are there.
            sink_node_helper<N, SType>::check_sink_values();

            sink_node_helper<N, SType>::remove_sink_nodes(*my_split);
            for(int i = 0; i < nInputs; ++i) {
                delete all_input_nodes[i];
            }
            makeSplit<N,SType>::destroy(my_split);
        }
    }
};

//
// Single predecessor, single accepting successor at each port

template<typename SType>
void test_one_serial( SType &my_split, tbb::flow::graph &g) {
    typedef typename SType::input_type TType;
    static const int TUPLE_SIZE = std::tuple_size<TType>::value;
    sink_node_helper<TUPLE_SIZE, SType>::add_sink_nodes(my_split,g);
    typedef TType q3_input_type;
    tbb::flow::queue_node< q3_input_type >  q3(g);

    tbb::flow::make_edge( q3, my_split );

    // fill the  queue with its value one-at-a-time
    flags.clear();
    for (int i = 0; i < Count; ++i ) {
        TType v;
        tuple_helper<TUPLE_SIZE>::set_element(v, i);
        CHECK_MESSAGE(my_split.try_put(v), "");
        flags.push_back(false);
    }

    g.wait_for_all();

    sink_node_helper<TUPLE_SIZE,SType>::check_sink_values();

    sink_node_helper<TUPLE_SIZE, SType>::remove_sink_nodes(my_split);

}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
void test_follows_and_precedes_api() {
    using namespace tbb::flow;
    using msg_t = std::tuple<int, float, double>;

    graph g;

    function_node<msg_t, msg_t> f1(g, unlimited, [](msg_t msg) { return msg; } );
    auto f2(f1);
    auto f3(f1);

    std::atomic<int> body_calls;
    body_calls = 0;

    function_node<int, int> f4(g, unlimited, [&](int val) { ++body_calls; return val; } );
    function_node<float, float> f5(g, unlimited, [&](float val) { ++body_calls; return val; } );
    function_node<double, double> f6(g, unlimited, [&](double val) { ++body_calls; return val; } );

    split_node<msg_t> following_node(follows(f1, f2, f3));
    make_edge(output_port<0>(following_node), f4);
    make_edge(output_port<1>(following_node), f5);
    make_edge(output_port<2>(following_node), f6);

    split_node<msg_t> preceding_node(precedes(f4, f5, f6));
    make_edge(f1, preceding_node);
    make_edge(f2, preceding_node);
    make_edge(f3, preceding_node);

    msg_t msg(1, 2.2f, 3.3);
    f1.try_put(msg);
    f2.try_put(msg);
    f3.try_put(msg);

    g.wait_for_all();

    // <number of try puts> * <number of splits by a input node> * <number of input nodes>
    CHECK_MESSAGE( ((body_calls == 3*3*2)), "Not exact edge quantity was made");
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_NODE_SET

template<typename SType>
class serial_test {
    typedef typename SType::input_type TType;
    static const int TUPLE_SIZE = std::tuple_size<TType>::value;
    static const int ELEMS = 3;
public:
static void test() {
    tbb::flow::graph g;
    flags.reserve(Count);
    SType* my_split = makeSplit<TUPLE_SIZE,SType>::create(g);
    sink_node_helper<TUPLE_SIZE, SType>::print_serial_remark(); INFO(" >\n");

    test_output_ports_return_ref(*my_split);

    test_one_serial<SType>(*my_split, g);
    // build the vector with copy construction from the used split node.
    std::vector<SType>split_vector(ELEMS, *my_split);
    // destroy the tired old split_node in case we're accidentally reusing pieces of it.
    makeSplit<TUPLE_SIZE,SType>::destroy(my_split);


    for(int e = 0; e < ELEMS; ++e) {  // exercise each of the vector elements
        test_one_serial<SType>(split_vector[e], g);
    }
}

}; // serial_test

template<
      template<typename> class TestType,  // serial_test or parallel_test
      typename TupleType >                               // type of the input of the split
struct generate_test {
    typedef tbb::flow::split_node<TupleType> split_node_type;
    static void do_test() {
        TestType<split_node_type>::test();
    }
}; // generate_test

#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT

void test_deduction_guides() {
    using namespace tbb::flow;
    using tuple_type = std::tuple<int, int>;

    graph g;
    split_node<tuple_type> s0(g);

    split_node s1(s0);
    static_assert(std::is_same_v<decltype(s1), split_node<tuple_type>>);

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
    broadcast_node<tuple_type> b1(g), b2(g);
    broadcast_node<int> b3(g), b4(g);

    split_node s2(follows(b1, b2));
    static_assert(std::is_same_v<decltype(s2), split_node<tuple_type>>);

    split_node s3(precedes(b3, b4));
    static_assert(std::is_same_v<decltype(s3), split_node<tuple_type>>);
#endif
}

