1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
|
/*
Copyright (c) 2005-2025 Intel Corporation
Copyright (c) 2025 UXL Foundation Contributors
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "common/test.h"
#define __TBB_EXTRA_DEBUG 1
#include "common/concurrency_tracker.h"
#include "common/cpu_usertime.h"
#include "common/spin_barrier.h"
#include "common/utils.h"
#include "common/utils_report.h"
#include "common/utils_concurrency_limit.h"
#include "tbb/task_arena.h"
#include "tbb/task_scheduler_observer.h"
#include "tbb/enumerable_thread_specific.h"
#include "tbb/parallel_for.h"
#include "tbb/global_control.h"
#include "tbb/concurrent_set.h"
#include "tbb/spin_mutex.h"
#include "tbb/spin_rw_mutex.h"
#include "tbb/task_group.h"
#include <atomic>
#include <condition_variable>
#include <cstdio>
#include <cstdlib>
#include <stdexcept>
#include <thread>
#include <vector>
//#include "harness_fp.h"
//! \file test_task_arena.cpp
//! \brief Test for [scheduler.task_arena scheduler.task_scheduler_observer] specification
//--------------------------------------------------//
// Test that task_arena::initialize and task_arena::terminate work when doing nothing else.
/* maxthread is treated as the biggest possible concurrency level. */
void InitializeAndTerminate( int maxthread ) {
for( int i=0; i<200; ++i ) {
switch( i&3 ) {
// Arena is created inactive, initialization is always explicit. Lazy initialization is covered by other test functions.
// Explicit initialization can either keep the original values or change those.
// Arena termination can be explicit or implicit (in the destructor).
// TODO: extend with concurrency level checks if such a method is added.
default: {
tbb::task_arena arena( std::rand() % maxthread + 1 );
CHECK_MESSAGE(!arena.is_active(), "arena should not be active until initialized");
arena.initialize();
CHECK(arena.is_active());
arena.terminate();
CHECK_MESSAGE(!arena.is_active(), "arena should not be active; it was terminated");
break;
}
case 0: {
tbb::task_arena arena( 1 );
CHECK_MESSAGE(!arena.is_active(), "arena should not be active until initialized");
arena.initialize( std::rand() % maxthread + 1 ); // change the parameters
CHECK(arena.is_active());
break;
}
case 1: {
tbb::task_arena arena( tbb::task_arena::automatic );
CHECK(!arena.is_active());
arena.initialize();
CHECK(arena.is_active());
break;
}
case 2: {
tbb::task_arena arena;
CHECK_MESSAGE(!arena.is_active(), "arena should not be active until initialized");
arena.initialize( std::rand() % maxthread + 1 );
CHECK(arena.is_active());
arena.terminate();
CHECK_MESSAGE(!arena.is_active(), "arena should not be active; it was terminated");
break;
}
}
}
}
//--------------------------------------------------//
// Definitions used in more than one test
typedef tbb::blocked_range<int> Range;
// slot_id value: -1 is reserved by current_slot(), -2 is set in on_scheduler_exit() below
static tbb::enumerable_thread_specific<int> local_id, old_id, slot_id(-3);
void ResetTLS() {
local_id.clear();
old_id.clear();
slot_id.clear();
}
class ArenaObserver : public tbb::task_scheduler_observer {
int myId; // unique observer/arena id within a test
int myMaxConcurrency; // concurrency of the associated arena
int myNumReservedSlots; // reserved slots in the associated arena
void on_scheduler_entry( bool is_worker ) override {
int current_index = tbb::this_task_arena::current_thread_index();
CHECK(current_index < (myMaxConcurrency > 1 ? myMaxConcurrency : 2));
if (is_worker) {
CHECK(current_index >= myNumReservedSlots);
}
CHECK_MESSAGE(!old_id.local(), "double call to on_scheduler_entry");
old_id.local() = local_id.local();
CHECK_MESSAGE(old_id.local() != myId, "double entry to the same arena");
local_id.local() = myId;
slot_id.local() = current_index;
}
void on_scheduler_exit( bool /*is_worker*/ ) override {
CHECK_MESSAGE(local_id.local() == myId, "nesting of arenas is broken");
CHECK(slot_id.local() == tbb::this_task_arena::current_thread_index());
slot_id.local() = -2;
local_id.local() = old_id.local();
old_id.local() = 0;
}
public:
ArenaObserver(tbb::task_arena &a, int maxConcurrency, int numReservedSlots, int id)
: tbb::task_scheduler_observer(a)
, myId(id)
, myMaxConcurrency(maxConcurrency)
, myNumReservedSlots(numReservedSlots) {
CHECK(myId);
observe(true);
}
~ArenaObserver () {
observe(false);
CHECK_MESSAGE(!old_id.local(), "inconsistent observer state");
}
};
struct IndexTrackingBody { // Must be used together with ArenaObserver
void operator() ( const Range& ) const {
CHECK(slot_id.local() == tbb::this_task_arena::current_thread_index());
utils::doDummyWork(50000);
}
};
struct AsynchronousWork {
utils::SpinBarrier &my_barrier;
bool my_is_blocking;
AsynchronousWork(utils::SpinBarrier &a_barrier, bool blocking = true)
: my_barrier(a_barrier), my_is_blocking(blocking) {}
void operator()() const {
CHECK_MESSAGE(local_id.local() != 0, "not in explicit arena");
tbb::parallel_for(Range(0,500), IndexTrackingBody(), tbb::simple_partitioner());
if(my_is_blocking) my_barrier.wait(); // must be asynchronous to an external thread
else my_barrier.signalNoWait();
}
};
//-----------------------------------------------------------------------------------------//
// Test that task_arenas might be created and used from multiple application threads.
// Also tests arena observers. The parameter p is the index of an app thread running this test.
void TestConcurrentArenasFunc(int idx) {
// A regression test for observer activation order:
// check that arena observer can be activated before local observer
struct LocalObserver : public tbb::task_scheduler_observer {
LocalObserver() : tbb::task_scheduler_observer() { observe(true); }
LocalObserver(tbb::task_arena& a) : tbb::task_scheduler_observer(a) {
observe(true);
}
~LocalObserver() {
observe(false);
}
};
tbb::task_arena a1;
a1.initialize(1,0);
ArenaObserver o1(a1, 1, 0, idx*2+1); // the last argument is a "unique" observer/arena id for the test
CHECK_MESSAGE(o1.is_observing(), "Arena observer has not been activated");
tbb::task_arena a2(2,1);
ArenaObserver o2(a2, 2, 1, idx*2+2);
CHECK_MESSAGE(o2.is_observing(), "Arena observer has not been activated");
LocalObserver lo1;
CHECK_MESSAGE(lo1.is_observing(), "Local observer has not been activated");
tbb::task_arena a3(1, 0);
LocalObserver lo2(a3);
CHECK_MESSAGE(lo2.is_observing(), "Local observer has not been activated");
utils::SpinBarrier barrier(2);
AsynchronousWork work(barrier);
a1.enqueue(work); // put async work
barrier.wait();
a2.enqueue(work); // another work
a2.execute(work);
a3.execute([] {
utils::doDummyWork(100);
});
a1.debug_wait_until_empty();
a2.debug_wait_until_empty();
}
void TestConcurrentArenas(int p) {
// TODO REVAMP fix with global control
ResetTLS();
utils::NativeParallelFor( p, &TestConcurrentArenasFunc );
}
//--------------------------------------------------//
// Test multiple application threads working with a single arena at the same time.
class MultipleMastersPart1 : utils::NoAssign {
tbb::task_arena &my_a;
utils::SpinBarrier &my_b1, &my_b2;
public:
MultipleMastersPart1( tbb::task_arena &a, utils::SpinBarrier &b1, utils::SpinBarrier &b2)
: my_a(a), my_b1(b1), my_b2(b2) {}
void operator()(int) const {
my_a.execute(AsynchronousWork(my_b2, /*blocking=*/false));
my_b1.wait();
// A regression test for bugs 1954 & 1971
my_a.enqueue(AsynchronousWork(my_b2, /*blocking=*/false));
}
};
class MultipleMastersPart2 : utils::NoAssign {
tbb::task_arena &my_a;
utils::SpinBarrier &my_b;
public:
MultipleMastersPart2( tbb::task_arena &a, utils::SpinBarrier &b) : my_a(a), my_b(b) {}
void operator()(int) const {
my_a.execute(AsynchronousWork(my_b, /*blocking=*/false));
}
};
class MultipleMastersPart3 : utils::NoAssign {
tbb::task_arena &my_a;
utils::SpinBarrier &my_b;
using wait_context = tbb::detail::d1::wait_context;
struct Runner : NoAssign {
wait_context& myWait;
Runner(wait_context& w) : myWait(w) {}
void operator()() const {
utils::doDummyWork(10000);
myWait.release();
}
};
struct Waiter : NoAssign {
wait_context& myWait;
Waiter(wait_context& w) : myWait(w) {}
void operator()() const {
tbb::task_group_context ctx;
tbb::detail::d1::wait(myWait, ctx);
}
};
public:
MultipleMastersPart3(tbb::task_arena &a, utils::SpinBarrier &b)
: my_a(a), my_b(b) {}
void operator()(int) const {
wait_context wait(0);
my_b.wait(); // increases chances for task_arena initialization contention
for( int i=0; i<100; ++i) {
wait.reserve();
my_a.enqueue(Runner(wait));
my_a.execute(Waiter(wait));
}
my_b.wait();
}
};
void TestMultipleMasters(int p) {
{
ResetTLS();
tbb::task_arena a(1,0);
a.initialize();
ArenaObserver o(a, 1, 0, 1);
utils::SpinBarrier barrier1(p), barrier2(2*p+1); // each of p threads will submit two tasks signaling the barrier
NativeParallelFor( p, MultipleMastersPart1(a, barrier1, barrier2) );
barrier2.wait();
a.debug_wait_until_empty();
} {
ResetTLS();
tbb::task_arena a(2,1);
ArenaObserver o(a, 2, 1, 2);
utils::SpinBarrier barrier(p+2);
a.enqueue(AsynchronousWork(barrier, /*blocking=*/true)); // occupy the worker, a regression test for bug 1981
// TODO: buggy test. A worker threads need time to occupy the slot to prevent an external thread from taking an enqueue task.
