1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
|
/*
Copyright (c) 2005-2022 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//! \file test_malloc_pools.cpp
//! \brief Test for [memory_allocation] functionality
#define __TBB_NO_IMPLICIT_LINKAGE 1
#include "common/test.h"
#define HARNESS_TBBMALLOC_THREAD_SHUTDOWN 1
#include "common/utils.h"
#include "common/utils_assert.h"
#include "common/spin_barrier.h"
#include "common/tls_limit.h"
#include "tbb/scalable_allocator.h"
#include <atomic>
template<typename T>
static inline T alignUp (T arg, uintptr_t alignment) {
return T(((uintptr_t)arg+(alignment-1)) & ~(alignment-1));
}
struct PoolSpace: utils::NoCopy {
size_t pos;
int regions;
size_t bufSize;
char *space;
static const size_t BUF_SIZE = 8*1024*1024;
PoolSpace(size_t bufSz = BUF_SIZE) :
pos(0), regions(0),
bufSize(bufSz), space(new char[bufSize]) {
memset(space, 0, bufSize);
}
~PoolSpace() {
delete []space;
}
};
static PoolSpace *poolSpace;
struct MallocPoolHeader {
void *rawPtr;
size_t userSize;
};
static std::atomic<int> liveRegions;
static void *getMallocMem(intptr_t /*pool_id*/, size_t &bytes)
{
void *rawPtr = malloc(bytes+sizeof(MallocPoolHeader));
if (!rawPtr)
return nullptr;
// +1 to check working with unaligned space
void *ret = (void *)((uintptr_t)rawPtr+sizeof(MallocPoolHeader));
MallocPoolHeader *hdr = (MallocPoolHeader*)ret-1;
hdr->rawPtr = rawPtr;
hdr->userSize = bytes;
liveRegions++;
return ret;
}
static int putMallocMem(intptr_t /*pool_id*/, void *ptr, size_t bytes)
{
MallocPoolHeader *hdr = (MallocPoolHeader*)ptr-1;
ASSERT(bytes == hdr->userSize, "Invalid size in pool callback.");
free(hdr->rawPtr);
liveRegions--;
return 0;
}
void TestPoolReset()
{
rml::MemPoolPolicy pol(getMallocMem, putMallocMem);
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
for (int i=0; i<100; i++) {
REQUIRE(pool_malloc(pool, 8));
REQUIRE(pool_malloc(pool, 50*1024));
}
int regionsBeforeReset = liveRegions.load(std::memory_order_acquire);
bool ok = pool_reset(pool);
REQUIRE(ok);
for (int i=0; i<100; i++) {
REQUIRE(pool_malloc(pool, 8));
REQUIRE(pool_malloc(pool, 50*1024));
}
REQUIRE_MESSAGE(regionsBeforeReset == liveRegions.load(std::memory_order_relaxed),
"Expected no new regions allocation.");
ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(!liveRegions.load(std::memory_order_relaxed), "Expected all regions were released.");
}
class SharedPoolRun: utils::NoAssign {
static long threadNum;
static utils::SpinBarrier startB,
mallocDone;
static rml::MemoryPool *pool;
static void **crossThread,
**afterTerm;
public:
static const int OBJ_CNT = 100;
static void init(int num, rml::MemoryPool *pl, void **crThread, void **aTerm) {
threadNum = num;
pool = pl;
crossThread = crThread;
afterTerm = aTerm;
startB.initialize(threadNum);
mallocDone.initialize(threadNum);
}
void operator()( int id ) const {
const int ITERS = 1000;
void *local[ITERS];
startB.wait();
for (int i=id*OBJ_CNT; i<(id+1)*OBJ_CNT; i++) {
