1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
|
/*
Copyright (c) 2005-2025 Intel Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
//! \file test_malloc_whitebox.cpp
//! \brief Test for [memory_allocation] functionality
#if _WIN32 || _WIN64
#define _CRT_SECURE_NO_WARNINGS
#endif
// To prevent loading dynamic TBBmalloc at startup, that is not needed for the whitebox test
#define __TBB_SOURCE_DIRECTLY_INCLUDED 1
// Call thread shutdown API for native threads join
#define HARNESS_TBBMALLOC_THREAD_SHUTDOWN 1
// According to C99 standard INTPTR_MIN defined for C++ if __STDC_LIMIT_MACROS pre-defined
#define __STDC_LIMIT_MACROS 1
// To not depends on ITT support stuff
#ifdef DO_ITT_NOTIFY
#undef DO_ITT_NOTIFY
#endif
#include "common/test.h"
#include "common/utils.h"
#include "common/utils_assert.h"
#include "common/utils_env.h"
#include "common/spin_barrier.h"
#include "oneapi/tbb/detail/_machine.h"
#define __TBB_MALLOC_WHITEBOX_TEST 1 // to get access to allocator internals
// help trigger rare race condition
#define WhiteboxTestingYield() (tbb::detail::yield(), tbb::detail::yield(), tbb::detail::yield(), tbb::detail::yield())
#if __INTEL_COMPILER && __TBB_MIC_OFFLOAD
// 2571 is variable has not been declared with compatible "target" attribute
// 3218 is class/struct may fail when offloaded because this field is misaligned
// or contains data that is misaligned
#pragma warning(push)
#pragma warning(disable:2571 3218)
#endif
#define protected public
#define private public
#include "../../src/tbbmalloc/frontend.cpp"
#undef protected
#undef private
#if __INTEL_COMPILER && __TBB_MIC_OFFLOAD
#pragma warning(pop)
#endif
#include "../../src/tbbmalloc/backend.cpp"
#include "../../src/tbbmalloc/backref.cpp"
namespace tbbmalloc_whitebox {
std::atomic<size_t> locGetProcessed{};
std::atomic<size_t> locPutProcessed{};
}
#include "../../src/tbbmalloc/large_objects.cpp"
#include "../../src/tbbmalloc/tbbmalloc.cpp"
const int LARGE_MEM_SIZES_NUM = 10;
static const int MinThread = 1;
static const int MaxThread = 4;
class AllocInfo {
int *p;
int val;
int size;
public:
AllocInfo() : p(nullptr), val(0), size(0) {}
explicit AllocInfo(int sz) : p((int*)scalable_malloc(sz*sizeof(int))),
val(rand()), size(sz) {
REQUIRE(p);
for (int k=0; k<size; k++)
p[k] = val;
}
void check() const {
for (int k=0; k<size; k++)
ASSERT(p[k] == val, nullptr);
}
void clear() {
scalable_free(p);
}
};
// Test struct to call ProcessShutdown after all tests
struct ShutdownTest {
~ShutdownTest() {
#if _WIN32 || _WIN64
__TBB_mallocProcessShutdownNotification(true);
#else
__TBB_mallocProcessShutdownNotification(false);
#endif
}
};
static ShutdownTest shutdownTest;
class SimpleBarrier: utils::NoAssign {
protected:
static utils::SpinBarrier barrier;
public:
static void initBarrier(unsigned thrds) { barrier.initialize(thrds); }
};
utils::SpinBarrier SimpleBarrier::barrier;
class TestLargeObjCache: public SimpleBarrier {
public:
static int largeMemSizes[LARGE_MEM_SIZES_NUM];
TestLargeObjCache( ) {}
void operator()( int /*mynum*/ ) const {
AllocInfo allocs[LARGE_MEM_SIZES_NUM];
// push to maximal cache limit
for (int i=0; i<2; i++) {
const int sizes[] = { MByte/sizeof(int),
(MByte-2*LargeObjectCache::LargeBSProps::CacheStep)/sizeof(int) };
for (int q=0; q<2; q++) {
size_t curr = 0;
for (int j=0; j<LARGE_MEM_SIZES_NUM; j++, curr++)
new (allocs+curr) AllocInfo(sizes[q]);
for (size_t j=0; j<curr; j++) {
allocs[j].check();
allocs[j].clear();
}
}
}
barrier.wait();
// check caching correctness
for (int i=0; i<1000; i++) {
size_t curr = 0;
for (int j=0; j<LARGE_MEM_SIZES_NUM-1; j++, curr++)
new (allocs+curr) AllocInfo(largeMemSizes[j]);
new (allocs+curr)
AllocInfo((int)(4*minLargeObjectSize +
2*minLargeObjectSize*(1.*rand()/RAND_MAX)));
curr++;
for (size_t j=0; j<curr; j++) {
allocs[j].check();
allocs[j].clear();
}
}
}
};
int TestLargeObjCache::largeMemSizes[LARGE_MEM_SIZES_NUM];
void TestLargeObjectCache()
{
for (int i=0; i<LARGE_MEM_SIZES_NUM; i++)
TestLargeObjCache::largeMemSizes[i] =
(int)(minLargeObjectSize + 2*minLargeObjectSize*(1.*rand()/RAND_MAX));
for( int p=MaxThread; p>=MinThread; --p ) {
TestLargeObjCache::initBarrier( p );
utils::NativeParallelFor( p, TestLargeObjCache() );
}
}
#if MALLOC_CHECK_RECURSION
class TestStartupAlloc: public SimpleBarrier {
struct TestBlock {
void *ptr;
size_t sz;
};
static const int ITERS = 100;
public:
TestStartupAlloc() {}
void operator()(int) const {
TestBlock blocks1[ITERS], blocks2[ITERS];
barrier.wait();
for (int i=0; i<ITERS; i++) {
blocks1[i].sz = rand() % minLargeObjectSize;
blocks1[i].ptr = StartupBlock::allocate(blocks1[i].sz);
REQUIRE((blocks1[i].ptr && StartupBlock::msize(blocks1[i].ptr)>=blocks1[i].sz
&& 0==(uintptr_t)blocks1[i].ptr % sizeof(void*)));
memset(blocks1[i].ptr, i, blocks1[i].sz);
}
for (int i=0; i<ITERS; i++) {
blocks2[i].sz = rand() % minLargeObjectSize;
blocks2[i].ptr = StartupBlock::allocate(blocks2[i].sz);
REQUIRE((blocks2[i].ptr && StartupBlock::msize(blocks2[i].ptr)>=blocks2[i].sz
&& 0==(uintptr_t)blocks2[i].ptr % sizeof(void*)));
memset(blocks2[i].ptr, i, blocks2[i].sz);
for (size_t j=0; j<blocks1[i].sz; j++)
REQUIRE(*((char*)blocks1[i].ptr+j) == i);
Block *block = (Block *)alignDown(blocks1[i].ptr, slabSize);
((StartupBlock *)block)->free(blocks1[i].ptr);
}
for (int i=ITERS-1; i>=0; i--) {
for (size_t j=0; j<blocks2[i].sz; j++)
REQUIRE(*((char*)blocks2[i].ptr+j) == i);
Block *block = (Block *)alignDown(blocks2[i].ptr, slabSize);
((StartupBlock *)block)->free(blocks2[i].ptr);
}
}
};
#endif /* MALLOC_CHECK_RECURSION */
#include <deque>
template<int ITERS>
class BackRefWork: utils::NoAssign {
struct TestBlock {
BackRefIdx idx;
char data;
TestBlock(BackRefIdx idx_) : idx(idx_) {}
};
public:
BackRefWork() {}
void operator()(int) const {
size_t cnt;
// it's important to not invalidate pointers to the contents of the container
std::deque<TestBlock> blocks;
// for ITERS==0 consume all available backrefs
for (cnt=0; !ITERS || cnt<ITERS; cnt++) {
BackRefIdx idx = BackRefIdx::newBackRef(/*largeObj=*/false);
if (idx.isInvalid())
break;
blocks.push_back(TestBlock(idx));
setBackRef(blocks.back().idx, &blocks.back().data);
}
for (size_t i=0; i<cnt; i++)
REQUIRE((Block*)&blocks[i].data == getBackRef(blocks[i].idx));
for (size_t i=cnt; i>0; i--)
removeBackRef(blocks[i-1].idx);
}
};
class LocalCachesHit: utils::NoAssign {
// set ITERS to trigger possible leak of backreferences
// during cleanup on cache overflow and on thread termination
static const int ITERS = 2*(FreeBlockPool::POOL_HIGH_MARK +
LocalLOC::LOC_HIGH_MARK);
public:
LocalCachesHit() {}
void operator()(int) const {
void *objsSmall[ITERS], *objsLarge[ITERS];
for (int i=0; i<ITERS; i++) {
objsSmall[i] = scalable_malloc(minLargeObjectSize-1);
objsLarge[i] = scalable_malloc(minLargeObjectSize);
}
for (int i=0; i<ITERS; i++) {
scalable_free(objsSmall[i]);
scalable_free(objsLarge[i]);
}
}
};
static size_t allocatedBackRefCount()
{
size_t cnt = 0;
for (int i=0; i<=backRefMain.load(std::memory_order_relaxed)->lastUsed.load(std::memory_order_relaxed); i++)
cnt += backRefMain.load(std::memory_order_relaxed)->backRefBl[i]->allocatedCount;
return cnt;
}
class TestInvalidBackrefs: public SimpleBarrier {
#if __ANDROID__
// Android requires lower iters due to lack of virtual memory.