utils::Sleep(10);
NativeParallelFor( p, MultipleMastersPart2(a, barrier) );
barrier.wait();
a.debug_wait_until_empty();
} {
// Regression test for the bug 1981 part 2 (task_arena::execute() with wait_for_all for an enqueued task)
tbb::task_arena a(p,1);
utils::SpinBarrier barrier(p+1); // for external threads to avoid endless waiting at least in some runs
// "Oversubscribe" the arena by 1 external thread
NativeParallelFor( p+1, MultipleMastersPart3(a, barrier) );
a.debug_wait_until_empty();
}
}
//--------------------------------------------------//
// TODO: explain what TestArenaEntryConsistency does
#include <sstream>
#include <stdexcept>
#include "oneapi/tbb/detail/_exception.h"
#include "common/fp_control.h"
struct TestArenaEntryBody : FPModeContext {
std::atomic<int> &my_stage; // each execute increases it
std::stringstream my_id;
bool is_caught, is_expected;
enum { arenaFPMode = 1 };
TestArenaEntryBody(std::atomic<int> &s, int idx, int i) // init thread-specific instance
: FPModeContext(idx+i)
, my_stage(s)
, is_caught(false)
#if TBB_USE_EXCEPTIONS
, is_expected( (idx&(1<<i)) != 0 )
#else
, is_expected(false)
#endif
{
my_id << idx << ':' << i << '@';
}
void operator()() { // inside task_arena::execute()
// synchronize with other stages
int stage = my_stage++;
int slot = tbb::this_task_arena::current_thread_index();
CHECK(slot >= 0);
CHECK(slot <= 1);
// wait until the third stage is delegated and then starts on slot 0
while(my_stage < 2+slot) utils::yield();
// deduct its entry type and put it into id, it helps to find source of a problem
my_id << (stage < 3 ? (tbb::this_task_arena::current_thread_index()?
"delegated_to_worker" : stage < 2? "direct" : "delegated_to_master")
: stage == 3? "nested_same_ctx" : "nested_alien_ctx");
AssertFPMode(arenaFPMode);
if (is_expected) {
TBB_TEST_THROW(std::logic_error(my_id.str()));
}
// no code can be put here since exceptions can be thrown
}
void on_exception(const char *e) { // outside arena, in catch block
is_caught = true;
CHECK(my_id.str() == e);
assertFPMode();
}
void after_execute() { // outside arena and catch block
CHECK(is_caught == is_expected);
assertFPMode();
}
};
class ForEachArenaEntryBody : utils::NoAssign {
tbb::task_arena &my_a; // expected task_arena(2,1)
std::atomic<int> &my_stage; // each execute increases it
int my_idx;
public:
ForEachArenaEntryBody(tbb::task_arena &a, std::atomic<int> &c)
: my_a(a), my_stage(c), my_idx(0) {}
void test(int idx) {
my_idx = idx;
my_stage = 0;
NativeParallelFor(3, *this); // test cross-arena calls
CHECK(my_stage == 3);
my_a.execute(*this); // test nested calls
CHECK(my_stage == 5);
}
// task_arena functor for nested tests
void operator()() const {
test_arena_entry(3); // in current task group context
tbb::parallel_for(4, 5, *this); // in different context
}
// NativeParallelFor & parallel_for functor
void operator()(int i) const {
test_arena_entry(i);
}
private:
void test_arena_entry(int i) const {
GetRoundingMode();
TestArenaEntryBody scoped_functor(my_stage, my_idx, i);
GetRoundingMode();
#if TBB_USE_EXCEPTIONS
try {
my_a.execute(scoped_functor);
} catch(std::logic_error &e) {
scoped_functor.on_exception(e.what());
} catch(...) { CHECK_MESSAGE(false, "Unexpected exception type"); }
#else
my_a.execute(scoped_functor);
#endif
scoped_functor.after_execute();
}
};
void TestArenaEntryConsistency() {
tbb::task_arena a(2, 1);
std::atomic<int> c;
ForEachArenaEntryBody body(a, c);
FPModeContext fp_scope(TestArenaEntryBody::arenaFPMode);
a.initialize(); // capture FP settings to arena
fp_scope.setNextFPMode();
for (int i = 0; i < 100; i++) // not less than 32 = 2^5 of entry types
body.test(i);
}
//--------------------------------------------------
// Test that the requested degree of concurrency for task_arena is achieved in various conditions
class TestArenaConcurrencyBody : utils::NoAssign {
tbb::task_arena &my_a;
int my_max_concurrency;
int my_reserved_slots;
utils::SpinBarrier *my_barrier;
utils::SpinBarrier *my_worker_barrier;
public:
TestArenaConcurrencyBody( tbb::task_arena &a, int max_concurrency, int reserved_slots, utils::SpinBarrier *b = nullptr, utils::SpinBarrier *wb = nullptr )
: my_a(a), my_max_concurrency(max_concurrency), my_reserved_slots(reserved_slots), my_barrier(b), my_worker_barrier(wb) {}
// NativeParallelFor's functor
void operator()( int ) const {
CHECK_MESSAGE( local_id.local() == 0, "TLS was not cleaned?" );
local_id.local() = 1;
my_a.execute( *this );
}
// Arena's functor
void operator()() const {
int idx = tbb::this_task_arena::current_thread_index();
REQUIRE( idx < (my_max_concurrency > 1 ? my_max_concurrency : 2) );
REQUIRE( my_a.max_concurrency() == tbb::this_task_arena::max_concurrency() );
int max_arena_concurrency = tbb::this_task_arena::max_concurrency();
REQUIRE( max_arena_concurrency == my_max_concurrency );
if ( my_worker_barrier ) {
if ( local_id.local() == 1 ) {
// External thread in a reserved slot
CHECK_MESSAGE( idx < my_reserved_slots, "External threads are supposed to use only reserved slots in this test" );
} else {
// Worker thread
CHECK( idx >= my_reserved_slots );
my_worker_barrier->wait();
}
} else if ( my_barrier )
CHECK_MESSAGE( local_id.local() == 1, "Workers are not supposed to enter the arena in this test" );
if ( my_barrier ) my_barrier->wait();
else utils::Sleep( 1 );
}
};
void TestArenaConcurrency( int p, int reserved = 0, int step = 1) {
for (; reserved <= p; reserved += step) {
tbb::task_arena a( p, reserved );
if (p - reserved < tbb::this_task_arena::max_concurrency()) {
// Check concurrency with worker & reserved external threads.
ResetTLS();
utils::SpinBarrier b( p );
utils::SpinBarrier wb( p-reserved );
TestArenaConcurrencyBody test( a, p, reserved, &b, &wb );
for ( int i = reserved; i < p; ++i ) // requests p-reserved worker threads
a.enqueue( test );
if ( reserved==1 )
test( 0 ); // calls execute()
else
utils::NativeParallelFor( reserved, test );
a.debug_wait_until_empty();
} { // Check if multiple external threads alone can achieve maximum concurrency.
ResetTLS();
utils::SpinBarrier b( p );
utils::NativeParallelFor( p, TestArenaConcurrencyBody( a, p, reserved, &b ) );
a.debug_wait_until_empty();
} { // Check oversubscription by external threads.
#if !_WIN32 || !_WIN64
// Some C++ implementations allocate 8MB stacks for std::thread on 32 bit platforms
// that makes impossible to create more than ~500 threads.
if ( !(sizeof(std::size_t) == 4 && p > 200) )
#endif
#if TBB_TEST_LOW_WORKLOAD
if ( p <= 16 )
#endif
{
ResetTLS();
utils::NativeParallelFor(2 * p, TestArenaConcurrencyBody(a, p, reserved));
a.debug_wait_until_empty();
}
}
}
}
struct TestMandatoryConcurrencyObserver : public tbb::task_scheduler_observer {
utils::SpinBarrier& m_barrier;
TestMandatoryConcurrencyObserver(tbb::task_arena& a, utils::SpinBarrier& barrier)
: tbb::task_scheduler_observer(a), m_barrier(barrier) {
observe(true);
}
~TestMandatoryConcurrencyObserver() {
observe(false);
}
void on_scheduler_exit(bool worker) override {
if (worker) {
m_barrier.wait();
}
}
};
void TestMandatoryConcurrency() {
tbb::task_arena a(1);
a.execute([&a] {
int n_threads = 4;
utils::SpinBarrier exit_barrier(2);
TestMandatoryConcurrencyObserver observer(a, exit_barrier);
for (int j = 0; j < 5; ++j) {
utils::ExactConcurrencyLevel::check(1);
std::atomic<int> num_tasks{ 0 }, curr_tasks{ 0 };
utils::SpinBarrier barrier(n_threads);
utils::NativeParallelFor(n_threads, [&](int) {
for (int i = 0; i < 5; ++i) {
barrier.wait();
a.enqueue([&] {
CHECK(tbb::this_task_arena::max_concurrency() == 2);
CHECK(a.max_concurrency() == 2);
++curr_tasks;
CHECK(curr_tasks == 1);
utils::doDummyWork(1000);
CHECK(curr_tasks == 1);
--curr_tasks;
++num_tasks;
});
barrier.wait();
}
});
do {
exit_barrier.wait();
} while (num_tasks < n_threads * 5);
}
});
}
void TestConcurrentFunctionality(int min_thread_num = 1, int max_thread_num = 3) {
TestMandatoryConcurrency();
InitializeAndTerminate(max_thread_num);
for (int p = min_thread_num; p <= max_thread_num; ++p) {
TestConcurrentArenas(p);
TestMultipleMasters(p);
TestArenaConcurrency(p);
}
}
//--------------------------------------------------//
// Test creation/initialization of a task_arena that references an existing arena (aka attach).