afterTerm[i] = pool_malloc(pool, i%2? 8*1024 : 9*1024);
memset(afterTerm[i], i, i%2? 8*1024 : 9*1024);
crossThread[i] = pool_malloc(pool, i%2? 9*1024 : 8*1024);
memset(crossThread[i], i, i%2? 9*1024 : 8*1024);
}
for (int i=1; i<ITERS; i+=2) {
local[i-1] = pool_malloc(pool, 6*1024);
memset(local[i-1], i, 6*1024);
local[i] = pool_malloc(pool, 16*1024);
memset(local[i], i, 16*1024);
}
mallocDone.wait();
int myVictim = threadNum-id-1;
for (int i=myVictim*OBJ_CNT; i<(myVictim+1)*OBJ_CNT; i++)
pool_free(pool, crossThread[i]);
for (int i=0; i<ITERS; i++)
pool_free(pool, local[i]);
}
};
long SharedPoolRun::threadNum;
utils::SpinBarrier SharedPoolRun::startB,
SharedPoolRun::mallocDone;
rml::MemoryPool *SharedPoolRun::pool;
void **SharedPoolRun::crossThread,
**SharedPoolRun::afterTerm;
// single pool shared by different threads
void TestSharedPool()
{
rml::MemPoolPolicy pol(getMallocMem, putMallocMem);
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
void **crossThread = new void*[utils::MaxThread * SharedPoolRun::OBJ_CNT];
void **afterTerm = new void*[utils::MaxThread * SharedPoolRun::OBJ_CNT];
for (int p=utils::MinThread; p<=utils::MaxThread; p++) {
SharedPoolRun::init(p, pool, crossThread, afterTerm);
SharedPoolRun thr;
void *hugeObj = pool_malloc(pool, 10*1024*1024);
REQUIRE(hugeObj);
utils::NativeParallelFor( p, thr );
pool_free(pool, hugeObj);
for (int i=0; i<p*SharedPoolRun::OBJ_CNT; i++)
pool_free(pool, afterTerm[i]);
}
delete []afterTerm;
delete []crossThread;
bool ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(!liveRegions.load(std::memory_order_relaxed), "Expected all regions were released.");
}
void *CrossThreadGetMem(intptr_t pool_id, size_t &bytes)
{
if (poolSpace[pool_id].pos + bytes > poolSpace[pool_id].bufSize)
return nullptr;
void *ret = poolSpace[pool_id].space + poolSpace[pool_id].pos;
poolSpace[pool_id].pos += bytes;
poolSpace[pool_id].regions++;
return ret;
}
int CrossThreadPutMem(intptr_t pool_id, void* /*raw_ptr*/, size_t /*raw_bytes*/)
{
poolSpace[pool_id].regions--;
return 0;
}
class CrossThreadRun: utils::NoAssign {
static long number_of_threads;
static utils::SpinBarrier barrier;
static rml::MemoryPool **pool;
static char **obj;
public:
static void initBarrier(unsigned thrds) { barrier.initialize(thrds); }
static void init(long num) {
number_of_threads = num;
pool = new rml::MemoryPool*[number_of_threads];
poolSpace = new PoolSpace[number_of_threads];
obj = new char*[number_of_threads];
}
static void destroy() {
for (long i=0; i<number_of_threads; i++)
REQUIRE_MESSAGE(!poolSpace[i].regions, "Memory leak detected");
delete []pool;
delete []poolSpace;
delete []obj;
}
CrossThreadRun() {}
void operator()( int id ) const {
rml::MemPoolPolicy pol(CrossThreadGetMem, CrossThreadPutMem);
const int objLen = 10*id;
pool_create_v1(id, &pol, &pool[id]);
obj[id] = (char*)pool_malloc(pool[id], objLen);
REQUIRE(obj[id]);
memset(obj[id], id, objLen);
{
const size_t lrgSz = 2*16*1024;
void *ptrLarge = pool_malloc(pool[id], lrgSz);