static const int BACKREF_GROWTH_ITERS = 50*1024;
#else
static const int BACKREF_GROWTH_ITERS = 200*1024;
#endif
static std::atomic<bool> backrefGrowthDone;
static void *ptrs[BACKREF_GROWTH_ITERS];
public:
TestInvalidBackrefs() {}
void operator()(int id) const {
if (!id) {
backrefGrowthDone = false;
barrier.wait();
for (int i=0; i<BACKREF_GROWTH_ITERS; i++)
ptrs[i] = scalable_malloc(minLargeObjectSize);
backrefGrowthDone = true;
for (int i=0; i<BACKREF_GROWTH_ITERS; i++)
scalable_free(ptrs[i]);
} else {
void *p2 = scalable_malloc(minLargeObjectSize-1);
char *p1 = (char*)scalable_malloc(minLargeObjectSize-1);
LargeObjectHdr *hdr =
(LargeObjectHdr*)(p1+minLargeObjectSize-1 - sizeof(LargeObjectHdr));
hdr->backRefIdx.main = 7;
hdr->backRefIdx.largeObj = 1;
hdr->backRefIdx.offset = 2000;
barrier.wait();
int yield_count = 0;
while (!backrefGrowthDone) {
scalable_free(p2);
p2 = scalable_malloc(minLargeObjectSize-1);
if (yield_count++ == 100) {
yield_count = 0;
std::this_thread::yield();
}
}
scalable_free(p1);
scalable_free(p2);
}
}
};
std::atomic<bool> TestInvalidBackrefs::backrefGrowthDone;
void *TestInvalidBackrefs::ptrs[BACKREF_GROWTH_ITERS];
void TestBackRef() {
size_t beforeNumBackRef, afterNumBackRef;
beforeNumBackRef = allocatedBackRefCount();
for( int p=MaxThread; p>=MinThread; --p )
utils::NativeParallelFor( p, BackRefWork<2*BR_MAX_CNT+2>() );
afterNumBackRef = allocatedBackRefCount();
REQUIRE_MESSAGE(beforeNumBackRef==afterNumBackRef, "backreference leak detected");
// lastUsed marks peak resource consumption. As we allocate below the mark,
// it must not move up, otherwise there is a resource leak.
int sustLastUsed = backRefMain.load(std::memory_order_relaxed)->lastUsed.load(std::memory_order_relaxed);
utils::NativeParallelFor( 1, BackRefWork<2*BR_MAX_CNT+2>() );
REQUIRE_MESSAGE(sustLastUsed == backRefMain.load(std::memory_order_relaxed)->lastUsed.load(std::memory_order_relaxed), "backreference leak detected");
// check leak of back references while per-thread caches are in use
// warm up needed to cover bootStrapMalloc call
utils::NativeParallelFor( 1, LocalCachesHit() );
beforeNumBackRef = allocatedBackRefCount();
utils::NativeParallelFor( 2, LocalCachesHit() );
int res = scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, nullptr);
REQUIRE(res == TBBMALLOC_OK);
afterNumBackRef = allocatedBackRefCount();
REQUIRE_MESSAGE(beforeNumBackRef>=afterNumBackRef, "backreference leak detected");
// This is a regression test against race condition between backreference
// extension and checking invalid BackRefIdx.
// While detecting is object large or small, scalable_free 1st check for
// large objects, so there is a chance to prepend small object with
// seems valid BackRefIdx for large objects, and thus trigger the bug.
TestInvalidBackrefs::initBarrier(MaxThread);
utils::NativeParallelFor( MaxThread, TestInvalidBackrefs() );
// Consume all available backrefs and check they work correctly.
// For now test 32-bit machines only, because for 64-bit memory consumption is too high.
if (sizeof(uintptr_t) == 4)
utils::NativeParallelFor( MaxThread, BackRefWork<0>() );
}
void *getMem(intptr_t /*pool_id*/, size_t &bytes)
{
const size_t BUF_SIZE = 8*1024*1024;
static char space[BUF_SIZE];
static size_t pos;
if (pos + bytes > BUF_SIZE)
return nullptr;
void *ret = space + pos;
pos += bytes;
return ret;
}
int putMem(intptr_t /*pool_id*/, void* /*raw_ptr*/, size_t /*raw_bytes*/)
{
return 0;
}
struct MallocPoolHeader {
void *rawPtr;
size_t userSize;
};
void *getMallocMem(intptr_t /*pool_id*/, size_t &bytes)
{
void *rawPtr = malloc(bytes+sizeof(MallocPoolHeader));
void *ret = (void *)((uintptr_t)rawPtr+sizeof(MallocPoolHeader));
MallocPoolHeader *hdr = (MallocPoolHeader*)ret-1;
hdr->rawPtr = rawPtr;
hdr->userSize = bytes;
return ret;
}
int putMallocMem(intptr_t /*pool_id*/, void *ptr, size_t bytes)
{
MallocPoolHeader *hdr = (MallocPoolHeader*)ptr-1;
ASSERT(bytes == hdr->userSize, "Invalid size in pool callback.");
free(hdr->rawPtr);
return 0;
}
class StressLOCacheWork: utils::NoAssign {
rml::MemoryPool *my_mallocPool;
public:
StressLOCacheWork(rml::MemoryPool *mallocPool) : my_mallocPool(mallocPool) {}
void operator()(int) const {
for (size_t sz=minLargeObjectSize; sz<1*1024*1024;
sz+=LargeObjectCache::LargeBSProps::CacheStep) {
void *ptr = pool_malloc(my_mallocPool, sz);
REQUIRE_MESSAGE(ptr, "Memory was not allocated");
memset(ptr, sz, sz);
pool_free(my_mallocPool, ptr);
}
}
};
void TestPools() {
rml::MemPoolPolicy pol(getMem, putMem);
size_t beforeNumBackRef, afterNumBackRef;
rml::MemoryPool *pool1;
rml::MemoryPool *pool2;
pool_create_v1(0, &pol, &pool1);
pool_create_v1(0, &pol, &pool2);
pool_destroy(pool1);
pool_destroy(pool2);
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, nullptr);
beforeNumBackRef = allocatedBackRefCount();
rml::MemoryPool *fixedPool;
pool_create_v1(0, &pol, &fixedPool);
pol.pAlloc = getMallocMem;
pol.pFree = putMallocMem;
pol.granularity = 8;
rml::MemoryPool *mallocPool;
pool_create_v1(0, &pol, &mallocPool);
/* check that large object cache (LOC) returns correct size for cached objects
passBackendSz Byte objects are cached in LOC, but bypassed the backend, so
memory requested directly from allocation callback.
nextPassBackendSz Byte objects must fit to another LOC bin,
so that their allocation/releasing leads to cache cleanup.
All this is expecting to lead to releasing of passBackendSz Byte object
from LOC during LOC cleanup, and putMallocMem checks that returned size
is correct.