// This part of the test uses the knowledge of task_arena internals
struct TaskArenaValidator {
int my_slot_at_construction;
const tbb::task_arena& my_arena;
TaskArenaValidator( const tbb::task_arena& other )
: my_slot_at_construction(tbb::this_task_arena::current_thread_index())
, my_arena(other)
{}
// Inspect the internal state
int concurrency() { return my_arena.debug_max_concurrency(); }
int reserved_for_masters() { return my_arena.debug_reserved_slots(); }
// This method should be called in task_arena::execute() for a captured arena
// by the same thread that created the validator.
void operator()() {
CHECK_MESSAGE( tbb::this_task_arena::current_thread_index()==my_slot_at_construction,
"Current thread index has changed since the validator construction" );
}
};
void ValidateAttachedArena( tbb::task_arena& arena, bool expect_activated,
int expect_concurrency, int expect_masters ) {
CHECK_MESSAGE( arena.is_active()==expect_activated, "Unexpected activation state" );
if( arena.is_active() ) {
TaskArenaValidator validator( arena );
CHECK_MESSAGE( validator.concurrency()==expect_concurrency, "Unexpected arena size" );
CHECK_MESSAGE( validator.reserved_for_masters()==expect_masters, "Unexpected # of reserved slots" );
if ( tbb::this_task_arena::current_thread_index() != tbb::task_arena::not_initialized ) {
CHECK(tbb::this_task_arena::current_thread_index() >= 0);
// for threads already in arena, check that the thread index remains the same
arena.execute( validator );
} else { // not_initialized
// Test the deprecated method
CHECK(tbb::this_task_arena::current_thread_index() == -1);
}
// Ideally, there should be a check for having the same internal arena object,
// but that object is not easily accessible for implicit arenas.
}
}
struct TestAttachBody : utils::NoAssign {
static thread_local int my_idx; // safe to modify and use within the NativeParallelFor functor
const int maxthread;
TestAttachBody( int max_thr ) : maxthread(max_thr) {}
// The functor body for NativeParallelFor
void operator()( int idx ) const {
my_idx = idx;
int default_threads = tbb::this_task_arena::max_concurrency();
tbb::task_arena arena{tbb::task_arena::attach()};
ValidateAttachedArena( arena, false, -1, -1 ); // Nothing yet to attach to
arena.terminate();
ValidateAttachedArena( arena, false, -1, -1 );
// attach to an auto-initialized arena
tbb::parallel_for(0, 1, [](int) {});
tbb::task_arena arena2{tbb::task_arena::attach()};
ValidateAttachedArena( arena2, true, default_threads, 1 );
tbb::task_arena arena3;
arena3.initialize(tbb::attach());
ValidateAttachedArena( arena3, true, default_threads, 1 );
// attach to another task_arena
arena.initialize( maxthread, std::min(maxthread,idx) );
arena.execute( *this );
}
// The functor body for task_arena::execute above
void operator()() const {
tbb::task_arena arena2{tbb::task_arena::attach()};
ValidateAttachedArena( arena2, true, maxthread, std::min(maxthread,my_idx) );
}
// The functor body for tbb::parallel_for
void operator()( const Range& r ) const {
for( int i = r.begin(); i<r.end(); ++i ) {
tbb::task_arena arena2{tbb::task_arena::attach()};
ValidateAttachedArena( arena2, true, tbb::this_task_arena::max_concurrency(), 1 );
}
}
};
thread_local int TestAttachBody::my_idx;
void TestAttach( int maxthread ) {
// Externally concurrent, but no concurrency within a thread
utils::NativeParallelFor( std::max(maxthread,4), TestAttachBody( maxthread ) );
// Concurrent within the current arena; may also serve as a stress test
tbb::parallel_for( Range(0,10000*maxthread), TestAttachBody( maxthread ) );
}
//--------------------------------------------------//
// Test that task_arena::enqueue does not tolerate a non-const functor.
// TODO: can it be reworked as SFINAE-based compile-time check?
struct TestFunctor {
void operator()() { CHECK_MESSAGE( false, "Non-const operator called" ); }
void operator()() const { /* library requires this overload only */ }
};
void TestConstantFunctorRequirement() {
tbb::task_arena a;
TestFunctor tf;
a.enqueue( tf );
}
//--------------------------------------------------//
#include "tbb/parallel_reduce.h"
#include "tbb/parallel_invoke.h"
// Test this_task_arena::isolate
namespace TestIsolatedExecuteNS {
template <typename NestedPartitioner>
class NestedParFor : utils::NoAssign {
public:
NestedParFor() {}
void operator()() const {
NestedPartitioner p;
tbb::parallel_for( 0, 10, utils::DummyBody( 10 ), p );
}
};
template <typename NestedPartitioner>
class ParForBody : utils::NoAssign {
bool myOuterIsolation;
tbb::enumerable_thread_specific<int> &myEts;
std::atomic<bool> &myIsStolen;
public:
ParForBody( bool outer_isolation, tbb::enumerable_thread_specific<int> &ets, std::atomic<bool> &is_stolen )
: myOuterIsolation( outer_isolation ), myEts( ets ), myIsStolen( is_stolen ) {}
void operator()( int ) const {
int &e = myEts.local();
if ( e++ > 0 ) myIsStolen = true;
if ( myOuterIsolation )
NestedParFor<NestedPartitioner>()();
else
tbb::this_task_arena::isolate( NestedParFor<NestedPartitioner>() );
--e;
}
};
template <typename OuterPartitioner, typename NestedPartitioner>
class OuterParFor : utils::NoAssign {
bool myOuterIsolation;
std::atomic<bool> &myIsStolen;
public:
OuterParFor( bool outer_isolation, std::atomic<bool> &is_stolen ) : myOuterIsolation( outer_isolation ), myIsStolen( is_stolen ) {}
void operator()() const {
tbb::enumerable_thread_specific<int> ets( 0 );
OuterPartitioner p;
tbb::parallel_for( 0, 1000, ParForBody<NestedPartitioner>( myOuterIsolation, ets, myIsStolen ), p );
}
};
template <typename OuterPartitioner, typename NestedPartitioner>
void TwoLoopsTest( bool outer_isolation ) {
std::atomic<bool> is_stolen;
is_stolen = false;
const int max_repeats = 100;
if ( outer_isolation ) {
for ( int i = 0; i <= max_repeats; ++i ) {
tbb::this_task_arena::isolate( OuterParFor<OuterPartitioner, NestedPartitioner>( outer_isolation, is_stolen ) );
if ( is_stolen ) break;
}
// TODO: was ASSERT_WARNING
if (!is_stolen) {
REPORT("Warning: isolate() should not block stealing on nested levels without isolation\n");
}
} else {
for ( int i = 0; i <= max_repeats; ++i ) {
OuterParFor<OuterPartitioner, NestedPartitioner>( outer_isolation, is_stolen )();
}
REQUIRE_MESSAGE( !is_stolen, "isolate() on nested levels should prevent stealing from outer levels" );
}
}
void TwoLoopsTest( bool outer_isolation ) {
TwoLoopsTest<tbb::simple_partitioner, tbb::simple_partitioner>( outer_isolation );
TwoLoopsTest<tbb::simple_partitioner, tbb::affinity_partitioner>( outer_isolation );
TwoLoopsTest<tbb::affinity_partitioner, tbb::simple_partitioner>( outer_isolation );
TwoLoopsTest<tbb::affinity_partitioner, tbb::affinity_partitioner>( outer_isolation );
}
void TwoLoopsTest() {
TwoLoopsTest( true );
TwoLoopsTest( false );
}
//--------------------------------------------------//
class HeavyMixTestBody : utils::NoAssign {
tbb::enumerable_thread_specific<utils::FastRandom<>>& myRandom;
tbb::enumerable_thread_specific<int>& myIsolatedLevel;
int myNestedLevel;
template <typename Partitioner, typename Body>
static void RunTwoBodies( utils::FastRandom<>& rnd, const Body &body, Partitioner& p, tbb::task_group_context* ctx = nullptr ) {
if ( rnd.get() % 2 ) {