REQUIRE(ptrLarge);
memset(ptrLarge, 1, lrgSz);
// consume all small objects
while (pool_malloc(pool[id], 5 * 1024));
// releasing of large object will not give a chance to allocate more
// since only fixed pool can look at other bins aligned/notAligned
pool_free(pool[id], ptrLarge);
CHECK(!pool_malloc(pool[id], 5*1024));
}
barrier.wait();
int myPool = number_of_threads-id-1;
for (int i=0; i<10*myPool; i++)
REQUIRE(myPool==obj[myPool][i]);
pool_free(pool[myPool], obj[myPool]);
bool ok = pool_destroy(pool[myPool]);
REQUIRE(ok);
}
};
long CrossThreadRun::number_of_threads;
utils::SpinBarrier CrossThreadRun::barrier;
rml::MemoryPool **CrossThreadRun::pool;
char **CrossThreadRun::obj;
// pools created, used and destroyed by different threads
void TestCrossThreadPools()
{
for (int p=utils::MinThread; p<=utils::MaxThread; p++) {
CrossThreadRun::initBarrier(p);
CrossThreadRun::init(p);
utils::NativeParallelFor( p, CrossThreadRun() );
for (int i=0; i<p; i++)
REQUIRE_MESSAGE(!poolSpace[i].regions, "Region leak detected");
CrossThreadRun::destroy();
}
}
// buffer is too small to pool be created, but must not leak resources
void TestTooSmallBuffer()
{
poolSpace = new PoolSpace(8*1024);
rml::MemPoolPolicy pol(CrossThreadGetMem, CrossThreadPutMem);
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
bool ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(!poolSpace[0].regions, "No leaks.");
delete poolSpace;
}
class FixedPoolHeadBase : utils::NoAssign {
size_t size;
std::atomic<bool> used;
char* data;
public:
FixedPoolHeadBase(size_t s) : size(s), used(false) {
data = new char[size];
}
void *useData(size_t &bytes) {
bool wasUsed = used.exchange(true);
REQUIRE_MESSAGE(!wasUsed, "The buffer must not be used twice.");
bytes = size;
return data;
}
~FixedPoolHeadBase() {
delete []data;
}
};
template<size_t SIZE>
class FixedPoolHead : FixedPoolHeadBase {
public:
FixedPoolHead() : FixedPoolHeadBase(SIZE) { }
};
static void *fixedBufGetMem(intptr_t pool_id, size_t &bytes)
{
return ((FixedPoolHeadBase*)pool_id)->useData(bytes);
}
class FixedPoolUse: utils::NoAssign {
static utils::SpinBarrier startB;
rml::MemoryPool *pool;
size_t reqSize;
int iters;
public:
FixedPoolUse(unsigned threads, rml::MemoryPool *p, size_t sz, int it) :
pool(p), reqSize(sz), iters(it) {
startB.initialize(threads);
}
void operator()( int /*id*/ ) const {
startB.wait();
for (int i=0; i<iters; i++) {
void *o = pool_malloc(pool, reqSize);
ASSERT(o, "Invalid object");
pool_free(pool, o);
}
}
};
utils::SpinBarrier FixedPoolUse::startB;
class FixedPoolNomem: utils::NoAssign {
utils::SpinBarrier *startB;
rml::MemoryPool *pool;
public:
FixedPoolNomem(utils::SpinBarrier *b, rml::MemoryPool *p) :
startB(b), pool(p) {}
void operator()(int id) const {
startB->wait();
void *o = pool_malloc(pool, id%2? 64 : 128*1024);
ASSERT(!o, "All memory must be consumed.");
}
};
class FixedPoolSomeMem: utils::NoAssign {
utils::SpinBarrier *barrier;
rml::MemoryPool *pool;
public:
FixedPoolSomeMem(utils::SpinBarrier *b, rml::MemoryPool *p) :
barrier(b), pool(p) {}
void operator()(int id) const {
barrier->wait();
utils::Sleep(2*id);
void *o = pool_malloc(pool, id%2? 64 : 128*1024);
barrier->wait();
pool_free(pool, o);
}
};
bool haveEnoughSpace(rml::MemoryPool *pool, size_t sz)
{
if (void *p = pool_malloc(pool, sz)) {
pool_free(pool, p);
return true;
}
return false;
}
void TestFixedBufferPool()
{
const int ITERS = 7;
const size_t MAX_OBJECT = 7*1024*1024;
void *ptrs[ITERS];
rml::MemPoolPolicy pol(fixedBufGetMem, nullptr, 0, /*fixedSizePool=*/true,
/*keepMemTillDestroy=*/false);
rml::MemoryPool *pool;
{
FixedPoolHead<MAX_OBJECT + 1024*1024> head;
pool_create_v1((intptr_t)&head, &pol, &pool);
{
utils::NativeParallelFor( 1, FixedPoolUse(1, pool, MAX_OBJECT, 2) );
for (int i=0; i<ITERS; i++) {
ptrs[i] = pool_malloc(pool, MAX_OBJECT/ITERS);
REQUIRE(ptrs[i]);
}
for (int i=0; i<ITERS; i++)
pool_free(pool, ptrs[i]);
utils::NativeParallelFor( 1, FixedPoolUse(1, pool, MAX_OBJECT, 1) );
}
// each thread asks for an MAX_OBJECT/p/2 object,
// /2 is to cover fragmentation
for (int p=utils::MinThread; p<=utils::MaxThread; p++) {
utils::NativeParallelFor( p, FixedPoolUse(p, pool, MAX_OBJECT/p/2, 10000) );
}
{
const int p = 128;
utils::NativeParallelFor( p, FixedPoolUse(p, pool, MAX_OBJECT/p/2, 1) );
}
{
size_t maxSz;
const int p = 256;
utils::SpinBarrier barrier(p);
// Find maximal useful object size. Start with MAX_OBJECT/2,
// as the pool might be fragmented by BootStrapBlocks consumed during
// FixedPoolRun.
size_t l, r;
REQUIRE(haveEnoughSpace(pool, MAX_OBJECT/2));
for (l = MAX_OBJECT/2, r = MAX_OBJECT + 1024*1024; l < r-1; ) {
size_t mid = (l+r)/2;
if (haveEnoughSpace(pool, mid))
l = mid;
else
r = mid;
}
maxSz = l;
REQUIRE_MESSAGE(!haveEnoughSpace(pool, maxSz+1), "Expect to find boundary value.");
// consume all available memory
void *largeObj = pool_malloc(pool, maxSz);
REQUIRE(largeObj);
void *o = pool_malloc(pool, 64);
if (o) // pool fragmented, skip FixedPoolNomem
pool_free(pool, o);
else
utils::NativeParallelFor( p, FixedPoolNomem(&barrier, pool) );
pool_free(pool, largeObj);
// keep some space unoccupied
largeObj = pool_malloc(pool, maxSz-512*1024);
REQUIRE(largeObj);
utils::NativeParallelFor( p, FixedPoolSomeMem(&barrier, pool) );
pool_free(pool, largeObj);
}
bool ok = pool_destroy(pool);
REQUIRE(ok);
}
// check that fresh untouched pool can successfully fulfil requests from 128 threads
{
FixedPoolHead<MAX_OBJECT + 1024*1024> head;
pool_create_v1((intptr_t)&head, &pol, &pool);
int p=128;
utils::NativeParallelFor( p, FixedPoolUse(p, pool, MAX_OBJECT/p/2, 1) );
bool ok = pool_destroy(pool);
REQUIRE(ok);
}
}
static size_t currGranularity;
static void *getGranMem(intptr_t /*pool_id*/, size_t &bytes)
{
REQUIRE_MESSAGE(!(bytes%currGranularity), "Region size mismatch granularity.");
return malloc(bytes);
}
static int putGranMem(intptr_t /*pool_id*/, void *ptr, size_t bytes)
{
REQUIRE_MESSAGE(!(bytes%currGranularity), "Region size mismatch granularity.");