*/
const size_t passBackendSz = Backend::maxBinned_HugePage+1,
anotherLOCBinSz = minLargeObjectSize+1;
for (int i=0; i<10; i++) { // run long enough to be cached
void *p = pool_malloc(mallocPool, passBackendSz);
REQUIRE_MESSAGE(p, "Memory was not allocated");
pool_free(mallocPool, p);
}
// run long enough to passBackendSz allocation was cleaned from cache
// and returned back to putMallocMem for size checking
for (int i=0; i<1000; i++) {
void *p = pool_malloc(mallocPool, anotherLOCBinSz);
REQUIRE_MESSAGE(p, "Memory was not allocated");
pool_free(mallocPool, p);
}
void *smallObj = pool_malloc(fixedPool, 10);
REQUIRE_MESSAGE(smallObj, "Memory was not allocated");
memset(smallObj, 1, 10);
void *ptr = pool_malloc(fixedPool, 1024);
REQUIRE_MESSAGE(ptr, "Memory was not allocated");
memset(ptr, 1, 1024);
void *largeObj = pool_malloc(fixedPool, minLargeObjectSize);
REQUIRE_MESSAGE(largeObj, "Memory was not allocated");
memset(largeObj, 1, minLargeObjectSize);
ptr = pool_malloc(fixedPool, minLargeObjectSize);
REQUIRE_MESSAGE(ptr, "Memory was not allocated");
memset(ptr, minLargeObjectSize, minLargeObjectSize);
pool_malloc(fixedPool, 10*minLargeObjectSize); // no leak for unsuccessful allocations
pool_free(fixedPool, smallObj);
pool_free(fixedPool, largeObj);
// provoke large object cache cleanup and hope no leaks occurs
for( int p=MaxThread; p>=MinThread; --p )
utils::NativeParallelFor( p, StressLOCacheWork(mallocPool) );
pool_destroy(mallocPool);
pool_destroy(fixedPool);
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, nullptr);
afterNumBackRef = allocatedBackRefCount();
REQUIRE_MESSAGE(beforeNumBackRef==afterNumBackRef, "backreference leak detected");
{
// test usedSize/cachedSize and LOC bitmask correctness
void *p[5];
pool_create_v1(0, &pol, &mallocPool);
const LargeObjectCache *loc = &((rml::internal::MemoryPool*)mallocPool)->extMemPool.loc;
const int LargeCacheStep = LargeObjectCache::LargeBSProps::CacheStep;
p[3] = pool_malloc(mallocPool, minLargeObjectSize+2*LargeCacheStep);
for (int i=0; i<10; i++) {
p[0] = pool_malloc(mallocPool, minLargeObjectSize);
p[1] = pool_malloc(mallocPool, minLargeObjectSize+LargeCacheStep);
pool_free(mallocPool, p[0]);
pool_free(mallocPool, p[1]);
}
REQUIRE(loc->getUsedSize());
pool_free(mallocPool, p[3]);
REQUIRE(loc->getLOCSize() < 3*(minLargeObjectSize+LargeCacheStep));
const size_t maxLocalLOCSize = LocalLOCImpl<3,30>::getMaxSize();
REQUIRE(loc->getUsedSize() <= maxLocalLOCSize);
for (int i=0; i<3; i++)
p[i] = pool_malloc(mallocPool, minLargeObjectSize+i*LargeCacheStep);
size_t currUser = loc->getUsedSize();
REQUIRE((!loc->getLOCSize() && currUser >= 3*(minLargeObjectSize+LargeCacheStep)));
p[4] = pool_malloc(mallocPool, minLargeObjectSize+3*LargeCacheStep);
REQUIRE(loc->getUsedSize() - currUser >= minLargeObjectSize+3*LargeCacheStep);
pool_free(mallocPool, p[4]);
REQUIRE(loc->getUsedSize() <= currUser+maxLocalLOCSize);
pool_reset(mallocPool);
REQUIRE((!loc->getLOCSize() && !loc->getUsedSize()));
pool_destroy(mallocPool);
}
// To test LOC we need bigger lists than released by current LocalLOC
// in production code. Create special LocalLOC.
{
LocalLOCImpl<2, 20> lLOC;
pool_create_v1(0, &pol, &mallocPool);
rml::internal::ExtMemoryPool *mPool = &((rml::internal::MemoryPool*)mallocPool)->extMemPool;
const LargeObjectCache *loc = &((rml::internal::MemoryPool*)mallocPool)->extMemPool.loc;
const int LargeCacheStep = LargeObjectCache::LargeBSProps::CacheStep;
for (int i=0; i<22; i++) {
void *o = pool_malloc(mallocPool, minLargeObjectSize+i*LargeCacheStep);
bool ret = lLOC.put(((LargeObjectHdr*)o - 1)->memoryBlock, mPool);
REQUIRE(ret);
o = pool_malloc(mallocPool, minLargeObjectSize+i*LargeCacheStep);
ret = lLOC.put(((LargeObjectHdr*)o - 1)->memoryBlock, mPool);
REQUIRE(ret);
}
lLOC.externalCleanup(mPool);
REQUIRE(!loc->getUsedSize());
pool_destroy(mallocPool);
}
}
void TestObjectRecognition() {
size_t headersSize = sizeof(LargeMemoryBlock)+sizeof(LargeObjectHdr);
unsigned falseObjectSize = 113; // unsigned is the type expected by getObjectSize
size_t obtainedSize;
REQUIRE_MESSAGE(sizeof(BackRefIdx)==sizeof(uintptr_t), "Unexpected size of BackRefIdx");
REQUIRE_MESSAGE(getObjectSize(falseObjectSize)!=falseObjectSize, "Error in test: bad choice for false object size");
void* mem = scalable_malloc(2*slabSize);
REQUIRE_MESSAGE(mem, "Memory was not allocated");
Block* falseBlock = (Block*)alignUp((uintptr_t)mem, slabSize);
falseBlock->objectSize = falseObjectSize;
char* falseSO = (char*)falseBlock + falseObjectSize*7;
REQUIRE_MESSAGE(alignDown(falseSO, slabSize)==(void*)falseBlock, "Error in test: false object offset is too big");
void* bufferLOH = scalable_malloc(2*slabSize + headersSize);
REQUIRE_MESSAGE(bufferLOH, "Memory was not allocated");
LargeObjectHdr* falseLO =
(LargeObjectHdr*)alignUp((uintptr_t)bufferLOH + headersSize, slabSize);
LargeObjectHdr* headerLO = (LargeObjectHdr*)falseLO-1;
headerLO->memoryBlock = (LargeMemoryBlock*)bufferLOH;
headerLO->memoryBlock->unalignedSize = 2*slabSize + headersSize;
headerLO->memoryBlock->objectSize = slabSize + headersSize;
headerLO->backRefIdx = BackRefIdx::newBackRef(/*largeObj=*/true);
setBackRef(headerLO->backRefIdx, headerLO);
REQUIRE_MESSAGE(scalable_msize(falseLO) == slabSize + headersSize,
"Error in test: LOH falsification failed");
removeBackRef(headerLO->backRefIdx);
const int NUM_OF_IDX = BR_MAX_CNT+2;
BackRefIdx idxs[NUM_OF_IDX];
for (int cnt=0; cnt<2; cnt++) {
for (int main = -10; main<10; main++) {
falseBlock->backRefIdx.main = (uint16_t)main;
headerLO->backRefIdx.main = (uint16_t)main;
for (int bl = -10; bl<BR_MAX_CNT+10; bl++) {
falseBlock->backRefIdx.offset = (uint16_t)bl;
headerLO->backRefIdx.offset = (uint16_t)bl;
for (int largeObj = 0; largeObj<2; largeObj++) {
falseBlock->backRefIdx.largeObj = largeObj;
headerLO->backRefIdx.largeObj = largeObj;
obtainedSize = __TBB_malloc_safer_msize(falseSO, nullptr);
REQUIRE_MESSAGE(obtainedSize==0, "Incorrect pointer accepted");
obtainedSize = __TBB_malloc_safer_msize(falseLO, nullptr);
REQUIRE_MESSAGE(obtainedSize==0, "Incorrect pointer accepted");
}
}
}
if (cnt == 1) {
for (int i=0; i<NUM_OF_IDX; i++)
removeBackRef(idxs[i]);
break;
}
for (int i=0; i<NUM_OF_IDX; i++) {
idxs[i] = BackRefIdx::newBackRef(/*largeObj=*/false);
setBackRef(idxs[i], nullptr);
}
}
char *smallPtr = (char*)scalable_malloc(falseObjectSize);
obtainedSize = __TBB_malloc_safer_msize(smallPtr, nullptr);
REQUIRE_MESSAGE(obtainedSize==getObjectSize(falseObjectSize), "Correct pointer not accepted?");
scalable_free(smallPtr);
obtainedSize = __TBB_malloc_safer_msize(mem, nullptr);
REQUIRE_MESSAGE(obtainedSize>=2*slabSize, "Correct pointer not accepted?");
scalable_free(mem);
scalable_free(bufferLOH);
}
class TestBackendWork: public SimpleBarrier {
struct TestBlock {
intptr_t data;
BackRefIdx idx;
};
static const int ITERS = 20;
rml::internal::Backend *backend;
public:
TestBackendWork(rml::internal::Backend *bknd) : backend(bknd) {}
void operator()(int) const {
barrier.wait();
for (int i=0; i<ITERS; i++) {
BlockI *slabBlock = backend->getSlabBlock(1);
REQUIRE_MESSAGE(slabBlock, "Memory was not allocated");
uintptr_t prevBlock = (uintptr_t)slabBlock;
backend->putSlabBlock(slabBlock);
LargeMemoryBlock *largeBlock = backend->getLargeBlock(16*1024);
REQUIRE_MESSAGE(largeBlock, "Memory was not allocated");
REQUIRE_MESSAGE((uintptr_t)largeBlock != prevBlock,
"Large block cannot be reused from slab memory, only in fixed_pool case.");
backend->putLargeBlock(largeBlock);
}
}
};
void TestBackend()
{
rml::MemPoolPolicy pol(getMallocMem, putMallocMem);
rml::MemoryPool *mPool;
pool_create_v1(0, &pol, &mPool);
rml::internal::ExtMemoryPool *ePool = &((rml::internal::MemoryPool*)mPool)->extMemPool;
rml::internal::Backend *backend = &ePool->backend;
for( int p=MaxThread; p>=MinThread; --p ) {
// regression test against an race condition in backend synchronization,
// triggered only when WhiteboxTestingYield() call yields
#if TBB_USE_DEBUG
int num_iters = 10;
#else
int num_iters = 100;
#endif
for (int i = 0; i < num_iters; i++) {
TestBackendWork::initBarrier(p);
utils::NativeParallelFor( p, TestBackendWork(backend) );
}
}
BlockI *block = backend->getSlabBlock(1);
REQUIRE_MESSAGE(block, "Memory was not allocated");
backend->putSlabBlock(block);
// Checks if the backend increases and decreases the amount of allocated memory when memory is allocated.