if (ctx )
tbb::parallel_for( 0, 2, body, p, *ctx );
else
tbb::parallel_for( 0, 2, body, p );
} else {
tbb::parallel_invoke( body, body );
}
}
template <typename Partitioner>
class IsolatedBody : utils::NoAssign {
const HeavyMixTestBody &myHeavyMixTestBody;
Partitioner &myPartitioner;
public:
IsolatedBody( const HeavyMixTestBody &body, Partitioner &partitioner )
: myHeavyMixTestBody( body ), myPartitioner( partitioner ) {}
void operator()() const {
RunTwoBodies( myHeavyMixTestBody.myRandom.local(),
HeavyMixTestBody( myHeavyMixTestBody.myRandom, myHeavyMixTestBody.myIsolatedLevel,
myHeavyMixTestBody.myNestedLevel + 1 ),
myPartitioner );
}
};
template <typename Partitioner>
void RunNextLevel( utils::FastRandom<>& rnd, int &isolated_level ) const {
Partitioner p;
switch ( rnd.get() % 2 ) {
case 0: {
// No features
tbb::task_group_context ctx;
RunTwoBodies( rnd, HeavyMixTestBody(myRandom, myIsolatedLevel, myNestedLevel + 1), p, &ctx );
break;
}
case 1: {
// Isolation
int previous_isolation = isolated_level;
isolated_level = myNestedLevel;
tbb::this_task_arena::isolate( IsolatedBody<Partitioner>( *this, p ) );
isolated_level = previous_isolation;
break;
}
}
}
public:
HeavyMixTestBody( tbb::enumerable_thread_specific<utils::FastRandom<>>& random,
tbb::enumerable_thread_specific<int>& isolated_level, int nested_level )
: myRandom( random ), myIsolatedLevel( isolated_level )
, myNestedLevel( nested_level ) {}
void operator()() const {
int &isolated_level = myIsolatedLevel.local();
CHECK_FAST_MESSAGE( myNestedLevel > isolated_level, "The outer-level task should not be stolen on isolated level" );
if ( myNestedLevel == 20 )
return;
utils::FastRandom<>& rnd = myRandom.local();
if ( rnd.get() % 2 == 1 ) {
RunNextLevel<tbb::auto_partitioner>( rnd, isolated_level );
} else {
RunNextLevel<tbb::affinity_partitioner>( rnd, isolated_level );
}
}
void operator()(int) const {
this->operator()();
}
};
struct RandomInitializer {
utils::FastRandom<> operator()() {
return utils::FastRandom<>( tbb::this_task_arena::current_thread_index() );
}
};
void HeavyMixTest() {
std::size_t num_threads = tbb::this_task_arena::max_concurrency() < 3 ? 3 : tbb::this_task_arena::max_concurrency();
tbb::global_control ctl(tbb::global_control::max_allowed_parallelism, num_threads);
RandomInitializer init_random;
tbb::enumerable_thread_specific<utils::FastRandom<>> random( init_random );
tbb::enumerable_thread_specific<int> isolated_level( 0 );
for ( int i = 0; i < 5; ++i ) {
HeavyMixTestBody b( random, isolated_level, 1 );
b( 0 );
}
}
//--------------------------------------------------//
#if TBB_USE_EXCEPTIONS
struct MyException {};
struct IsolatedBodyThrowsException {
void operator()() const {
#if _MSC_VER && !__INTEL_COMPILER
// Workaround an unreachable code warning in task_arena_function.
volatile bool workaround = true;
if (workaround)
#endif
{
throw MyException();
}
}
};
struct ExceptionTestBody : utils::NoAssign {
tbb::enumerable_thread_specific<int>& myEts;
std::atomic<bool>& myIsStolen;
ExceptionTestBody( tbb::enumerable_thread_specific<int>& ets, std::atomic<bool>& is_stolen )
: myEts( ets ), myIsStolen( is_stolen ) {}
void operator()( int i ) const {
try {
tbb::this_task_arena::isolate( IsolatedBodyThrowsException() );
REQUIRE_MESSAGE( false, "The exception has been lost" );
}
catch ( MyException ) {}
catch ( ... ) {
REQUIRE_MESSAGE( false, "Unexpected exception" );
}
// Check that nested algorithms can steal outer-level tasks
int &e = myEts.local();
if ( e++ > 0 ) myIsStolen = true;
// work imbalance increases chances for stealing
tbb::parallel_for( 0, 10+i, utils::DummyBody( 100 ) );
--e;
}
};
#endif /* TBB_USE_EXCEPTIONS */
void ExceptionTest() {
#if TBB_USE_EXCEPTIONS
tbb::enumerable_thread_specific<int> ets;
std::atomic<bool> is_stolen;
is_stolen = false;
for ( ;; ) {
tbb::parallel_for( 0, 1000, ExceptionTestBody( ets, is_stolen ) );
if ( is_stolen ) break;
}
REQUIRE_MESSAGE( is_stolen, "isolate should not affect non-isolated work" );
#endif /* TBB_USE_EXCEPTIONS */
}
struct NonConstBody {
unsigned int state;
void operator()() {
state ^= ~0u;
}
};
void TestNonConstBody() {
NonConstBody body;
body.state = 0x6c97d5ed;
tbb::this_task_arena::isolate(body);
REQUIRE_MESSAGE(body.state == 0x93682a12, "The wrong state");
}
// TODO: Consider tbb::task_group instead of explicit task API.
class TestEnqueueTask : public tbb::detail::d1::task {
using wait_context = tbb::detail::d1::wait_context;
tbb::enumerable_thread_specific<bool>& executed;
std::atomic<int>& completed;
public:
wait_context& waiter;
tbb::task_arena& arena;
static const int N = 100;
TestEnqueueTask(tbb::enumerable_thread_specific<bool>& exe, std::atomic<int>& c, wait_context& w, tbb::task_arena& a)
: executed(exe), completed(c), waiter(w), arena(a) {}
tbb::detail::d1::task* execute(tbb::detail::d1::execution_data&) override {
for (int i = 0; i < N; ++i) {
arena.enqueue([&]() {
executed.local() = true;
++completed;
for (int j = 0; j < 100; j++) utils::yield();
waiter.release(1);
});
}
return nullptr;
}
tbb::detail::d1::task* cancel(tbb::detail::d1::execution_data&) override { return nullptr; }
};
class TestEnqueueIsolateBody : utils::NoCopy {
tbb::enumerable_thread_specific<bool>& executed;
std::atomic<int>& completed;
tbb::task_arena& arena;
public:
static const int N = 100;
TestEnqueueIsolateBody(tbb::enumerable_thread_specific<bool>& exe, std::atomic<int>& c, tbb::task_arena& a)
: executed(exe), completed(c), arena(a) {}
void operator()() {
tbb::task_group_context ctx;
tbb::detail::d1::wait_context waiter(N);
TestEnqueueTask root(executed, completed, waiter, arena);
tbb::detail::d1::execute_and_wait(root, ctx, waiter, ctx);
}
};
void TestEnqueue() {
tbb::enumerable_thread_specific<bool> executed(false);
std::atomic<int> completed;
tbb::task_arena arena{tbb::task_arena::attach()};
// Check that the main thread can process enqueued tasks.
completed = 0;
TestEnqueueIsolateBody b1(executed, completed, arena);
b1();
if (!executed.local()) {
REPORT("Warning: No one enqueued task has executed by the main thread.\n");
}
executed.local() = false;
completed = 0;
const int N = 100;
// Create enqueued tasks out of isolation.
tbb::task_group_context ctx;
tbb::detail::d1::wait_context waiter(N);
for (int i = 0; i < N; ++i) {
arena.enqueue([&]() {
executed.local() = true;
++completed;
utils::yield();
waiter.release(1);
});
}
TestEnqueueIsolateBody b2(executed, completed, arena);
tbb::this_task_arena::isolate(b2);
REQUIRE_MESSAGE(executed.local() == false, "An enqueued task was executed within isolate.");
tbb::detail::d1::wait(waiter, ctx);
// while (completed < TestEnqueueTask::N + N) utils::yield();
}
}
void TestIsolatedExecute() {
// At least 3 threads (owner + 2 thieves) are required to reproduce a situation when the owner steals outer
// level task on a nested level. If we have only one thief then it will execute outer level tasks first and
// the owner will not have a possibility to steal outer level tasks.
int platform_max_thread = tbb::this_task_arena::max_concurrency();
int num_threads = utils::min( platform_max_thread, 3 );
{
// Too many threads require too many work to reproduce the stealing from outer level.