free(ptr);
return 0;
}
void TestPoolGranularity()
{
rml::MemPoolPolicy pol(getGranMem, putGranMem);
const size_t grans[] = {4*1024, 2*1024*1024, 6*1024*1024, 10*1024*1024};
for (unsigned i=0; i<sizeof(grans)/sizeof(grans[0]); i++) {
pol.granularity = currGranularity = grans[i];
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
for (int sz=500*1024; sz<16*1024*1024; sz+=101*1024) {
void *p = pool_malloc(pool, sz);
REQUIRE_MESSAGE(p, "Can't allocate memory in pool.");
pool_free(pool, p);
}
bool ok = pool_destroy(pool);
REQUIRE(ok);
}
}
static size_t putMemAll, getMemAll, getMemSuccessful;
static void *getMemMalloc(intptr_t /*pool_id*/, size_t &bytes)
{
getMemAll++;
void *p = malloc(bytes);
if (p)
getMemSuccessful++;
return p;
}
static int putMemFree(intptr_t /*pool_id*/, void *ptr, size_t /*bytes*/)
{
putMemAll++;
free(ptr);
return 0;
}
void TestPoolKeepTillDestroy()
{
const int ITERS = 50*1024;
void *ptrs[2*ITERS+1];
rml::MemPoolPolicy pol(getMemMalloc, putMemFree);
rml::MemoryPool *pool;
// 1st create default pool that returns memory back to callback,
// then use keepMemTillDestroy policy
for (int keep=0; keep<2; keep++) {
getMemAll = putMemAll = 0;
if (keep)
pol.keepAllMemory = 1;
pool_create_v1(0, &pol, &pool);
for (int i=0; i<2*ITERS; i+=2) {
ptrs[i] = pool_malloc(pool, 7*1024);
ptrs[i+1] = pool_malloc(pool, 10*1024);
}
ptrs[2*ITERS] = pool_malloc(pool, 8*1024*1024);
REQUIRE(!putMemAll);
for (int i=0; i<2*ITERS; i++)
pool_free(pool, ptrs[i]);
pool_free(pool, ptrs[2*ITERS]);
size_t totalPutMemCalls = putMemAll;
if (keep)
REQUIRE(!putMemAll);
else {
REQUIRE(putMemAll);
putMemAll = 0;
}
size_t getCallsBefore = getMemAll;
void *p = pool_malloc(pool, 8*1024*1024);
REQUIRE(p);
if (keep)
REQUIRE_MESSAGE(getCallsBefore == getMemAll, "Must not lead to new getMem call");
size_t putCallsBefore = putMemAll;
bool ok = pool_reset(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(putCallsBefore == putMemAll, "Pool is not releasing memory during reset.");
ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE(putMemAll);
totalPutMemCalls += putMemAll;
REQUIRE_MESSAGE(getMemAll == totalPutMemCalls, "Memory leak detected.");
}
}
static bool memEqual(char *buf, size_t size, int val)
{
bool memEq = true;
for (size_t k=0; k<size; k++)
if (buf[k] != val)
memEq = false;
return memEq;
}
void TestEntries()
{
const int SZ = 4;
const int ALGN = 4;
size_t size[SZ] = {8, 8000, 9000, 100*1024};
size_t algn[ALGN] = {8, 64, 4*1024, 8*1024*1024};
rml::MemPoolPolicy pol(getGranMem, putGranMem);
currGranularity = 1; // not check granularity in the test
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
for (int i=0; i<SZ; i++)
for (int j=0; j<ALGN; j++) {
char *p = (char*)pool_aligned_malloc(pool, size[i], algn[j]);
REQUIRE((p && 0==((uintptr_t)p & (algn[j]-1))));
memset(p, j, size[i]);
size_t curr_algn = algn[rand() % ALGN];
size_t curr_sz = size[rand() % SZ];
char *p1 = (char*)pool_aligned_realloc(pool, p, curr_sz, curr_algn);