const size_t memSize0 = backend->getTotalMemSize();
LargeMemoryBlock *lmb = backend->getLargeBlock(4*MByte);
REQUIRE( lmb );
const size_t memSize1 = backend->getTotalMemSize();
REQUIRE_MESSAGE( (intptr_t)(memSize1-memSize0) >= 4*MByte, "The backend has not increased the amount of using memory." );
backend->putLargeBlock(lmb);
const size_t memSize2 = backend->getTotalMemSize();
REQUIRE_MESSAGE( memSize2 == memSize0, "The backend has not decreased the amount of using memory." );
pool_destroy(mPool);
}
void TestBitMask()
{
BitMaskMin<256> mask;
mask.reset();
mask.set(10, 1);
mask.set(5, 1);
mask.set(1, 1);
REQUIRE(mask.getMinTrue(2) == 5);
mask.reset();
mask.set(0, 1);
mask.set(64, 1);
mask.set(63, 1);
mask.set(200, 1);
mask.set(255, 1);
REQUIRE(mask.getMinTrue(0) == 0);
REQUIRE(mask.getMinTrue(1) == 63);
REQUIRE(mask.getMinTrue(63) == 63);
REQUIRE(mask.getMinTrue(64) == 64);
REQUIRE(mask.getMinTrue(101) == 200);
REQUIRE(mask.getMinTrue(201) == 255);
mask.set(255, 0);
REQUIRE(mask.getMinTrue(201) == -1);
}
size_t getMemSize()
{
return defaultMemPool->extMemPool.backend.getTotalMemSize();
}
class CheckNotCached {
static size_t memSize;
public:
void operator() () const {
int res = scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, 1);
REQUIRE(res == TBBMALLOC_OK);
if (memSize==(size_t)-1) {
memSize = getMemSize();
} else {
REQUIRE(getMemSize() == memSize);
memSize=(size_t)-1;
}
}
};
size_t CheckNotCached::memSize = (size_t)-1;
class RunTestHeapLimit: public SimpleBarrier {
public:
void operator()( int /*mynum*/ ) const {
// Provoke bootstrap heap initialization before recording memory size.
// NOTE: The initialization should be processed only with a "large"
// object. Since the "small" object allocation lead to blocking of a
// slab as an active block and it is impossible to release it with
// foreign thread.
scalable_free(scalable_malloc(minLargeObjectSize));
barrier.wait(CheckNotCached());
for (size_t n = minLargeObjectSize; n < 5*1024*1024; n += 128*1024)
scalable_free(scalable_malloc(n));
barrier.wait(CheckNotCached());
}
};
void TestHeapLimit()
{
if(!isMallocInitialized()) doInitialization();
// tiny limit to stop caching
int res = scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, 1);
REQUIRE(res == TBBMALLOC_OK);
// Provoke bootstrap heap initialization before recording memory size.
scalable_free(scalable_malloc(8));
size_t n, sizeBefore = getMemSize();
// Try to provoke call to OS for memory to check that
// requests are not fulfilled from caches.
// Single call is not enough here because of backend fragmentation.
for (n = minLargeObjectSize; n < 10*1024*1024; n += 16*1024) {
void *p = scalable_malloc(n);
bool leave = (sizeBefore != getMemSize());
scalable_free(p);
if (leave)
break;
REQUIRE_MESSAGE(sizeBefore == getMemSize(), "No caching expected");
}
REQUIRE_MESSAGE(n < 10*1024*1024, "scalable_malloc doesn't provoke OS request for memory, "
"is some internal cache still used?");
for( int p=MaxThread; p>=MinThread; --p ) {
RunTestHeapLimit::initBarrier( p );
utils::NativeParallelFor( p, RunTestHeapLimit() );
}
// it's try to match limit as well as set limit, so call here
res = scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, 1);
REQUIRE(res == TBBMALLOC_OK);
size_t m = getMemSize();
REQUIRE(sizeBefore == m);
// restore default
res = scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, 0);
REQUIRE(res == TBBMALLOC_OK);
}
void checkNoHugePages()
{
REQUIRE_MESSAGE(!hugePages.isEnabled, "scalable_allocation_mode "
"must have priority over environment variable");
}
/*---------------------------------------------------------------------------*/
// The regression test against bugs in TBBMALLOC_CLEAN_ALL_BUFFERS allocation command.
// The idea is to allocate and deallocate a set of objects randomly in parallel.
// For large sizes (16K), it forces conflicts in backend during coalescing.
// For small sizes (4K), it forces cross-thread deallocations and then orphaned slabs.
// Global cleanup should process orphaned slabs and the queue of postponed coalescing
// requests, otherwise it will not be able to unmap all unused memory.
const int num_allocs = 10*1024;
void *ptrs[num_allocs];
std::atomic<int> alloc_counter;
static thread_local bool free_was_called = false;
inline void multiThreadAlloc(size_t alloc_size) {
for( int i = alloc_counter++; i < num_allocs; i = alloc_counter++ ) {
ptrs[i] = scalable_malloc( alloc_size );
REQUIRE_MESSAGE( ptrs[i] != nullptr, "scalable_malloc returned zero." );
}
}
inline void crossThreadDealloc() {
free_was_called = false;
for( int i = --alloc_counter; i >= 0; i = --alloc_counter ) {
if (i < num_allocs) {
scalable_free(ptrs[i]);
free_was_called = true;
}
}
}
template<int AllocSize>
struct TestCleanAllBuffersBody : public SimpleBarrier {
void operator() ( int ) const {
barrier.wait();
multiThreadAlloc(AllocSize);
barrier.wait();
crossThreadDealloc();
}
};
template<int AllocSize>
void TestCleanAllBuffers() {
const int num_threads = 8;
// Clean up if something was allocated before the test
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS,nullptr);
size_t memory_in_use_before = getMemSize();
alloc_counter = 0;
TestCleanAllBuffersBody<AllocSize>::initBarrier(num_threads);
utils::NativeParallelFor(num_threads, TestCleanAllBuffersBody<AllocSize>());
// TODO: reproduce the bug conditions more reliably
if ( defaultMemPool->extMemPool.backend.coalescQ.blocksToFree.load(std::memory_order_relaxed) == nullptr ) {
INFO( "Warning: The queue of postponed coalescing requests is empty. ");
INFO( "Unable to create the condition for bug reproduction.\n" );
}
int result = scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS,nullptr);
REQUIRE_MESSAGE( result == TBBMALLOC_OK, "The cleanup request has not cleaned anything." );
size_t memory_in_use_after = getMemSize();
size_t memory_leak = memory_in_use_after - memory_in_use_before;
INFO( "memory_in_use_before = " << memory_in_use_before << ", memory_in_use_after = " << memory_in_use_after << "\n" );
REQUIRE_MESSAGE( memory_leak == 0, "Cleanup was unable to release all allocated memory." );
}
//! Force cross thread deallocation of small objects to create a set of privatizable slab blocks.
//! TBBMALLOC_CLEAN_THREAD_BUFFERS command have to privatize all the block.
struct TestCleanThreadBuffersBody : public SimpleBarrier {
void operator() ( int ) const {
barrier.wait();
multiThreadAlloc(2*1024);
barrier.wait();
crossThreadDealloc();
barrier.wait();
int result = scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS,nullptr);
if (result != TBBMALLOC_OK && free_was_called) {
REPORT("Warning: clean-up request for this particular thread has not cleaned anything.");
}
// Check that TLS was cleaned fully
TLSData *tlsCurr = defaultMemPool->getTLS(/*create=*/false);
if (tlsCurr) {
for (int i = 0; i < numBlockBinLimit; i++) {
REQUIRE_MESSAGE(!(tlsCurr->bin[i].activeBlk), "Some bin was not cleaned.");
}
REQUIRE_MESSAGE(!(tlsCurr->lloc.head.load(std::memory_order_relaxed)), "Local LOC was not cleaned.");
REQUIRE_MESSAGE(!(tlsCurr->freeSlabBlocks.head.load(std::memory_order_relaxed)), "Free Block pool was not cleaned.");
}
}
};
void TestCleanThreadBuffers() {
const int num_threads = 8;
// Clean up if something was allocated before the test
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS,nullptr);
alloc_counter = 0;
TestCleanThreadBuffersBody::initBarrier(num_threads);
utils::NativeParallelFor(num_threads, TestCleanThreadBuffersBody());
}
/*---------------------------------------------------------------------------*/
/*------------------------- Large Object Cache tests ------------------------*/
#if _MSC_VER==1600 || _MSC_VER==1500
// ignore C4275: non dll-interface class 'stdext::exception' used as
// base for dll-interface class 'std::bad_cast'
#pragma warning (disable: 4275)
#endif
#include <vector>
#include <list>
// default constructor of CacheBin
template<typename Props>
rml::internal::LargeObjectCacheImpl<Props>::CacheBin::CacheBin() {}
template<typename Props>
class CacheBinModel {
typedef typename rml::internal::LargeObjectCacheImpl<Props>::CacheBin CacheBinType;
// The emulated cache bin.