tbb::global_control ctl(tbb::global_control::max_allowed_parallelism, utils::max(num_threads, 7));
TestIsolatedExecuteNS::TwoLoopsTest();
TestIsolatedExecuteNS::HeavyMixTest();
TestIsolatedExecuteNS::ExceptionTest();
}
tbb::global_control ctl(tbb::global_control::max_allowed_parallelism, num_threads);
TestIsolatedExecuteNS::HeavyMixTest();
TestIsolatedExecuteNS::TestNonConstBody();
TestIsolatedExecuteNS::TestEnqueue();
}
//-----------------------------------------------------------------------------------------//
class TestDelegatedSpawnWaitBody : utils::NoAssign {
tbb::task_arena &my_a;
utils::SpinBarrier &my_b1, &my_b2;
public:
TestDelegatedSpawnWaitBody( tbb::task_arena &a, utils::SpinBarrier &b1, utils::SpinBarrier &b2)
: my_a(a), my_b1(b1), my_b2(b2) {}
// NativeParallelFor's functor
void operator()(int idx) const {
if ( idx==0 ) { // thread 0 works in the arena, thread 1 waits for it (to prevent test hang)
for (int i = 0; i < 2; ++i) {
my_a.enqueue([this] { my_b1.wait(); }); // tasks to sync with workers
}
tbb::task_group tg;
my_b1.wait(); // sync with the workers
for( int i=0; i<100000; ++i) {
my_a.execute([&tg] { tg.run([] {}); });
}
my_a.execute([&tg] {tg.wait(); });
}
my_b2.wait(); // sync both threads
}
};
void TestDelegatedSpawnWait() {
if (tbb::this_task_arena::max_concurrency() < 3) {
// The test requires at least 2 worker threads
return;
}
// Regression test for a bug with missed wakeup notification from a delegated task
tbb::task_arena a(2,0);
a.initialize();
utils::SpinBarrier barrier1(3), barrier2(2);
utils::NativeParallelFor( 2, TestDelegatedSpawnWaitBody(a, barrier1, barrier2) );
a.debug_wait_until_empty();
}
//-----------------------------------------------------------------------------------------//
class TestMultipleWaitsArenaWait : utils::NoAssign {
using wait_context = tbb::detail::d1::wait_context;
public:
TestMultipleWaitsArenaWait( int idx, int bunch_size, int num_tasks, std::vector<wait_context*>& waiters, std::atomic<int>& processed, tbb::task_group_context& tgc )
: my_idx( idx ), my_bunch_size( bunch_size ), my_num_tasks(num_tasks), my_waiters( waiters ), my_processed( processed ), my_context(tgc) {}
void operator()() const {
++my_processed;
// Wait for all tasks
if ( my_idx < my_num_tasks ) {
tbb::detail::d1::wait(*my_waiters[my_idx], my_context);
}
// Signal waiting tasks
if ( my_idx >= my_bunch_size ) {
my_waiters[my_idx-my_bunch_size]->release();
}
}
private:
int my_idx;
int my_bunch_size;
int my_num_tasks;
std::vector<wait_context*>& my_waiters;
std::atomic<int>& my_processed;
tbb::task_group_context& my_context;
};
class TestMultipleWaitsThreadBody : utils::NoAssign {
using wait_context = tbb::detail::d1::wait_context;
public:
TestMultipleWaitsThreadBody( int bunch_size, int num_tasks, tbb::task_arena& a, std::vector<wait_context*>& waiters, std::atomic<int>& processed, tbb::task_group_context& tgc )
: my_bunch_size( bunch_size ), my_num_tasks( num_tasks ), my_arena( a ), my_waiters( waiters ), my_processed( processed ), my_context(tgc) {}
void operator()( int idx ) const {
my_arena.execute( TestMultipleWaitsArenaWait( idx, my_bunch_size, my_num_tasks, my_waiters, my_processed, my_context ) );
--my_processed;
}
private:
int my_bunch_size;
int my_num_tasks;
tbb::task_arena& my_arena;
std::vector<wait_context*>& my_waiters;
std::atomic<int>& my_processed;
tbb::task_group_context& my_context;
};
void TestMultipleWaits( int num_threads, int num_bunches, int bunch_size ) {
tbb::task_arena a( num_threads );
const int num_tasks = (num_bunches-1)*bunch_size;
tbb::task_group_context tgc;
std::vector<tbb::detail::d1::wait_context*> waiters(num_tasks);
for (auto& w : waiters) w = new tbb::detail::d1::wait_context(0);
std::atomic<int> processed(0);
for ( int repeats = 0; repeats<10; ++repeats ) {
int idx = 0;
for ( int bunch = 0; bunch < num_bunches-1; ++bunch ) {
// Sync with the previous bunch of waiters to prevent "false" nested dependencies (when a nested task waits for an outer task).
while ( processed < bunch*bunch_size ) utils::yield();
// Run the bunch of threads/waiters that depend on the next bunch of threads/waiters.
for ( int i = 0; i<bunch_size; ++i ) {
waiters[idx]->reserve();
std::thread( TestMultipleWaitsThreadBody( bunch_size, num_tasks, a, waiters, processed, tgc ), idx++ ).detach();
}
}
// No sync because the threads of the last bunch do not call wait_for_all.
// Run the last bunch of threads.
for ( int i = 0; i<bunch_size; ++i )
std::thread( TestMultipleWaitsThreadBody( bunch_size, num_tasks, a, waiters, processed, tgc ), idx++ ).detach();
while ( processed ) utils::yield();
}
for (auto w : waiters) delete w;
}
void TestMultipleWaits() {
// Limit the number of threads to prevent heavy oversubscription.
#if TBB_TEST_LOW_WORKLOAD
const int max_threads = std::min( 4, tbb::this_task_arena::max_concurrency() );
#else
const int max_threads = std::min( 16, tbb::this_task_arena::max_concurrency() );
#endif
utils::FastRandom<> rnd(1234);
for ( int threads = 1; threads <= max_threads; threads += utils::max( threads/2, 1 ) ) {
for ( int i = 0; i<3; ++i ) {
const int num_bunches = 3 + rnd.get()%3;
const int bunch_size = max_threads + rnd.get()%max_threads;
TestMultipleWaits( threads, num_bunches, bunch_size );
}
}
}
//--------------------------------------------------//
void TestSmallStackSize() {
tbb::global_control gc(tbb::global_control::thread_stack_size,
tbb::global_control::active_value(tbb::global_control::thread_stack_size) / 2 );
// The test produces the warning (not a error) if fails. So the test is run many times
// to make the log annoying (to force to consider it as an error).
for (int i = 0; i < 100; ++i) {
tbb::task_arena a;
a.initialize();
}
}
//--------------------------------------------------//
namespace TestMoveSemanticsNS {
struct TestFunctor {
void operator()() const {};
};
struct MoveOnlyFunctor : utils::MoveOnly, TestFunctor {
MoveOnlyFunctor() : utils::MoveOnly() {};
MoveOnlyFunctor(MoveOnlyFunctor&& other) : utils::MoveOnly(std::move(other)) {};
};
struct MovePreferableFunctor : utils::Movable, TestFunctor {
MovePreferableFunctor() : utils::Movable() {};
MovePreferableFunctor(MovePreferableFunctor&& other) : utils::Movable( std::move(other) ) {};
MovePreferableFunctor(const MovePreferableFunctor& other) : utils::Movable(other) {};
};
struct NoMoveNoCopyFunctor : utils::NoCopy, TestFunctor {
NoMoveNoCopyFunctor() : utils::NoCopy() {};
// mv ctor is not allowed as cp ctor from parent NoCopy
private:
NoMoveNoCopyFunctor(NoMoveNoCopyFunctor&&);
};
void TestFunctors() {
tbb::task_arena ta;
MovePreferableFunctor mpf;
// execute() doesn't have any copies or moves of arguments inside the impl
ta.execute( NoMoveNoCopyFunctor() );
ta.enqueue( MoveOnlyFunctor() );
ta.enqueue( mpf );
REQUIRE_MESSAGE(mpf.alive, "object was moved when was passed by lval");
mpf.Reset();
ta.enqueue( std::move(mpf) );
REQUIRE_MESSAGE(!mpf.alive, "object was copied when was passed by rval");
mpf.Reset();
}
}
void TestMoveSemantics() {
TestMoveSemanticsNS::TestFunctors();
}
//--------------------------------------------------//
#include <vector>
#include "common/state_trackable.h"
namespace TestReturnValueNS {
struct noDefaultTag {};
class ReturnType : public StateTrackable<> {
static const int SIZE = 42;
std::vector<int> data;
public:
ReturnType(noDefaultTag) : StateTrackable<>(0) {}
// Define copy constructor to test that it is never called
ReturnType(const ReturnType& r) : StateTrackable<>(r), data(r.data) {}
ReturnType(ReturnType&& r) : StateTrackable<>(std::move(r)), data(std::move(r.data)) {}
void fill() {
for (int i = 0; i < SIZE; ++i)
data.push_back(i);
}
void check() {
REQUIRE(data.size() == unsigned(SIZE));
for (int i = 0; i < SIZE; ++i)
REQUIRE(data[i] == i);
StateTrackableCounters::counters_type& cnts = StateTrackableCounters::counters;
REQUIRE(cnts[StateTrackableBase::DefaultInitialized] == 0);
REQUIRE(cnts[StateTrackableBase::DirectInitialized] == 1);
std::size_t copied = cnts[StateTrackableBase::CopyInitialized];
std::size_t moved = cnts[StateTrackableBase::MoveInitialized];
REQUIRE(cnts[StateTrackableBase::Destroyed] == copied + moved);
// The number of copies/moves should not exceed 3 if copy elision takes a place:
// function return, store to an internal storage, acquire internal storage.
// For compilation, without copy elision, this number may be grown up to 7.
REQUIRE((copied == 0 && moved <= 7));
WARN_MESSAGE(moved <= 3,
"Warning: The number of copies/moves should not exceed 3 if copy elision takes a place."
"Take an attention to this warning only if copy elision is enabled."
