File: Hub.md

package info (click to toggle)
onnx 1.17.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 52,856 kB
  • sloc: python: 73,992; cpp: 53,539; makefile: 50; sh: 48; javascript: 1
file content (238 lines) | stat: -rw-r--r-- 9,185 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
<!--
Copyright (c) ONNX Project Contributors

SPDX-License-Identifier: Apache-2.0
-->

# ONNX Model Hub

The ONNX Model Hub is a simple and fast way to get started with state of the art pre-trained
ONNX models from the [ONNX Model Zoo](https://github.com/onnx/models). Furthermore, this allows researchers and model
developers the opportunity to share their pre-trained models with the broader community.

## Install
The ONNX Model hub is available after ONNX 1.11.0.

## Basic usage
The ONNX Model Hub is capable of downloading, listing, and querying trained models from any git repository,
 and defaults to the official [ONNX Model Zoo](https://github.com/onnx/models). In this section we demonstrate some of the basic functionality.

First please import the hub using:
```python
from onnx import hub
```

#### Downloading a model by name:

The `load` function will default to searching the model zoo for the latest model with a matching name,
 download this model to a local cache, and load the model into a `ModelProto`
 object for use with the ONNX runtime.

```python
model = hub.load("resnet50")
```


#### Downloading from custom repositories:

Any repository with the proper structure can be a ONNX model hub. To download from other hubs,
 or to specify a particular branch or commit on the main model hub one can provide the `repo` parameter:

```python
model = hub.load("resnet50", repo="onnx/models:771185265efbdc049fb223bd68ab1aeb1aecde76")
```

#### Listing and inspecting Models:

The model hub provides APIs for querying the model zoo to learn more about available models.
 This does not download the models, but rather just returns information about models matching the given arguments

 ```python
# List all models in the onnx/models:main repo
all_models = hub.list_models()

# List all versions/opsets of a specific model
mnist_models = hub.list_models(model="mnist")

# List all models matching a given "tag"
vision_models = hub.list_models(tags=["vision"])
```

One can also inspect the metadata of a model prior to download with the `get_model_info` function:

```python
print(hub.get_model_info(model="mnist", opset=8))
```
This will print something like:
```
ModelInfo(
    model=MNIST,
    opset=8,
    path=vision/classification/mnist/model/mnist-8.onnx,
    metadata={
     'model_sha': '2f06e72de813a8635c9bc0397ac447a601bdbfa7df4bebc278723b958831c9bf',
     'model_bytes': 26454,
     'tags': ['vision', 'classification', 'mnist'],
     'io_ports': {
        'inputs': [{'name': 'Input3', 'shape': [1, 1, 28, 28], 'type': 'tensor(float)'}],
        'outputs': [{'name': 'Plus214_Output_0', 'shape': [1, 10], 'type': 'tensor(float)'}]},
     'model_with_data_path': 'vision/classification/mnist/model/mnist-8.tar.gz',
     'model_with_data_sha': '1dd098b0fe8bc750585eefc02013c37be1a1cae2bdba0191ccdb8e8518b3a882',
     'model_with_data_bytes': 25962}
)
```


## Local Caching

The ONNX Model hub locally caches downloaded models in a configurable location
so that subsequent calls to `hub.load` do not require network connection.

#### Default cache location
The hub client looks for the following default cache locations in this order:

1) `$ONNX_HOME/hub` if the `ONNX_HOME` environment variable is defined
2) `$XDG_CACHE_HOME/hub` if the `XDG_CACHE_HOME` environment variable is defined
3) `~/.cache/onnx/hub` where `~` is the user home directory

#### Setting the cache location
To manually set the cache location use:

```python
hub.set_dir("my/cache/directory")
```

Additionally one can inspect the cache location with:

```python
print(hub.get_dir())
```

#### Additional cache details

To clear the model cache one can simply delete the cache directory using a python utility like `shutil` or `os`.
Furthermore one can choose to override the cached model using the `force_reload` option:

```python
model = hub.load("resnet50", force_reload=True)
```

We include this flag for completeness but note that models in the cache are disambiguated with sha256 hashes so
 the force_reload flag is not necessary for normal use.
Finally we note that the model cache directory structure will mirror the directory structure
specified by the `model_path` field of the manifest, but with file names disambiguated with model SHA256 Hashes.