CacheBinType cacheBinModel;
// The reference to real cache bin inside the large object cache.
CacheBinType &cacheBin;
const size_t size;
// save only current time
std::list<uintptr_t> objects;
void doCleanup() {
if ( cacheBinModel.cachedSize.load(std::memory_order_relaxed) >
Props::TooLargeFactor*cacheBinModel.usedSize.load(std::memory_order_relaxed)) tooLargeLOC++;
else tooLargeLOC = 0;
intptr_t threshold = cacheBinModel.ageThreshold.load(std::memory_order_relaxed);
if (tooLargeLOC > 3 && threshold) {
threshold = (threshold + cacheBinModel.meanHitRange.load(std::memory_order_relaxed)) / 2;
cacheBinModel.ageThreshold.store(threshold, std::memory_order_relaxed);
}
uintptr_t currTime = cacheCurrTime;
while (!objects.empty() && (intptr_t)(currTime - objects.front()) > threshold) {
cacheBinModel.cachedSize.store(cacheBinModel.cachedSize.load(std::memory_order_relaxed) - size, std::memory_order_relaxed);
cacheBinModel.lastCleanedAge = objects.front();
objects.pop_front();
}
cacheBinModel.oldest.store(objects.empty() ? 0 : objects.front(), std::memory_order_relaxed);
}
public:
CacheBinModel(CacheBinType &_cacheBin, size_t allocSize) : cacheBin(_cacheBin), size(allocSize) {
cacheBinModel.oldest.store(cacheBin.oldest.load(std::memory_order_relaxed), std::memory_order_relaxed);
cacheBinModel.lastCleanedAge = cacheBin.lastCleanedAge;
cacheBinModel.ageThreshold.store(cacheBin.ageThreshold.load(std::memory_order_relaxed), std::memory_order_relaxed);
cacheBinModel.usedSize.store(cacheBin.usedSize.load(std::memory_order_relaxed), std::memory_order_relaxed);
cacheBinModel.cachedSize.store(cacheBin.cachedSize.load(std::memory_order_relaxed), std::memory_order_relaxed);
cacheBinModel.meanHitRange.store(cacheBin.meanHitRange.load(std::memory_order_relaxed), std::memory_order_relaxed);
cacheBinModel.lastGet = cacheBin.lastGet;
}
void get() {
uintptr_t currTime = ++cacheCurrTime;
if ( objects.empty() ) {
const uintptr_t sinceLastGet = currTime - cacheBinModel.lastGet;
intptr_t threshold = cacheBinModel.ageThreshold.load(std::memory_order_relaxed);
if ((threshold && sinceLastGet > Props::LongWaitFactor * threshold) ||
(cacheBinModel.lastCleanedAge && sinceLastGet > Props::LongWaitFactor * (cacheBinModel.lastCleanedAge - cacheBinModel.lastGet))) {
cacheBinModel.lastCleanedAge = 0;
cacheBinModel.ageThreshold.store(0, std::memory_order_relaxed);
}
if (cacheBinModel.lastCleanedAge)
cacheBinModel.ageThreshold.store(Props::OnMissFactor * (currTime - cacheBinModel.lastCleanedAge), std::memory_order_relaxed);
} else {
uintptr_t obj_age = objects.back();
objects.pop_back();
if (objects.empty()) cacheBinModel.oldest.store(0, std::memory_order_relaxed);
intptr_t hitRange = currTime - obj_age;
intptr_t mean = cacheBinModel.meanHitRange.load(std::memory_order_relaxed);
mean = mean ? (mean + hitRange) / 2 : hitRange;
cacheBinModel.meanHitRange.store(mean, std::memory_order_relaxed);
cacheBinModel.cachedSize.store(cacheBinModel.cachedSize.load(std::memory_order_relaxed) - size, std::memory_order_relaxed);
}
cacheBinModel.usedSize.store(cacheBinModel.usedSize.load(std::memory_order_relaxed) + size, std::memory_order_relaxed);
cacheBinModel.lastGet = currTime;
if ( currTime % rml::internal::cacheCleanupFreq == 0 ) doCleanup();
}
void putList( int num ) {
uintptr_t currTime = cacheCurrTime;
cacheCurrTime += num;
cacheBinModel.usedSize.store(cacheBinModel.usedSize.load(std::memory_order_relaxed) - num * size, std::memory_order_relaxed);
bool cleanUpNeeded = false;
if ( !cacheBinModel.lastCleanedAge ) {
cacheBinModel.lastCleanedAge = ++currTime;
cleanUpNeeded |= currTime % rml::internal::cacheCleanupFreq == 0;
num--;
}
for ( int i=1; i<=num; ++i ) {
currTime+=1;
cleanUpNeeded |= currTime % rml::internal::cacheCleanupFreq == 0;
if (objects.empty())
cacheBinModel.oldest.store(currTime, std::memory_order_relaxed);
objects.push_back(currTime);
}
cacheBinModel.cachedSize.store(cacheBinModel.cachedSize.load(std::memory_order_relaxed) + num * size, std::memory_order_relaxed);
if ( cleanUpNeeded ) doCleanup();
}
void check() {
CHECK_FAST(cacheBinModel.oldest.load(std::memory_order_relaxed) == cacheBin.oldest.load(std::memory_order_relaxed));
CHECK_FAST(cacheBinModel.lastCleanedAge == cacheBin.lastCleanedAge);
CHECK_FAST(cacheBinModel.ageThreshold.load(std::memory_order_relaxed) == cacheBin.ageThreshold.load(std::memory_order_relaxed));
CHECK_FAST(cacheBinModel.usedSize.load(std::memory_order_relaxed) == cacheBin.usedSize.load(std::memory_order_relaxed));
CHECK_FAST(cacheBinModel.cachedSize.load(std::memory_order_relaxed) == cacheBin.cachedSize.load(std::memory_order_relaxed));
CHECK_FAST(cacheBinModel.meanHitRange.load(std::memory_order_relaxed) == cacheBin.meanHitRange.load(std::memory_order_relaxed));
CHECK_FAST(cacheBinModel.lastGet == cacheBin.lastGet);
}
static uintptr_t cacheCurrTime;
static intptr_t tooLargeLOC;
};
template<typename Props> uintptr_t CacheBinModel<Props>::cacheCurrTime;
template<typename Props> intptr_t CacheBinModel<Props>::tooLargeLOC;
template <typename Scenario>
void LOCModelTester() {
defaultMemPool->extMemPool.loc.cleanAll();
defaultMemPool->extMemPool.loc.reset();
const size_t size = 16 * 1024;
const size_t headersSize = sizeof(rml::internal::LargeMemoryBlock)+sizeof(rml::internal::LargeObjectHdr);
const size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+rml::internal::largeObjectAlignment);
const int binIdx = defaultMemPool->extMemPool.loc.largeCache.sizeToIdx( allocationSize );
CacheBinModel<rml::internal::LargeObjectCache::LargeCacheTypeProps>::cacheCurrTime = defaultMemPool->extMemPool.loc.cacheCurrTime;
CacheBinModel<rml::internal::LargeObjectCache::LargeCacheTypeProps>::tooLargeLOC = defaultMemPool->extMemPool.loc.largeCache.tooLargeLOC;
CacheBinModel<rml::internal::LargeObjectCache::LargeCacheTypeProps> cacheBinModel(defaultMemPool->extMemPool.loc.largeCache.bin[binIdx], allocationSize);
Scenario scen;
for (rml::internal::LargeMemoryBlock *lmb = scen.next(); (intptr_t)lmb != (intptr_t)-1; lmb = scen.next()) {
if ( lmb ) {
int num=1;
for (rml::internal::LargeMemoryBlock *curr = lmb; curr->next; curr=curr->next) num+=1;
defaultMemPool->extMemPool.freeLargeObject(lmb);
cacheBinModel.putList(num);
} else {
scen.saveLmb(defaultMemPool->extMemPool.mallocLargeObject(defaultMemPool, allocationSize));
cacheBinModel.get();
}
cacheBinModel.check();
}
}
class TestBootstrap {
bool allocating;
std::vector<rml::internal::LargeMemoryBlock*> lmbArray;
public:
TestBootstrap() : allocating(true) {}
rml::internal::LargeMemoryBlock* next() {
if ( allocating )
return nullptr;
if ( !lmbArray.empty() ) {
rml::internal::LargeMemoryBlock *ret = lmbArray.back();
lmbArray.pop_back();
return ret;
}
return (rml::internal::LargeMemoryBlock*)-1;
}
void saveLmb( rml::internal::LargeMemoryBlock *lmb ) {