#endif

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
void test_try_put_and_wait() {
    tbb::task_arena arena(1);

    arena.execute([] {
        tbb::flow::graph g;

        std::vector<int> start_work_items;
        std::vector<int> processed_items1;
        std::vector<int> processed_items2;
        std::vector<int> new_work_items;
        int wait_message = 10;

        for (int i = 0; i < wait_message; ++i) {
            start_work_items.emplace_back(i);
            new_work_items.emplace_back(i + 1 + wait_message);
        }

        using tuple_type = std::tuple<int, int>;
        tbb::flow::split_node<tuple_type> split(g);

        tbb::flow::function_node<int, int> function1(g, tbb::flow::unlimited,
            [&](int input) noexcept {
                if (input == wait_message) {
                    for (int item : new_work_items) {
                        split.try_put(tuple_type{item, item});
                    }
                }
                processed_items1.emplace_back(input);
                return 0;
            });

        tbb::flow::function_node<int, int> function2(g, tbb::flow::unlimited,
            [&](int input) noexcept {
                processed_items2.emplace_back(input);
                return 0;
            });

        tbb::flow::make_edge(tbb::flow::output_port<0>(split), function1);
        tbb::flow::make_edge(tbb::flow::output_port<1>(split), function2);

        for (int i = 0; i < wait_message; ++i) {
            split.try_put(tuple_type{i, i});
        }

        split.try_put_and_wait(tuple_type{wait_message, wait_message});

        std::size_t check_index1 = 0;
        std::size_t check_index2 = 0;

        // Since split node broadcasts items to successors from last to first, start_work_items tasks and wait_message would be spawned
        // in the following order {f2 - 1} - {f1 - 1} {f2 - 2} {f1 - 2} ... {f2 - 10}{f1 - 10}
        // and processed in reversed order
        // Hence {f1 - wait_message} task would be processed first and it would spawn tasks for new_work_items in the same order
        // Since new_work_items tasks would processed first and {f2 - 10} would be still in queue
        // it is expected that during the try_put_and_wait {f1 - 10} would be processed first, then new_work_items would be processed
        // and only when {f2 - 10} would be taken and executed, try_put_and_wait would be exited
        // All of the other tasks for start_work_items would be processed during wait_for_all()
        CHECK_MESSAGE(processed_items1[check_index1++] == wait_message, "Unexpected items processing");

        for (std::size_t i = new_work_items.size(); i != 0; --i) {
            CHECK_MESSAGE(processed_items1[check_index1++] == new_work_items[i - 1], "Unexpected items processing");
            CHECK_MESSAGE(processed_items2[check_index2++] == new_work_items[i - 1], "Unexpected items processing");
        }

        CHECK_MESSAGE(processed_items2[check_index2++] == wait_message, "Unexpected items processing");

        g.wait_for_all();

        for (std::size_t i = start_work_items.size(); i != 0; --i) {
            CHECK_MESSAGE(processed_items1[check_index1++] == start_work_items[i - 1], "Unexpected items processing");
            CHECK_MESSAGE(processed_items2[check_index2++] == start_work_items[i - 1], "Unexpected items processing");
        }
    });
}
#endif // __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT

//! Test output ports and message passing with different input tuples
//! \brief \ref requirement \ref error_guessing
TEST_CASE("Tuple tests"){
    for (int p = 0; p < 2; ++p) {
        generate_test<serial_test, std::tuple<float, double> >::do_test();
#if MAX_TUPLE_TEST_SIZE >= 4
        generate_test<serial_test, std::tuple<float, double, int, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 6
        generate_test<serial_test, std::tuple<double, double, int, long, int, short> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 8
        generate_test<serial_test, std::tuple<float, double, double, double, float, int, float, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 10
        generate_test<serial_test, std::tuple<float, double, int, double, double, float, long, int, float, long> >::do_test();
#endif
        generate_test<parallel_test, std::tuple<float, double> >::do_test();
#if MAX_TUPLE_TEST_SIZE >= 3
        generate_test<parallel_test, std::tuple<float, int, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 5
        generate_test<parallel_test, std::tuple<double, double, int, int, short> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 7
        generate_test<parallel_test, std::tuple<float, int, double, float, long, float, long> >::do_test();
#endif
#if MAX_TUPLE_TEST_SIZE >= 9
        generate_test<parallel_test, std::tuple<float, double, int, double, double, long, int, float, long> >::do_test();
#endif
    }
}

#if __TBB_PREVIEW_FLOW_GRAPH_NODE_SET
//! Test decution guides
//! \brief \ref requirement
TEST_CASE("Test follows and precedes API"){
    test_follows_and_precedes_api();
}
#endif

#if __TBB_CPP17_DEDUCTION_GUIDES_PRESENT
//! Test decution guides
//! \brief \ref requirement
TEST_CASE("Deduction guides"){
    test_deduction_guides();
}
#endif

#if __TBB_PREVIEW_FLOW_GRAPH_TRY_PUT_AND_WAIT
//! \brief \ref error_guessing
TEST_CASE("test split_node try_put_and_wait") {
    test_try_put_and_wait();
}
#endif