REQUIRE((p1 && 0==((uintptr_t)p1 & (curr_algn-1))));
REQUIRE(memEqual(p1, utils::min(size[i], curr_sz), j));
memset(p1, j+1, curr_sz);
size_t curr_sz1 = size[rand() % SZ];
char *p2 = (char*)pool_realloc(pool, p1, curr_sz1);
REQUIRE(p2);
REQUIRE(memEqual(p2, utils::min(curr_sz1, curr_sz), j+1));
pool_free(pool, p2);
}
bool ok = pool_destroy(pool);
REQUIRE(ok);
bool fail = rml::pool_destroy(nullptr);
REQUIRE(!fail);
fail = rml::pool_reset(nullptr);
REQUIRE(!fail);
}
rml::MemoryPool *CreateUsablePool(size_t size)
{
rml::MemoryPool *pool;
rml::MemPoolPolicy okPolicy(getMemMalloc, putMemFree);
putMemAll = getMemAll = getMemSuccessful = 0;
rml::MemPoolError res = pool_create_v1(0, &okPolicy, &pool);
if (res != rml::POOL_OK) {
REQUIRE_MESSAGE((!getMemAll && !putMemAll), "No callbacks after fail.");
return nullptr;
}
void *o = pool_malloc(pool, size);
if (!getMemSuccessful) {
// no memory from callback, valid reason to leave
REQUIRE_MESSAGE(!o, "The pool must be unusable.");
return nullptr;
}
REQUIRE_MESSAGE(o, "Created pool must be useful.");
REQUIRE_MESSAGE((getMemSuccessful == 1 || getMemSuccessful == 5 || getMemAll > getMemSuccessful),
"Multiple requests are allowed when unsuccessful request occurred or cannot search in bootstrap memory. ");
REQUIRE(!putMemAll);
pool_free(pool, o);
return pool;
}
void CheckPoolLeaks(size_t poolsAlwaysAvailable)
{
const size_t MAX_POOLS = 16*1000;
const int ITERS = 20, CREATED_STABLE = 3;
rml::MemoryPool *pools[MAX_POOLS];
size_t created, maxCreated = MAX_POOLS;
int maxNotChangedCnt = 0;
// expecting that for ITERS runs, max number of pools that can be created
// can be stabilized and still stable CREATED_STABLE times
for (int j=0; j<ITERS && maxNotChangedCnt<CREATED_STABLE; j++) {
for (created=0; created<maxCreated; created++) {
rml::MemoryPool *p = CreateUsablePool(1024);
if (!p)
break;
pools[created] = p;
}
REQUIRE_MESSAGE(created>=poolsAlwaysAvailable,
"Expect that the reasonable number of pools can be always created.");
for (size_t i=0; i<created; i++) {
bool ok = pool_destroy(pools[i]);
REQUIRE(ok);
}
if (created < maxCreated) {
maxCreated = created;
maxNotChangedCnt = 0;
} else
maxNotChangedCnt++;
}
REQUIRE_MESSAGE(maxNotChangedCnt == CREATED_STABLE, "The number of created pools must be stabilized.");
}
void TestPoolCreation()
{
putMemAll = getMemAll = getMemSuccessful = 0;
rml::MemPoolPolicy nullPolicy(nullptr, putMemFree),
emptyFreePolicy(getMemMalloc, nullptr),
okPolicy(getMemMalloc, putMemFree);
rml::MemoryPool *pool;
rml::MemPoolError res = pool_create_v1(0, &nullPolicy, &pool);
REQUIRE_MESSAGE(res==rml::INVALID_POLICY, "pool with empty pAlloc can't be created");
res = pool_create_v1(0, &emptyFreePolicy, &pool);
REQUIRE_MESSAGE(res==rml::INVALID_POLICY, "pool with empty pFree can't be created");
REQUIRE_MESSAGE((!putMemAll && !getMemAll), "no callback calls are expected");
res = pool_create_v1(0, &okPolicy, &pool);
REQUIRE(res==rml::POOL_OK);