);
}
};
template <typename R>
R function() {
noDefaultTag tag;
R r(tag);
r.fill();
return r;
}
template <>
void function<void>() {}
template <typename R>
struct Functor {
R operator()() const {
return function<R>();
}
};
tbb::task_arena& arena() {
static tbb::task_arena a;
return a;
}
template <typename F>
void TestExecute(F &f) {
StateTrackableCounters::reset();
ReturnType r{arena().execute(f)};
r.check();
}
template <typename F>
void TestExecute(const F &f) {
StateTrackableCounters::reset();
ReturnType r{arena().execute(f)};
r.check();
}
template <typename F>
void TestIsolate(F &f) {
StateTrackableCounters::reset();
ReturnType r{tbb::this_task_arena::isolate(f)};
r.check();
}
template <typename F>
void TestIsolate(const F &f) {
StateTrackableCounters::reset();
ReturnType r{tbb::this_task_arena::isolate(f)};
r.check();
}
void Test() {
TestExecute(Functor<ReturnType>());
Functor<ReturnType> f1;
TestExecute(f1);
TestExecute(function<ReturnType>);
arena().execute(Functor<void>());
Functor<void> f2;
arena().execute(f2);
arena().execute(function<void>);
TestIsolate(Functor<ReturnType>());
TestIsolate(f1);
TestIsolate(function<ReturnType>);
tbb::this_task_arena::isolate(Functor<void>());
tbb::this_task_arena::isolate(f2);
tbb::this_task_arena::isolate(function<void>);
}
}
void TestReturnValue() {
TestReturnValueNS::Test();
}
//--------------------------------------------------//
// MyObserver checks if threads join to the same arena
struct MyObserver: public tbb::task_scheduler_observer {
tbb::enumerable_thread_specific<tbb::task_arena*>& my_tls;
tbb::task_arena& my_arena;
std::atomic<int>& my_failure_counter;
std::atomic<int>& my_counter;
utils::SpinBarrier& m_barrier;
MyObserver(tbb::task_arena& a,
tbb::enumerable_thread_specific<tbb::task_arena*>& tls,
std::atomic<int>& failure_counter,
std::atomic<int>& counter,
utils::SpinBarrier& barrier)
: tbb::task_scheduler_observer(a), my_tls(tls), my_arena(a),
my_failure_counter(failure_counter), my_counter(counter), m_barrier(barrier) {
observe(true);
}
~MyObserver(){
observe(false);
}
void on_scheduler_entry(bool worker) override {
if (worker) {
++my_counter;
tbb::task_arena*& cur_arena = my_tls.local();
if (cur_arena != nullptr && cur_arena != &my_arena) {
++my_failure_counter;
}
cur_arena = &my_arena;
m_barrier.wait();
}
}
void on_scheduler_exit(bool worker) override {
if (worker) {
m_barrier.wait(); // before wakeup
m_barrier.wait(); // after wakeup
}
}
};
void TestArenaWorkersMigrationWithNumThreads(int n_threads = 0) {
if (n_threads == 0) {
n_threads = tbb::this_task_arena::max_concurrency();
}
const int max_n_arenas = 8;
int n_arenas = 2;
if(n_threads > 16) {
n_arenas = max_n_arenas;
} else if (n_threads > 8) {
n_arenas = 4;
}
int n_workers = n_threads - 1;
n_workers = n_arenas * (n_workers / n_arenas);
if (n_workers == 0) {
return;
}
n_threads = n_workers + 1;
tbb::global_control control(tbb::global_control::max_allowed_parallelism, n_threads);
const int n_repetitions = 20;
const int n_outer_repetitions = 100;
std::multiset<float> failure_ratio; // for median calculating
utils::SpinBarrier barrier(n_threads);
utils::SpinBarrier worker_barrier(n_workers);
MyObserver* observer[max_n_arenas];
std::vector<tbb::task_arena> arenas(n_arenas);
std::atomic<int> failure_counter;
std::atomic<int> counter;
tbb::enumerable_thread_specific<tbb::task_arena*> tls;
for (int i = 0; i < n_arenas; ++i) {
arenas[i].initialize(n_workers / n_arenas + 1); // +1 for master
observer[i] = new MyObserver(arenas[i], tls, failure_counter, counter, barrier);
}
int ii = 0;
for (; ii < n_outer_repetitions; ++ii) {
failure_counter = 0;
counter = 0;
// Main code
auto wakeup = [&arenas] { for (auto& a : arenas) a.enqueue([]{}); };
wakeup();
for (int j = 0; j < n_repetitions; ++j) {
barrier.wait(); // entry
barrier.wait(); // exit1
wakeup();
barrier.wait(); // exit2
}
barrier.wait(); // entry
barrier.wait(); // exit1
barrier.wait(); // exit2
failure_ratio.insert(float(failure_counter) / counter);
tls.clear();
// collect 3 elements in failure_ratio before calculating median
if (ii > 1) {
std::multiset<float>::iterator it = failure_ratio.begin();
std::advance(it, failure_ratio.size() / 2);
if (*it < 0.02)
break;
}
}
for (int i = 0; i < n_arenas; ++i) {
delete observer[i];
}
// check if median is so big
std::multiset<float>::iterator it = failure_ratio.begin();
std::advance(it, failure_ratio.size() / 2);
// TODO: decrease constants 0.05 and 0.3 by setting ratio between n_threads and n_arenas
if (*it > 0.05) {
REPORT("Warning: So many cases when threads join to different arenas.\n");
REQUIRE_MESSAGE(*it <= 0.3, "A lot of cases when threads join to different arenas.\n");
}
}
void TestArenaWorkersMigration() {
TestArenaWorkersMigrationWithNumThreads(4);
if (tbb::this_task_arena::max_concurrency() != 4) {
TestArenaWorkersMigrationWithNumThreads();
}
}
//--------------------------------------------------//
void TestDefaultCreatedWorkersAmount() {
int threads = tbb::this_task_arena::max_concurrency();
utils::NativeParallelFor(1, [threads](int idx) {
REQUIRE_MESSAGE(idx == 0, "more than 1 thread is going to reset TLS");
utils::SpinBarrier barrier(threads);
ResetTLS();
for (auto blocked : { false, true }) {
for (int trail = 0; trail < (blocked ? 10 : 10000); ++trail) {
tbb::parallel_for(0, threads, [threads, blocked, &barrier](int) {
CHECK_FAST_MESSAGE(threads == tbb::this_task_arena::max_concurrency(), "concurrency level is not equal specified threadnum");
CHECK_FAST_MESSAGE(tbb::this_task_arena::current_thread_index() < tbb::this_task_arena::max_concurrency(), "amount of created threads is more than specified by default");
local_id.local() = 1;
if (blocked) {
// If there is more threads than expected, 'sleep' gives a chance to join unexpected threads.
utils::Sleep(1);
barrier.wait();
}
}, tbb::simple_partitioner());
REQUIRE_MESSAGE(local_id.size() <= size_t(threads), "amount of created threads is not equal to default num");
if (blocked) {
REQUIRE_MESSAGE(local_id.size() == size_t(threads), "amount of created threads is not equal to default num");
}
}
}
});
}
void TestAbilityToCreateWorkers(int thread_num) {
tbb::global_control thread_limit(tbb::global_control::max_allowed_parallelism, thread_num);
// Checks only some part of reserved-external threads amount:
// 0 and 1 reserved threads are important cases but it is also needed
// to collect some statistic data with other amount and to not consume
// whole test session time checking each amount
TestArenaConcurrency(thread_num - 1, 0, int(thread_num / 2.72));
TestArenaConcurrency(thread_num, 1, int(thread_num / 3.14));
}
void TestDefaultWorkersLimit() {
TestDefaultCreatedWorkersAmount();
#if TBB_TEST_LOW_WORKLOAD
TestAbilityToCreateWorkers(24);
#else
TestAbilityToCreateWorkers(256);
#endif
}
#if TBB_USE_EXCEPTIONS
void ExceptionInExecute() {
std::size_t thread_number = utils::get_platform_max_threads();
int arena_concurrency = static_cast<int>(thread_number) / 2;
tbb::task_arena test_arena(arena_concurrency, arena_concurrency);
std::atomic<int> canceled_task{};
auto parallel_func = [&test_arena, &canceled_task] (std::size_t) {
for (std::size_t i = 0; i < 1000; ++i) {
try {
test_arena.execute([] {
volatile bool suppress_unreachable_code_warning = true;
if (suppress_unreachable_code_warning) {
throw -1;
}
});
FAIL("An exception should have thrown.");
} catch (int) {
++canceled_task;
} catch (...) {
FAIL("Wrong type of exception.");
}
}
};
utils::NativeParallelFor(thread_number, parallel_func);
CHECK(canceled_task == thread_number * 1000);
}
#endif // TBB_USE_EXCEPTIONS
class simple_observer : public tbb::task_scheduler_observer {
static std::atomic<int> idx_counter;
int my_idx;
int myMaxConcurrency; // concurrency of the associated arena
int myNumReservedSlots; // reserved slots in the associated arena
void on_scheduler_entry( bool is_worker ) override {
int current_index = tbb::this_task_arena::current_thread_index();
CHECK(current_index < (myMaxConcurrency > 1 ? myMaxConcurrency : 2));
if (is_worker) {
CHECK(current_index >= myNumReservedSlots);
}
}
void on_scheduler_exit( bool /*is_worker*/ ) override
{}
public:
simple_observer(tbb::task_arena &a, int maxConcurrency, int numReservedSlots)
: tbb::task_scheduler_observer(a), my_idx(idx_counter++)
, myMaxConcurrency(maxConcurrency)
, myNumReservedSlots(numReservedSlots) {
observe(true);
}