lmb->next = nullptr;
lmbArray.push_back(lmb);
if ( lmbArray.size() == 1000 ) allocating = false;
}
};
class TestRandom {
std::vector<rml::internal::LargeMemoryBlock*> lmbArray;
int numOps;
public:
TestRandom() : numOps(100000) {
srand(1234);
}
rml::internal::LargeMemoryBlock* next() {
if ( numOps-- ) {
if ( lmbArray.empty() || rand() / (RAND_MAX>>1) == 0 )
return nullptr;
size_t ind = rand()%lmbArray.size();
if ( ind != lmbArray.size()-1 ) std::swap(lmbArray[ind],lmbArray[lmbArray.size()-1]);
rml::internal::LargeMemoryBlock *lmb = lmbArray.back();
lmbArray.pop_back();
return lmb;
}
return (rml::internal::LargeMemoryBlock*)-1;
}
void saveLmb( rml::internal::LargeMemoryBlock *lmb ) {
lmb->next = nullptr;
lmbArray.push_back(lmb);
}
};
class TestCollapsingMallocFree : public SimpleBarrier {
public:
static const int NUM_ALLOCS = 100000;
const int num_threads;
TestCollapsingMallocFree( int _num_threads ) : num_threads(_num_threads) {
initBarrier( num_threads );
}
void operator() ( int ) const {
const size_t size = 16 * 1024;
const size_t headersSize = sizeof(rml::internal::LargeMemoryBlock)+sizeof(rml::internal::LargeObjectHdr);
const size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+rml::internal::largeObjectAlignment);
barrier.wait();
for ( int i=0; i<NUM_ALLOCS; ++i ) {
defaultMemPool->extMemPool.freeLargeObject(
defaultMemPool->extMemPool.mallocLargeObject(defaultMemPool, allocationSize) );
}
}
void check() {
REQUIRE( tbbmalloc_whitebox::locGetProcessed == tbbmalloc_whitebox::locPutProcessed);
REQUIRE_MESSAGE( tbbmalloc_whitebox::locGetProcessed < num_threads*NUM_ALLOCS, "No one Malloc/Free pair was collapsed." );
}
};
class TestCollapsingBootstrap : public SimpleBarrier {
class CheckNumAllocs {
const int num_threads;
public:
CheckNumAllocs( int _num_threads ) : num_threads(_num_threads) {}
void operator()() const {
REQUIRE( tbbmalloc_whitebox::locGetProcessed == num_threads*NUM_ALLOCS );
REQUIRE( tbbmalloc_whitebox::locPutProcessed == 0 );
}
};
public:
static const int NUM_ALLOCS = 1000;
const int num_threads;
TestCollapsingBootstrap( int _num_threads ) : num_threads(_num_threads) {
initBarrier( num_threads );
}
void operator() ( int ) const {
const size_t size = 16 * 1024;
size_t headersSize = sizeof(rml::internal::LargeMemoryBlock)+sizeof(rml::internal::LargeObjectHdr);
size_t allocationSize = LargeObjectCache::alignToBin(size+headersSize+rml::internal::largeObjectAlignment);
barrier.wait();
rml::internal::LargeMemoryBlock *lmbArray[NUM_ALLOCS];
for ( int i=0; i<NUM_ALLOCS; ++i )
lmbArray[i] = defaultMemPool->extMemPool.mallocLargeObject(defaultMemPool, allocationSize);
barrier.wait(CheckNumAllocs(num_threads));
for ( int i=0; i<NUM_ALLOCS; ++i )
defaultMemPool->extMemPool.freeLargeObject( lmbArray[i] );
}
void check() {
REQUIRE( tbbmalloc_whitebox::locGetProcessed == tbbmalloc_whitebox::locPutProcessed );
REQUIRE( tbbmalloc_whitebox::locGetProcessed == num_threads*NUM_ALLOCS );
}
};
template <typename Scenario>
void LOCCollapsingTester( int num_threads ) {
tbbmalloc_whitebox::locGetProcessed = 0;
tbbmalloc_whitebox::locPutProcessed = 0;
defaultMemPool->extMemPool.loc.cleanAll();
defaultMemPool->extMemPool.loc.reset();
Scenario scen(num_threads);
utils::NativeParallelFor(num_threads, scen);
scen.check();
}
void TestLOC() {
LOCModelTester<TestBootstrap>();
LOCModelTester<TestRandom>();
const int num_threads = 16;
LOCCollapsingTester<TestCollapsingBootstrap>( num_threads );
if ( num_threads > 1 ) {
INFO( "num_threads = " << num_threads );
LOCCollapsingTester<TestCollapsingMallocFree>( num_threads );
} else {
REPORT( "Warning: concurrency is too low for TestMallocFreeCollapsing ( num_threads = %d )\n", num_threads );
}
}
/*---------------------------------------------------------------------------*/
void *findCacheLine(void *p) {
return (void*)alignDown((uintptr_t)p, estimatedCacheLineSize);
}
// test that internals of Block are at expected cache lines
void TestSlabAlignment() {
const size_t min_sz = 8;
const int space = 2*16*1024; // fill at least 2 slabs
void *pointers[space / min_sz]; // the worst case is min_sz byte object
for (size_t sz = min_sz; sz <= 64; sz *= 2) {
for (size_t i = 0; i < space/sz; i++) {
pointers[i] = scalable_malloc(sz);
Block *block = (Block *)alignDown(pointers[i], slabSize);
REQUIRE_MESSAGE(findCacheLine(&block->isFull) != findCacheLine(pointers[i]),
"A user object must not share a cache line with slab control structures.");
REQUIRE_MESSAGE(findCacheLine(&block->next) != findCacheLine(&block->nextPrivatizable),
"GlobalBlockFields and LocalBlockFields must be on different cache lines.");
}
for (size_t i = 0; i < space/sz; i++)
scalable_free(pointers[i]);
}
}
#include "common/memory_usage.h"
// TODO: Consider adding Huge Pages support on macOS (special mmap flag).
// Transparent Huge pages support could be enabled by different system parsing mechanism,
// because there is no /proc/meminfo on macOS
#if __unix__
void TestTHP() {
// Get backend from default memory pool
rml::internal::Backend *backend = &(defaultMemPool->extMemPool.backend);
// Configure malloc to use huge pages
scalable_allocation_mode(USE_HUGE_PAGES, 1);
REQUIRE_MESSAGE(hugePages.isEnabled, "Huge pages should be enabled via scalable_allocation_mode");
#if defined __loongarch64
const int HUGE_PAGE_SIZE = 32 * 1024 * 1024;
#else
const int HUGE_PAGE_SIZE = 2 * 1024 * 1024;
#endif
// allocCount transparent huge pages should be allocated
const int allocCount = 10;
// Allocate huge page aligned memory regions to track system
// counters for transparent huge pages
void* allocPtrs[allocCount];
// Wait for the system to update process memory info files after other tests
utils::Sleep(4000);
// Parse system info regarding current THP status
size_t currentSystemTHPCount = utils::getSystemTHPCount();
size_t currentSystemTHPAllocatedSize = utils::getSystemTHPAllocatedSize();
for (int i = 0; i < allocCount; i++) {
// Allocation size have to be aligned on page size
size_t allocSize = HUGE_PAGE_SIZE - (i * 1000);
// Map memory
allocPtrs[i] = backend->allocRawMem(allocSize);
REQUIRE_MESSAGE(allocPtrs[i], "Allocation not succeeded.");
REQUIRE_MESSAGE(allocSize == HUGE_PAGE_SIZE,
"Allocation size have to be aligned on Huge Page size internally.");
// First touch policy - no real pages allocated by OS without accessing the region
memset(allocPtrs[i], 1, allocSize);
REQUIRE_MESSAGE(isAligned(allocPtrs[i], HUGE_PAGE_SIZE),
"The pointer returned by scalable_malloc is not aligned on huge page size.");
}
// Wait for the system to update process memory info files after allocations
utils::Sleep(4000);
// Generally, kernel tries to allocate transparent huge pages, but sometimes it cannot do this
// (tested on SLES 11/12), so consider this system info checks as a remark.