bool ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(putMemAll == getMemSuccessful, "no leaks after pool_destroy");
// 32 is a guess for a number of pools that is acceptable everywere
CheckPoolLeaks(32);
// try to consume all but 16 TLS keys
LimitTLSKeysTo limitTLSTo(16);
// ...and check that we can create at least 16 pools
CheckPoolLeaks(16);
}
struct AllocatedObject {
rml::MemoryPool *pool;
};
const size_t BUF_SIZE = 1024*1024;
class PoolIdentityCheck : utils::NoAssign {
rml::MemoryPool** const pools;
AllocatedObject** const objs;
public:
PoolIdentityCheck(rml::MemoryPool** p, AllocatedObject** o) : pools(p), objs(o) {}
void operator()(int id) const {
objs[id] = (AllocatedObject*)pool_malloc(pools[id], BUF_SIZE/2);
REQUIRE(objs[id]);
rml::MemoryPool *act_pool = rml::pool_identify(objs[id]);
REQUIRE(act_pool == pools[id]);
for (size_t total=0; total<2*BUF_SIZE; total+=256) {
AllocatedObject *o = (AllocatedObject*)pool_malloc(pools[id], 256);
REQUIRE(o);
act_pool = rml::pool_identify(o);
REQUIRE(act_pool == pools[id]);
pool_free(act_pool, o);
}
if( id&1 ) { // make every second returned object "small"
pool_free(act_pool, objs[id]);
objs[id] = (AllocatedObject*)pool_malloc(pools[id], 16);
REQUIRE(objs[id]);
}
objs[id]->pool = act_pool;
}
};
void TestPoolDetection()
{
const int POOLS = 4;
rml::MemPoolPolicy pol(fixedBufGetMem, nullptr, 0, /*fixedSizePool=*/true,
/*keepMemTillDestroy=*/false);
rml::MemoryPool *pools[POOLS];
FixedPoolHead<BUF_SIZE*POOLS> head[POOLS];
AllocatedObject *objs[POOLS];
for (int i=0; i<POOLS; i++)
pool_create_v1((intptr_t)(head+i), &pol, &pools[i]);
// if object somehow released to different pools, subsequent allocation
// from affected pools became impossible
for (int k=0; k<10; k++) {
PoolIdentityCheck check(pools, objs);
if( k&1 )
utils::NativeParallelFor( POOLS, check);
else
for (int i=0; i<POOLS; i++) check(i);
for (int i=0; i<POOLS; i++) {
rml::MemoryPool *p = rml::pool_identify(objs[i]);
REQUIRE(p == objs[i]->pool);
pool_free(p, objs[i]);
}
}
for (int i=0; i<POOLS; i++) {
bool ok = pool_destroy(pools[i]);
REQUIRE(ok);
}
}
void TestLazyBootstrap()
{
rml::MemPoolPolicy pol(getMemMalloc, putMemFree);
const size_t sizes[] = {8, 9*1024, 0};
for (int i=0; sizes[i]; i++) {
rml::MemoryPool *pool = CreateUsablePool(sizes[i]);
bool ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(getMemSuccessful == putMemAll, "No leak.");
}
}
class NoLeakOnDestroyRun: utils::NoAssign {
rml::MemoryPool *pool;
utils::SpinBarrier *barrier;
public:
NoLeakOnDestroyRun(rml::MemoryPool *p, utils::SpinBarrier *b) : pool(p), barrier(b) {}
void operator()(int id) const {
void *p = pool_malloc(pool, id%2? 8 : 9000);
REQUIRE((p && liveRegions.load(std::memory_order_relaxed)));
barrier->wait();
if (!id) {
bool ok = pool_destroy(pool);
REQUIRE(ok);
REQUIRE_MESSAGE(!liveRegions.load(std::memory_order_relaxed), "Expected all regions were released.");
}
// other threads must wait till pool destruction,
// to not call thread destruction cleanup before this
barrier->wait();