This way, the model cache is human readable, can disambiguate between multiple versions of models,
 and can re-use cached models across different hubs if they have the same name and hash.

## Architecture

![ONNX Hub Architecture](images/onnx_hub_arch.svg)

The ONNX Hub consists of two main components, the client and the server.
 The client code currently is included in the `onnx` package and can be pointed at a
  server in the form of a hosted `ONNX_HUB_MANIFEST.json` within a github repository
  such as [the one in the ONNX Model Zoo](https://github.com/onnx/models/blob/main/ONNX_HUB_MANIFEST.json).
  This manifest file is a JSON document which lists all models and their metadata
   and is designed to be programming language agnostic. An example of a well formed model manifest entry is as follows:

   ```json
{
    "model": "BERT-Squad",
    "model_path": "text/machine_comprehension/bert-squad/model/bertsquad-8.onnx",
    "onnx_version": "1.3",
    "opset_version": 8,
    "metadata": {
        "model_sha": "cad65b9807a5e0393e4f84331f9a0c5c844d9cc736e39781a80f9c48ca39447c",
        "model_bytes": 435882893,
        "tags": ["text", "machine comprehension", "bert-squad"],
        "io_ports": {
            "inputs": [
                {
                    "name": "unique_ids_raw_output___9:0",
                    "shape": ["unk__475"],
                    "type": "tensor(int64)"
                },
                {
                    "name": "segment_ids:0",
                    "shape": ["unk__476", 256],
                    "type": "tensor(int64)"
                },
                {
                    "name": "input_mask:0",
                    "shape": ["unk__477", 256],
                    "type": "tensor(int64)"
                },
                {
                    "name": "input_ids:0",
                    "shape": ["unk__478", 256],
                    "type": "tensor(int64)"
                }
            ],
            "outputs": [
                {
                    "name": "unstack:1",
                    "shape": ["unk__479", 256],
                    "type": "tensor(float)"
                },
                {
                    "name": "unstack:0",
                    "shape": ["unk__480", 256],
                    "type": "tensor(float)"
                },
                {
                    "name": "unique_ids:0",
                    "shape": ["unk__481"],
                    "type": "tensor(int64)"
                }
            ]
        },
        "model_with_data_path": "text/machine_comprehension/bert-squad/model/bertsquad-8.tar.gz",
        "model_with_data_sha": "c8c6c7e0ab9e1333b86e8415a9d990b2570f9374f80be1c1cb72f182d266f666",
        "model_with_data_bytes": 403400046
    }
}
```
These important fields are:

- `model`: The name of the model used for querying
- `model_path`: The relative path of the model stored in Git LFS.
- `onnx_version`: The ONNX version of the model
- `opset_version`: The version of the opset. The client downloads the latest opset if left unspecified.
- `metadata/model_sha`: Optional model sha specification for increased download security
- `metadata/tags`: Optional high level tags to help users find models by a given type

All other fields in the `metadata` field are optional for the client but provide important details for users.

## Adding to the ONNX Model Hub


#### Contributing an official model

The simplest way to add a model to the official `onnx/models` version model hub is to follow
[these guidelines](https://github.com/onnx/models/blob/main/contribute.md) to contribute your model. Once contributed,
ensure that your model has a markdown table in its `README.md`
([Example](https://github.com/onnx/models/tree/main/validated/vision/classification/mobilenet)). The model hub
 manifest generator will pull information from these markdown tables. To run the generator:

 ```shell script
git clone https://github.com/onnx/models.git
git lfs pull --include="*" --exclude=""
cd models/workflow_scripts
python generate_onnx_hub_manifest.py
```

Once a new manifest is generated add, submit it in a pull request to ``onnx/models``

#### Hosting your own ONNX Model Hub

To host your own model hub, add an `ONNX_HUB_MANIFEST.json` to the top level of your github repository
 ([Example](https://github.com/onnx/models/blob/main/ONNX_HUB_MANIFEST.json)). At a minimum your
 manifest entries should include the fields mentioned in
 the [Architecture Section](Hub.md#Architecture) of this document.
 Once committed, check that you can download models
 using the "Downloading from custom repositories" section of this doc.

## Raise issue if any
- For ONNX model problem or SHA mismatch issue, please raise issue in [Model Zoo]/(https://github.com/onnx/models/issues).
- Other questions/issues regarding the usage of ONNX Model Hub, please raise issue in [this repo](https://github.com/onnx/onnx/issues).