~simple_observer(){
observe(false);
}
friend bool operator<(const simple_observer& lhs, const simple_observer& rhs) {
return lhs.my_idx < rhs.my_idx;
}
};
std::atomic<int> simple_observer::idx_counter{};
struct arena_handler {
enum arena_status {
alive,
deleting,
deleted
};
tbb::task_arena* arena;
std::atomic<arena_status> status{alive};
tbb::spin_rw_mutex arena_in_use{};
tbb::concurrent_set<simple_observer> observers;
arena_handler(tbb::task_arena* ptr) : arena(ptr)
{}
friend bool operator<(const arena_handler& lhs, const arena_handler& rhs) {
return lhs.arena < rhs.arena;
}
};
// TODO: Add observer operations
void StressTestMixFunctionality() {
enum operation_type {
create_arena,
delete_arena,
attach_observer,
detach_observer,
arena_execute,
enqueue_task,
last_operation_marker
};
std::size_t operations_number = last_operation_marker;
std::size_t thread_number = utils::get_platform_max_threads();
utils::FastRandom<> operation_rnd(42);
tbb::spin_mutex random_operation_guard;
auto get_random_operation = [&operation_rnd, &random_operation_guard, operations_number] () {
tbb::spin_mutex::scoped_lock lock(random_operation_guard);
return static_cast<operation_type>(operation_rnd.get() % operations_number);
};
utils::FastRandom<> arena_rnd(42);
tbb::spin_mutex random_arena_guard;
auto get_random_arena = [&arena_rnd, &random_arena_guard] () {
tbb::spin_mutex::scoped_lock lock(random_arena_guard);
return arena_rnd.get();
};
tbb::concurrent_set<arena_handler> arenas_pool;
std::vector<std::thread> thread_pool;
utils::SpinBarrier thread_barrier(thread_number);
std::size_t max_operations = 20000;
std::atomic<std::size_t> curr_operation{};
auto find_arena = [&arenas_pool](tbb::spin_rw_mutex::scoped_lock& lock) -> decltype(arenas_pool.begin()) {
for (auto curr_arena = arenas_pool.begin(); curr_arena != arenas_pool.end(); ++curr_arena) {
if (lock.try_acquire(curr_arena->arena_in_use, /*writer*/ false)) {
if (curr_arena->status == arena_handler::alive) {
return curr_arena;
}
else {
lock.release();
}
}
}
return arenas_pool.end();
};
auto thread_func = [&] () {
arenas_pool.emplace(new tbb::task_arena());
thread_barrier.wait();
while (curr_operation++ < max_operations) {
switch (get_random_operation()) {
case create_arena :
{
arenas_pool.emplace(new tbb::task_arena());
break;
}
case delete_arena :
{
auto curr_arena = arenas_pool.begin();
for (; curr_arena != arenas_pool.end(); ++curr_arena) {
arena_handler::arena_status curr_status = arena_handler::alive;
if (curr_arena->status.compare_exchange_strong(curr_status, arena_handler::deleting)) {
break;
}
}
if (curr_arena == arenas_pool.end()) break;
tbb::spin_rw_mutex::scoped_lock lock(curr_arena->arena_in_use, /*writer*/ true);
delete curr_arena->arena;
curr_arena->status.store(arena_handler::deleted);
break;
}
case attach_observer :
{
tbb::spin_rw_mutex::scoped_lock lock{};
auto curr_arena = find_arena(lock);
if (curr_arena != arenas_pool.end()) {
curr_arena->observers.emplace(*curr_arena->arena, thread_number, 1);
}
break;
}
case detach_observer:
{
auto arena_number = get_random_arena() % arenas_pool.size();
auto curr_arena = arenas_pool.begin();
std::advance(curr_arena, arena_number);
for (auto it = curr_arena->observers.begin(); it != curr_arena->observers.end(); ++it) {
if (it->is_observing()) {
it->observe(false);
break;
}
}
break;
}
case arena_execute:
{
tbb::spin_rw_mutex::scoped_lock lock{};
auto curr_arena = find_arena(lock);
if (curr_arena != arenas_pool.end()) {
curr_arena->arena->execute([]() {
tbb::affinity_partitioner aff;
tbb::parallel_for(0, 10000, utils::DummyBody(10), tbb::auto_partitioner{});
tbb::parallel_for(0, 10000, utils::DummyBody(10), aff);
});
}
break;
}
case enqueue_task:
{
tbb::spin_rw_mutex::scoped_lock lock{};
auto curr_arena = find_arena(lock);
if (curr_arena != arenas_pool.end()) {
curr_arena->arena->enqueue([] { utils::doDummyWork(1000); });
}
break;
}
case last_operation_marker :
break;
}
}
};
for (std::size_t i = 0; i < thread_number - 1; ++i) {
thread_pool.emplace_back(thread_func);
}
thread_func();
for (std::size_t i = 0; i < thread_number - 1; ++i) {
if (thread_pool[i].joinable()) thread_pool[i].join();
}
for (auto& handler : arenas_pool) {
if (handler.status != arena_handler::deleted) delete handler.arena;
}
}
struct enqueue_test_helper {
enqueue_test_helper(tbb::task_arena& arena, tbb::enumerable_thread_specific<bool>& ets , std::atomic<std::size_t>& task_counter)
: my_arena(arena), my_ets(ets), my_task_counter(task_counter)
{}
enqueue_test_helper(const enqueue_test_helper& ef) : my_arena(ef.my_arena), my_ets(ef.my_ets), my_task_counter(ef.my_task_counter)
{}
void operator() () const {
CHECK(my_ets.local());
if (my_task_counter++ < 100000) my_arena.enqueue(enqueue_test_helper(my_arena, my_ets, my_task_counter));
utils::yield();
}
tbb::task_arena& my_arena;
tbb::enumerable_thread_specific<bool>& my_ets;
std::atomic<std::size_t>& my_task_counter;
};
void test_threads_sleep(int concurrency, int reserved_slots, int num_external_threads) {
tbb::task_arena a(concurrency, reserved_slots);
std::mutex m;
std::condition_variable cond_var;
bool completed{ false };
utils::SpinBarrier barrier( concurrency - reserved_slots + 1 );
auto body = [&] {
std::unique_lock<std::mutex> lock(m);
cond_var.wait(lock, [&] { return completed == true; });
};
for (int i = 0; i < concurrency - reserved_slots; ++i) {
a.enqueue([&] {
body();
barrier.signalNoWait();
});
}
std::vector<std::thread> threads;
for (int i = 0; i < num_external_threads; ++i) {
threads.emplace_back([&]() { a.execute(body); });
}
TestCPUUserTime(concurrency);
{
std::lock_guard<std::mutex> lock(m);
completed = true;
cond_var.notify_all();
}
for (auto& t : threads) {
t.join();
}
barrier.wait();
}
void test_threads_sleep(int concurrency, int reserved_slots) {
test_threads_sleep(concurrency, reserved_slots, reserved_slots);
test_threads_sleep(concurrency, reserved_slots, 2 * concurrency);
}
//--------------------------------------------------//
// This test requires TBB in an uninitialized state
//! \brief \ref requirement
TEST_CASE("task_arena initialize soft limit ignoring affinity mask") {
REQUIRE_MESSAGE((tbb::this_task_arena::current_thread_index() == tbb::task_arena::not_initialized), "TBB was initialized state");
tbb::enumerable_thread_specific<int> ets;
tbb::task_arena arena(int(utils::get_platform_max_threads() * 2));
arena.execute([&ets] {
tbb::parallel_for(0, 10000000, [&ets](int){
ets.local() = 1;
utils::doDummyWork(100);
});
});
CHECK(ets.combine(std::plus<int>{}) <= int(utils::get_platform_max_threads()));
}
//! Test for task arena in concurrent cases
//! \brief \ref requirement
TEST_CASE("Test for concurrent functionality") {
TestConcurrentFunctionality();
}
#if !EMSCRIPTEN
//! For emscripten, FPU control state has not been set correctly
//! Test for arena entry consistency
//! \brief \ref requirement \ref error_guessing
TEST_CASE("Test for task arena entry consistency") {
TestArenaEntryConsistency();
}
#endif
//! Test for task arena attach functionality
//! \brief \ref requirement \ref interface
TEST_CASE("Test for the attach functionality") {
TestAttach(4);
}
//! Test for constant functor requirements
//! \brief \ref requirement \ref interface
TEST_CASE("Test for constant functor requirement") {
TestConstantFunctorRequirement();
}
//! Test for move semantics support
//! \brief \ref requirement \ref interface
TEST_CASE("Move semantics support") {
TestMoveSemantics();
}
//! Test for different return value types
//! \brief \ref requirement \ref interface
TEST_CASE("Return value test") {
TestReturnValue();
}
//! Test for delegated task spawn in case of unsuccessful slot attach
//! \brief \ref error_guessing
TEST_CASE("Delegated spawn wait") {
TestDelegatedSpawnWait();
}
#if !EMSCRIPTEN
//! For emscripten, FPU control state has not been set correctly
//! Test task arena isolation functionality
//! \brief \ref requirement \ref interface
TEST_CASE("Isolated execute") {
// Isolation tests cases is valid only for more then 2 threads
if (tbb::this_task_arena::max_concurrency() > 2) {
TestIsolatedExecute();
}
}
#endif
//! Test for TBB Workers creation limits
//! \brief \ref requirement
TEST_CASE("Default workers limit") {
TestDefaultWorkersLimit();
}
//! Test for workers migration between arenas
//! \brief \ref error_guessing \ref stress
TEST_CASE("Arena workers migration") {