// Also, some systems can allocate more memory then needed in background (tested on Ubuntu 14.04)
size_t newSystemTHPCount = utils::getSystemTHPCount();
size_t newSystemTHPAllocatedSize = utils::getSystemTHPAllocatedSize();
if ((newSystemTHPCount - currentSystemTHPCount) < allocCount
&& (newSystemTHPAllocatedSize - currentSystemTHPAllocatedSize) / (2 * 1024) < allocCount) {
REPORT( "Warning: the system didn't allocate needed amount of THPs.\n" );
}
// Test memory unmap
for (int i = 0; i < allocCount; i++) {
REQUIRE_MESSAGE(backend->freeRawMem(allocPtrs[i], HUGE_PAGE_SIZE),
"Something went wrong during raw memory free");
}
}
#endif // __unix__
inline size_t getStabilizedMemUsage() {
for (int i = 0; i < 3; i++) utils::GetMemoryUsage();
return utils::GetMemoryUsage();
}
inline void* reallocAndRetrieve(void* origPtr, size_t reallocSize, size_t& origBlockSize, size_t& reallocBlockSize) {
rml::internal::LargeMemoryBlock* origLmb = ((rml::internal::LargeObjectHdr *)origPtr - 1)->memoryBlock;
origBlockSize = origLmb->unalignedSize;
void* reallocPtr = rml::internal::reallocAligned(defaultMemPool, origPtr, reallocSize, 0);
// Retrieved reallocated block information
rml::internal::LargeMemoryBlock* reallocLmb = ((rml::internal::LargeObjectHdr *)reallocPtr - 1)->memoryBlock;
reallocBlockSize = reallocLmb->unalignedSize;
return reallocPtr;
}
void TestReallocDecreasing() {
/* Testing that actual reallocation happens for large objects that do not fit the backend cache
but decrease in size by a factor of >= 2. */
size_t startSize = 100 * 1024 * 1024;
size_t maxBinnedSize = defaultMemPool->extMemPool.backend.getMaxBinnedSize();
void* origPtr = scalable_malloc(startSize);
void* reallocPtr = nullptr;
// Realloc on 1MB less size
size_t origBlockSize = 42;
size_t reallocBlockSize = 43;
reallocPtr = reallocAndRetrieve(origPtr, startSize - 1 * 1024 * 1024, origBlockSize, reallocBlockSize);
REQUIRE_MESSAGE(origBlockSize == reallocBlockSize, "Reallocated block size shouldn't change");
REQUIRE_MESSAGE(reallocPtr == origPtr, "Original pointer shouldn't change");
// Repeated decreasing reallocation while max cache bin size reached
size_t reallocSize = (startSize / 2) - 1000; // exact realloc
while(reallocSize > maxBinnedSize) {
// Prevent huge/large objects caching
defaultMemPool->extMemPool.loc.cleanAll();
// Prevent local large object caching
TLSData *tls = defaultMemPool->getTLS(/*create=*/false);
tls->lloc.externalCleanup(&defaultMemPool->extMemPool);
size_t sysMemUsageBefore = getStabilizedMemUsage();
size_t totalMemSizeBefore = defaultMemPool->extMemPool.backend.getTotalMemSize();
reallocPtr = reallocAndRetrieve(origPtr, reallocSize, origBlockSize, reallocBlockSize);
REQUIRE_MESSAGE(origBlockSize > reallocBlockSize, "Reallocated block size should decrease.");
size_t sysMemUsageAfter = getStabilizedMemUsage();
size_t totalMemSizeAfter = defaultMemPool->extMemPool.backend.getTotalMemSize();
// Prevent false checking when backend caching occurred or could not read system memory usage info
if (totalMemSizeBefore > totalMemSizeAfter && sysMemUsageAfter != 0 && sysMemUsageBefore != 0) {
REQUIRE_MESSAGE(sysMemUsageBefore > sysMemUsageAfter, "Memory were not released");
}
origPtr = reallocPtr;
reallocSize = (reallocSize / 2) - 1000; // exact realloc
}
scalable_free(reallocPtr);
/* TODO: Decreasing reallocation of large objects that fit backend cache */
/* TODO: Small objects decreasing reallocation test */
}
#if !__TBB_WIN8UI_SUPPORT && defined(_WIN32)
#include "../../src/tbbmalloc_proxy/function_replacement.cpp"
#include <string>
namespace FunctionReplacement {
FunctionInfo funcInfo = { "funcname","dllname" };
char **func_replacement_log;
int status;
void LogCleanup() {
// Free all allocated memory
for (unsigned i = 0; i < Log::record_number; i++){
HeapFree(GetProcessHeap(), 0, Log::records[i]);
}
for (unsigned i = 0; i < Log::RECORDS_COUNT + 1; i++){
Log::records[i] = nullptr;
}
Log::replacement_status = true;
Log::record_number = 0;
}
void TestEmptyLog() {
status = TBB_malloc_replacement_log(&func_replacement_log);
REQUIRE_MESSAGE(status == -1, "Status is true, but log is empty");
REQUIRE_MESSAGE(*func_replacement_log == nullptr, "Log must be empty");
}
void TestLogOverload() {
for (int i = 0; i < 1000; i++)
Log::record(funcInfo, "opcode string", true);
status = TBB_malloc_replacement_log(&func_replacement_log);
// Find last record
for (; *(func_replacement_log + 1) != 0; func_replacement_log++) {}
std::string last_line(*func_replacement_log);
REQUIRE_MESSAGE(status == 0, "False status, but all functions found");
REQUIRE_MESSAGE(last_line.compare("Log was truncated.") == 0, "Log overflow was not handled");
// Change status
Log::record(funcInfo, "opcode string", false);
status = TBB_malloc_replacement_log(nullptr);
REQUIRE_MESSAGE(status == -1, "Status is true, but we have false search case");
LogCleanup();
}
void TestFalseSearchCase() {
Log::record(funcInfo, "opcode string", false);
std::string expected_line = "Fail: "+ std::string(funcInfo.funcName) + " (" +
std::string(funcInfo.dllName) + "), byte pattern: <opcode string>";
status = TBB_malloc_replacement_log(&func_replacement_log);
REQUIRE_MESSAGE(expected_line.compare(*func_replacement_log) == 0, "Wrong last string contnent");
REQUIRE_MESSAGE(status == -1, "Status is true, but we have false search case");
LogCleanup();
}
void TestWrongFunctionInDll(){
HMODULE ucrtbase_handle = GetModuleHandle("ucrtbase.dll");
if (ucrtbase_handle) {
IsPrologueKnown("ucrtbase.dll", "fake_function", nullptr, ucrtbase_handle);
std::string expected_line = "Fail: fake_function (ucrtbase.dll), byte pattern: <unknown>";
status = TBB_malloc_replacement_log(&func_replacement_log);
REQUIRE_MESSAGE(expected_line.compare(*func_replacement_log) == 0, "Wrong last string contnent");
REQUIRE_MESSAGE(status == -1, "Status is true, but we have false search case");
LogCleanup();
} else {
INFO("Cannot found ucrtbase.dll on system, test skipped!\n");
}
}
}
void TesFunctionReplacementLog() {
using namespace FunctionReplacement;
// Do not reorder the test cases
TestEmptyLog();
TestLogOverload();
TestFalseSearchCase();
TestWrongFunctionInDll();
}
#endif /*!__TBB_WIN8UI_SUPPORT && defined(_WIN32)*/
#include <cmath> // pow function
// Huge objects cache: Size = MinSize * (2 ^ (Index / StepFactor) formula gives value for the bin size,
// but it is not matched with our sizeToIdx approximation algorithm, where step sizes between major
// (power of 2) sizes are equal. Used internally for the test. Static cast to avoid warnings.
inline size_t hocIdxToSizeFormula(int idx) {
return static_cast<size_t>(float(rml::internal::LargeObjectCache::maxLargeSize) *
pow(2, float(idx) / float(rml::internal::LargeObjectCache::HugeBSProps::StepFactor)));
}
// Large objects cache arithmetic progression
inline size_t locIdxToSizeFormula(int idx) {
return rml::internal::LargeObjectCache::LargeBSProps::MinSize +
(idx * rml::internal::LargeObjectCache::LargeBSProps::CacheStep);
}
template <typename CacheType>
void TestLOCacheBinsConverterImpl(int idx, size_t checkingSize) {
size_t alignedSize = CacheType::alignToBin(checkingSize);
REQUIRE_MESSAGE(alignedSize >= checkingSize, "Size is not correctly aligned");
int calcIdx = CacheType::sizeToIdx(alignedSize);
REQUIRE_MESSAGE(calcIdx == idx, "Index from size calculated not correctly");
}
void TestLOCacheBinsConverter(){
typedef rml::internal::LargeObjectCache::LargeCacheType LargeCacheType;
typedef rml::internal::LargeObjectCache::HugeCacheType HugeCacheType;
size_t checkingSize = 0;
for (int idx = 0; idx < LargeCacheType::numBins; idx++) {
checkingSize = locIdxToSizeFormula(idx);
TestLOCacheBinsConverterImpl<LargeCacheType>(idx, checkingSize);
}
for (int idx = 0; idx < HugeCacheType::numBins; idx++) {
checkingSize = hocIdxToSizeFormula(idx);
TestLOCacheBinsConverterImpl<HugeCacheType>(idx, checkingSize);
}
}
struct HOThresholdTester {
LargeObjectCache* loc;
size_t hugeSize;
static const size_t sieveSize = LargeObjectCache::defaultMaxHugeSize;
// Sieve starts from 64MB (24-th cache bin), enough to check 4 bins radius range
// for decent memory consumption (especially for 32-bit arch)
static const int MIN_BIN_IDX = 21;
static const int MAX_BIN_IDX = 27;
enum CleanupType {
NO_CLEANUP,
REGULAR_CLEANUP,
HARD_CLEANUP
};
void populateCache() {
LargeMemoryBlock* loArray[MAX_BIN_IDX - MIN_BIN_IDX];
// To avoid backend::softCacheCleanup consequences (cleanup by isLOCToolarge),
// firstly allocate all objects and then cache them at once.