}
};
void TestNoLeakOnDestroy()
{
liveRegions.store(0, std::memory_order_release);
for (int p=utils::MinThread; p<=utils::MaxThread; p++) {
rml::MemPoolPolicy pol(getMallocMem, putMallocMem);
utils::SpinBarrier barrier(p);
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
utils::NativeParallelFor(p, NoLeakOnDestroyRun(pool, &barrier));
}
}
static int putMallocMemError(intptr_t /*pool_id*/, void *ptr, size_t bytes)
{
MallocPoolHeader *hdr = (MallocPoolHeader*)ptr-1;
REQUIRE_MESSAGE(bytes == hdr->userSize, "Invalid size in pool callback.");
free(hdr->rawPtr);
liveRegions--;
return -1;
}
void TestDestroyFailed()
{
rml::MemPoolPolicy pol(getMallocMem, putMallocMemError);
rml::MemoryPool *pool;
pool_create_v1(0, &pol, &pool);
void *ptr = pool_malloc(pool, 16);
REQUIRE(ptr);
bool fail = pool_destroy(pool);
REQUIRE_MESSAGE(fail==false, "putMemPolicyError callback returns error, "
"expect pool_destroy() failure");
}
void TestPoolMSize() {
rml::MemoryPool *pool = CreateUsablePool(1024);
const int SZ = 10;
// Original allocation requests, random numbers from small to large
size_t requestedSz[SZ] = {8, 16, 500, 1000, 2000, 4000, 8000, 1024*1024, 4242+4242, 8484+8484};
// Unlike large objects, small objects do not store its original size along with the object itself
// On Power architecture TLS bins are divided differently.
size_t allocatedSz[SZ] =
#if __powerpc64__ || __ppc64__ || __bgp__
{8, 16, 512, 1024, 2688, 5376, 8064, 1024*1024, 4242+4242, 8484+8484};
#else
{8, 16, 512, 1024, 2688, 4032, 8128, 1024*1024, 4242+4242, 8484+8484};
#endif
for (int i = 0; i < SZ; i++) {
void* obj = pool_malloc(pool, requestedSz[i]);
size_t objSize = pool_msize(pool, obj);
REQUIRE_MESSAGE(objSize == allocatedSz[i], "pool_msize returned the wrong value");
pool_free(pool, obj);
}
bool destroyed = pool_destroy(pool);
REQUIRE(destroyed);
}
//! \brief \ref error_guessing
TEST_CASE("Too small buffer") {
TestTooSmallBuffer();
}
//! \brief \ref error_guessing
TEST_CASE("Pool reset") {
TestPoolReset();
}
TEST_CASE("Shared pool") {
TestSharedPool();
}
//! \brief \ref error_guessing
TEST_CASE("Cross thread pools") {
TestCrossThreadPools();
}
//! \brief \ref interface
TEST_CASE("Fixed buffer pool") {
TestFixedBufferPool();
}
//! \brief \ref interface
TEST_CASE("Pool granularity") {
TestPoolGranularity();
}
//! \brief \ref error_guessing
TEST_CASE("Keep pool till destroy") {
TestPoolKeepTillDestroy();
}
//! \brief \ref error_guessing
TEST_CASE("Entries") {
TestEntries();
}
//! \brief \ref interface
TEST_CASE("Pool creation") {
TestPoolCreation();
}
//! \brief \ref error_guessing
TEST_CASE("Pool detection") {
TestPoolDetection();
}
//! \brief \ref error_guessing
TEST_CASE("Lazy bootstrap") {
TestLazyBootstrap();
}
//! \brief \ref error_guessing
TEST_CASE("No leak on destroy") {
TestNoLeakOnDestroy();
}
//! \brief \ref error_guessing
TEST_CASE("Destroy failed") {
TestDestroyFailed();
}
//! \brief \ref interface
TEST_CASE("Pool msize") {
TestPoolMSize();
}
|