TestArenaWorkersMigration();
}
#if !EMSCRIPTEN
//! For emscripten, FPU control state has not been set correctly
//! Test for multiple waits, threads should not block each other
//! \brief \ref requirement
TEST_CASE("Multiple waits") {
TestMultipleWaits();
}
#endif
//! Test for small stack size settings and arena initialization
//! \brief \ref error_guessing
TEST_CASE("Small stack size") {
TestSmallStackSize();
}
#if TBB_USE_EXCEPTIONS
//! \brief \ref requirement \ref stress
TEST_CASE("Test for exceptions during execute.") {
ExceptionInExecute();
}
//! \brief \ref error_guessing
TEST_CASE("Exception thrown during tbb::task_arena::execute call") {
struct throwing_obj {
throwing_obj() {
volatile bool flag = true;
if (flag) throw std::exception{};
}
throwing_obj(const throwing_obj&) = default;
~throwing_obj() { FAIL("An destructor was called."); }
};
tbb::task_arena arena;
REQUIRE_THROWS_AS( [&] {
arena.execute([] {
return throwing_obj{};
});
}(), std::exception );
}
#endif // TBB_USE_EXCEPTIONS
//! \brief \ref stress
TEST_CASE("Stress test with mixing functionality") {
StressTestMixFunctionality();
}
// global_control::max_allowed_parallelism functionality is not covered by TCM
#if !__TBB_TCM_TESTING_ENABLED
//! \brief \ref stress
TEST_CASE("Workers oversubscription") {
std::size_t num_threads = utils::get_platform_max_threads();
tbb::enumerable_thread_specific<bool> ets;
tbb::global_control gl(tbb::global_control::max_allowed_parallelism, num_threads * 2);
tbb::task_arena arena(static_cast<int>(num_threads) * 2);
utils::SpinBarrier barrier(num_threads * 2);
arena.execute([&] {
tbb::parallel_for(std::size_t(0), num_threads * 2,
[&] (const std::size_t&) {
ets.local() = true;
barrier.wait();
}
);
});
utils::yield();
std::atomic<std::size_t> task_counter{0};
for (std::size_t i = 0; i < num_threads / 4 + 1; ++i) {
arena.enqueue(enqueue_test_helper(arena, ets, task_counter));
}
while (task_counter < 100000) utils::yield();
arena.execute([&] {
tbb::parallel_for(std::size_t(0), num_threads * 2,
[&] (const std::size_t&) {
CHECK(ets.local());
barrier.wait();
}
);
});
}
#endif
#if TBB_USE_EXCEPTIONS
#if __TBB_PREVIEW_TASK_GROUP_EXTENSIONS && __TBB_GCC_VERSION && !__clang__ && !__INTEL_COMPILER
// GCC issues a warning in task_handle_task::has_dependencies for empty task_handle
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
//! The test for error in scheduling empty task_handle
//! \brief \ref requirement
TEST_CASE("Empty task_handle cannot be scheduled"
* doctest::should_fail() //Test needs to revised as implementation uses assertions instead of exceptions
* doctest::skip() //skip the test for now, to not pollute the test log
){
tbb::task_arena ta;
CHECK_THROWS_WITH_AS(ta.enqueue(tbb::task_handle{}), "Attempt to schedule empty task_handle", std::runtime_error);
CHECK_THROWS_WITH_AS(tbb::this_task_arena::enqueue(tbb::task_handle{}), "Attempt to schedule empty task_handle", std::runtime_error);
}
#if __TBB_PREVIEW_TASK_GROUP_EXTENSIONS && __TBB_GCC_VERSION && !__clang__ && !__INTEL_COMPILER
#pragma GCC diagnostic pop
#endif
#endif // TBB_USE_EXCEPTIONS
#if !EMSCRIPTEN
//! For emscripten, FPU control state has not been set correctly
//! \brief \ref error_guessing
TEST_CASE("Test threads sleep") {
for (auto concurrency_level : utils::concurrency_range()) {
int conc = int(concurrency_level);
test_threads_sleep(conc, 0);
test_threads_sleep(conc, 1);
test_threads_sleep(conc, conc/2);
test_threads_sleep(conc, conc);
}
}
#endif
#if __TBB_PREVIEW_TASK_GROUP_EXTENSIONS
//! Basic test for is_inside_task in task_group
//! \brief \ref interface \ref requirement
TEST_CASE("is_inside_task in task_group"){
CHECK( false == tbb::is_inside_task());
tbb::task_group tg;
tg.run_and_wait([&]{
CHECK( true == tbb::is_inside_task());
});
}
//! Basic test for is_inside_task in arena::execute
//! \brief \ref interface \ref requirement
TEST_CASE("is_inside_task in arena::execute"){
CHECK( false == tbb::is_inside_task());
tbb::task_arena arena;
arena.execute([&]{
// The execute method is processed outside of any task
CHECK( false == tbb::is_inside_task());
});
}
//! The test for is_inside_task in arena::execute when inside other task
//! \brief \ref error_guessing
TEST_CASE("is_inside_task in arena::execute") {
CHECK(false == tbb::is_inside_task());
tbb::task_arena arena;
tbb::task_group tg;
tg.run_and_wait([&] {
arena.execute([&] {
// The execute method is processed outside of any task
CHECK(false == tbb::is_inside_task());
});
});
}
#endif //__TBB_PREVIEW_TASK_GROUP_EXTENSIONS
//! \brief \ref interface \ref requirement \ref regression
TEST_CASE("worker threads occupy slots in correct range") {
std::vector<tbb::task_arena> arenas(42);
for (auto& arena : arenas) {
arena.initialize(1, 0);
}
std::atomic<int> counter{0};
for (auto& arena : arenas) {
arena.enqueue([&] {
CHECK(tbb::this_task_arena::current_thread_index() == 0);
++counter;
});
}
while (counter < 42) { utils::yield(); }
}
//! \brief \ref error_guessing
TEST_CASE("Stress test enqueue with task_group from multiple threads") {
constexpr std::size_t task_groups_per_thread = 1500;
constexpr std::size_t task_submits_per_task_group = 100;
std::size_t num_threads = utils::get_platform_max_threads();
std::vector<tbb::task_arena> arenas(num_threads);
std::vector<tbb::task_group> tg(task_groups_per_thread);
auto body = [] { utils::doDummyWork(100); };
for (std::size_t i = 0; i < 10; ++i) {
utils::NativeParallelFor(num_threads, [&] (std::size_t thread_index) {
for (std::size_t j = 0; j < task_groups_per_thread; ++j) {
for (std::size_t k = 0; k < task_submits_per_task_group; ++k) {
if (k % 2) {
arenas[thread_index].enqueue(tg[j].defer(body));
} else {
arenas[thread_index].enqueue(body, tg[j]);
}
}
}
});
utils::NativeParallelFor(num_threads, [&] (std::size_t thread_index) {
for (std::size_t j = 0; j < task_groups_per_thread; ++j) {
arenas[thread_index].wait_for(tg[j]);
}
});
}
}
//! \brief \ref interface \ref requirement
TEST_CASE("Basic test of task_arena and task_group interoperability interface") {
std::size_t num_threads = utils::get_platform_max_threads();
utils::SpinBarrier barrier{num_threads};
tbb::task_arena ta{};
tbb::task_group tg{};
std::vector<int> per_thread_array(num_threads, 0);
utils::NativeParallelFor(num_threads, [&] (std::size_t) {
ta.enqueue([&] {
utils::ConcurrencyTracker ct;
barrier.wait();
per_thread_array[tbb::this_task_arena::current_thread_index() % num_threads]++;
}, tg);
});
ta.wait_for(tg);
REQUIRE(utils::ConcurrencyTracker::PeakParallelism() == num_threads);
REQUIRE(std::all_of(per_thread_array.begin(), per_thread_array.end(),
[](int count) { return count == 1; }));
}
//! \brief \ref interface \ref requirement
TEST_CASE("Test that a thread calling wait_for completes tasks when workers are not available") {
std::size_t num_threads = utils::get_platform_max_threads();
utils::SpinBarrier barrier{num_threads};
tbb::task_group tg{};
tbb::task_arena ta{};
tbb::task_arena ta_busy{};
utils::ConcurrencyTracker::Reset();
std::atomic<int> task_counter{0};
auto body = [&task_counter] {
utils::ConcurrencyTracker ct;
task_counter++;
};
// Occupy all worker threads with work
for (std::size_t i = 0; i < num_threads-1; ++i) {
ta_busy.enqueue([&] {
barrier.wait();
if (i % 2) {
ta.enqueue(body, tg);
} else {
ta.execute([&] {
tg.run(body);
});
}
barrier.wait();
barrier.wait();
});
}
barrier.wait();
ta.execute([&] {
tg.run(body);
});
barrier.wait();
ta.wait_for(tg);
REQUIRE(task_counter == num_threads);
REQUIRE(utils::ConcurrencyTracker::PeakParallelism() == 1);
barrier.wait();
}
#if TBB_USE_EXCEPTIONS
//! \brief \ref error_guessing
TEST_CASE("Test enqueue guarantees when task_arena is combined with task_group") {
auto mandatory_concurrency_body = [](tbb::task_arena& ta) {
utils::SpinBarrier barrier{2};
try {
tbb::task_group tg{};
ta.enqueue([&barrier] { barrier.wait(); }, tg);
barrier.wait(); // Wait for worker to join
} catch (tbb::missing_wait&) {
// Nothing to do
} catch (...) {
FAIL("Expected tbb::missing_wait exception due to missing "
"task_group::wait call");
}
};
// Mandatory concurrency tests
{
// Test with workerless arena
tbb::task_arena ta{1, 1};
mandatory_concurrency_body(ta);
}
{
// Test with global_control
tbb::global_control gc{tbb::global_control::max_allowed_parallelism, 1};
tbb::task_arena ta{};
mandatory_concurrency_body(ta);
}
}
#endif // TBB_USE_EXCEPTIONS
|