// Morevover, just because first cache item will still be dropped from cache because of the lack of history,
// redo allocation 2 times.
for (int idx = MIN_BIN_IDX; idx < MAX_BIN_IDX; ++idx) {
size_t allocationSize = alignedSizeFromIdx(idx);
int localIdx = idx - MIN_BIN_IDX;
loArray[localIdx] = defaultMemPool->extMemPool.mallocLargeObject(defaultMemPool, allocationSize);
REQUIRE_MESSAGE(loArray[localIdx], "Large object was not allocated.");
loc->put(loArray[localIdx]);
loArray[localIdx] = defaultMemPool->extMemPool.mallocLargeObject(defaultMemPool, allocationSize);
}
for (int idx = MIN_BIN_IDX; idx < MAX_BIN_IDX; ++idx) {
loc->put(loArray[idx - MIN_BIN_IDX]);
}
}
void clean(bool all) {
if (all) {
// Should avoid any threshold and clean all bins
loc->cleanAll();
} else {
// Regular cleanup should do nothing for bins above threshold. Decreasing option used
// for the test to be sure that all objects below defaultMaxHugeSize (sieveSize) were cleaned
loc->regularCleanup();
loc->decreasingCleanup();
}
}
void check(CleanupType type) {
for (int idx = MIN_BIN_IDX; idx < MAX_BIN_IDX; ++idx) {
size_t objectSize = alignedSizeFromIdx(idx);
// Cache object below sieve threshold and above huge object threshold should be cached
// (other should be sieved). Unless all cache is dropped. Regular cleanup drops object only below sieve size.
if (type == NO_CLEANUP && sizeInCacheRange(objectSize)) {
REQUIRE_MESSAGE(objectInCacheBin(idx, objectSize), "Object was released from cache, it shouldn't.");
} else if (type == REGULAR_CLEANUP && (objectSize >= hugeSize)) {
REQUIRE_MESSAGE(objectInCacheBin(idx, objectSize), "Object was released from cache, it shouldn't.");
} else { // HARD_CLEANUP
REQUIRE_MESSAGE(cacheBinEmpty(idx), "Object is still cached.");
}
}
}
private:
bool cacheBinEmpty(int idx) {
return (loc->hugeCache.bin[idx].cachedSize.load(std::memory_order_relaxed) == 0 && loc->hugeCache.bin[idx].get() == nullptr);
}
bool objectInCacheBin(int idx, size_t size) {
return (loc->hugeCache.bin[idx].cachedSize.load(std::memory_order_relaxed) != 0 &&
loc->hugeCache.bin[idx].cachedSize.load(std::memory_order_relaxed) % size == 0);
}
bool sizeInCacheRange(size_t size) {
return size <= sieveSize || size >= hugeSize;
}
size_t alignedSizeFromIdx(int idx) {
return rml::internal::LargeObjectCache::alignToBin(hocIdxToSizeFormula(idx));
}
};
// TBBMALLOC_SET_HUGE_OBJECT_THRESHOLD value should be set before the test,
// through scalable API or env variable
void TestHugeSizeThresholdImpl(LargeObjectCache* loc, size_t hugeSize, bool fullTesting) {
HOThresholdTester test = {loc, hugeSize};
test.populateCache();
// Check the default sieve value
test.check(HOThresholdTester::NO_CLEANUP);
if(fullTesting) {
// Check that objects above threshold stay in cache after regular cleanup
test.clean(/*all*/false);
test.check(HOThresholdTester::REGULAR_CLEANUP);
}
// Check that all objects dropped from cache after hard cleanup (ignore huge objects threshold)
test.clean(/*all*/true);
test.check(HOThresholdTester::HARD_CLEANUP);
// Restore previous settings
loc->setHugeSizeThreshold(LargeObjectCache::maxHugeSize);
loc->reset();
}
/*
* Test for default huge size and behaviour when huge object settings defined
*/
void TestHugeSizeThreshold() {
// Clean up if something was allocated before the test and reset cache state
scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, nullptr);
LargeObjectCache* loc = &defaultMemPool->extMemPool.loc;
// Restore default settings just in case
loc->setHugeSizeThreshold(LargeObjectCache::maxHugeSize);
loc->reset();
// Firstly check default huge size value (with max huge object threshold).
// Everything that more then this value should be released to OS without caching.
TestHugeSizeThresholdImpl(loc, loc->hugeSizeThreshold, false);
// Then set huge object threshold.
// All objects with sizes after threshold will be released only after the hard cleanup.
#if !__TBB_WIN8UI_SUPPORT
// Unit testing for environment variable
utils::SetEnv("TBB_MALLOC_SET_HUGE_SIZE_THRESHOLD","67108864");
// Large object cache reads threshold environment during initialization.
// Reset the value before the test.
loc->hugeSizeThreshold = 0;
// Reset logical time to prevent regular cleanup
loc->cacheCurrTime = 0;
loc->init(&defaultMemPool->extMemPool);
TestHugeSizeThresholdImpl(loc, 64 * MByte, true);
#endif
// Unit testing for scalable_allocation_command
scalable_allocation_mode(TBBMALLOC_SET_HUGE_SIZE_THRESHOLD, 56 * MByte);
TestHugeSizeThresholdImpl(loc, 56 * MByte, true);
// Verify that objects whose sizes align to maxHugeSize are not cached.
size_t sz = LargeObjectCache::maxHugeSize;
size_t aligned_sz = LargeObjectCache::alignToBin(sz);
REQUIRE_MESSAGE(sz == aligned_sz, "maxHugeSize should be aligned.");
REQUIRE_MESSAGE(!loc->sizeInCacheRange(sz), "Upper bound sized object shouldn't be cached.");
REQUIRE_MESSAGE(loc->get(sz) == nullptr, "Upper bound sized object shouldn't be cached.");
}
//! \brief \ref error_guessing
TEST_CASE("Main test case") {
scalable_allocation_mode(USE_HUGE_PAGES, 0);
#if !__TBB_WIN8UI_SUPPORT
utils::SetEnv("TBB_MALLOC_USE_HUGE_PAGES","yes");
#endif
checkNoHugePages();
// backreference requires that initialization was done
if(!isMallocInitialized()) doInitialization();
checkNoHugePages();
// to succeed, leak detection must be the 1st memory-intensive test
TestBackRef();
TestCleanAllBuffers<4*1024>();
TestCleanAllBuffers<16*1024>();
TestCleanThreadBuffers();
TestPools();
TestBackend();
#if MALLOC_CHECK_RECURSION
for( int p=MaxThread; p>=MinThread; --p ) {
TestStartupAlloc::initBarrier( p );
utils::NativeParallelFor( p, TestStartupAlloc() );
REQUIRE_MESSAGE(!firstStartupBlock, "Startup heap memory leak detected");
}
#endif
TestLargeObjectCache();
TestObjectRecognition();
TestBitMask();
TestHeapLimit();
TestLOC();
TestSlabAlignment();
}
//! \brief \ref error_guessing
TEST_CASE("Decreasing reallocation") {
if (!isMallocInitialized()) doInitialization();
TestReallocDecreasing();
}
//! \brief \ref error_guessing
TEST_CASE("Large object cache bins converter") {
if (!isMallocInitialized()) doInitialization();
TestLOCacheBinsConverter();
}
//! \brief \ref error_guessing
TEST_CASE("Huge size threshold settings") {
if (!isMallocInitialized()) doInitialization();
TestHugeSizeThreshold();
}
#if __unix__
//! \brief \ref error_guessing
TEST_CASE("Transparent huge pages") {
if (utils::isTHPEnabledOnMachine()) {
if (!isMallocInitialized()) doInitialization();
TestTHP();
} else {
INFO("Transparent Huge Pages is not supported on the system - skipped the test\n");
}
}
#endif
#if !__TBB_WIN8UI_SUPPORT && defined(_WIN32)
//! \brief \ref error_guessing
TEST_CASE("Function replacement log") {
TesFunctionReplacementLog();
}
#endif
|