File: Operators-ml.md

package info (click to toggle)
onnx 1.17.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 52,856 kB
  • sloc: python: 73,992; cpp: 53,539; makefile: 50; sh: 48; javascript: 1
file content (1214 lines) | stat: -rw-r--r-- 45,145 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
<!--- SPDX-License-Identifier: Apache-2.0 -->
## Operator Schemas
*This file is automatically generated from the
            [def files](/onnx/defs) via [this script](/onnx/defs/gen_doc.py).
            Do not modify directly and instead edit operator definitions.*

For an operator input/output's differentiability, it can be differentiable,
            non-differentiable, or undefined. If a variable's differentiability
            is not specified, that variable has undefined differentiability.

### ai.onnx.ml
|**Operator**|**Since version**||
|-|-|-|
|<a href="#ai.onnx.ml.ArrayFeatureExtractor">ai.onnx.ml.ArrayFeatureExtractor</a>|<a href="Changelog-ml.md#ai.onnx.ml.ArrayFeatureExtractor-1">1</a>|
|<a href="#ai.onnx.ml.Binarizer">ai.onnx.ml.Binarizer</a>|<a href="Changelog-ml.md#ai.onnx.ml.Binarizer-1">1</a>|
|<a href="#ai.onnx.ml.CastMap">ai.onnx.ml.CastMap</a>|<a href="Changelog-ml.md#ai.onnx.ml.CastMap-1">1</a>|
|<a href="#ai.onnx.ml.CategoryMapper">ai.onnx.ml.CategoryMapper</a>|<a href="Changelog-ml.md#ai.onnx.ml.CategoryMapper-1">1</a>|
|<a href="#ai.onnx.ml.DictVectorizer">ai.onnx.ml.DictVectorizer</a>|<a href="Changelog-ml.md#ai.onnx.ml.DictVectorizer-1">1</a>|
|<a href="#ai.onnx.ml.FeatureVectorizer">ai.onnx.ml.FeatureVectorizer</a>|<a href="Changelog-ml.md#ai.onnx.ml.FeatureVectorizer-1">1</a>|
|<a href="#ai.onnx.ml.Imputer">ai.onnx.ml.Imputer</a>|<a href="Changelog-ml.md#ai.onnx.ml.Imputer-1">1</a>|
|<a href="#ai.onnx.ml.LabelEncoder">ai.onnx.ml.LabelEncoder</a>|<a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-4">4</a>, <a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-2">2</a>, <a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-1">1</a>|
|<a href="#ai.onnx.ml.LinearClassifier">ai.onnx.ml.LinearClassifier</a>|<a href="Changelog-ml.md#ai.onnx.ml.LinearClassifier-1">1</a>|
|<a href="#ai.onnx.ml.LinearRegressor">ai.onnx.ml.LinearRegressor</a>|<a href="Changelog-ml.md#ai.onnx.ml.LinearRegressor-1">1</a>|
|<a href="#ai.onnx.ml.Normalizer">ai.onnx.ml.Normalizer</a>|<a href="Changelog-ml.md#ai.onnx.ml.Normalizer-1">1</a>|
|<a href="#ai.onnx.ml.OneHotEncoder">ai.onnx.ml.OneHotEncoder</a>|<a href="Changelog-ml.md#ai.onnx.ml.OneHotEncoder-1">1</a>|
|<a href="#ai.onnx.ml.SVMClassifier">ai.onnx.ml.SVMClassifier</a>|<a href="Changelog-ml.md#ai.onnx.ml.SVMClassifier-1">1</a>|
|<a href="#ai.onnx.ml.SVMRegressor">ai.onnx.ml.SVMRegressor</a>|<a href="Changelog-ml.md#ai.onnx.ml.SVMRegressor-1">1</a>|
|<a href="#ai.onnx.ml.Scaler">ai.onnx.ml.Scaler</a>|<a href="Changelog-ml.md#ai.onnx.ml.Scaler-1">1</a>|
|<a href="#ai.onnx.ml.TreeEnsemble">ai.onnx.ml.TreeEnsemble</a>|<a href="Changelog-ml.md#ai.onnx.ml.TreeEnsemble-5">5</a>|
|<a href="#ai.onnx.ml.TreeEnsembleClassifier">ai.onnx.ml.TreeEnsembleClassifier</a> (deprecated)|<a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleClassifier-5">5</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleClassifier-3">3</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleClassifier-1">1</a>|
|<a href="#ai.onnx.ml.TreeEnsembleRegressor">ai.onnx.ml.TreeEnsembleRegressor</a> (deprecated)|<a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleRegressor-5">5</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleRegressor-3">3</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleRegressor-1">1</a>|
|<a href="#ai.onnx.ml.ZipMap">ai.onnx.ml.ZipMap</a>|<a href="Changelog-ml.md#ai.onnx.ml.ZipMap-1">1</a>|


## ai.onnx.ml
### <a name="ai.onnx.ml.ArrayFeatureExtractor"></a><a name="ai.onnx.ml.arrayfeatureextractor">**ai.onnx.ml.ArrayFeatureExtractor**</a>

  Select elements of the input tensor based on the indices passed.<br>
      The indices are applied to the last axes of the tensor.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be selected</dd>
<dt><tt>Y</tt> : tensor(int64)</dt>
<dd>The indices, based on 0 as the first index of any dimension.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Z</tt> : T</dt>
<dd>Selected output data as an array</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32), tensor(string)</dt>
<dd>The input must be a tensor of a numeric type or string. The output will be of the same tensor type.</dd>
</dl>


#### Examples

<details>
<summary>arrayfeatureextractor</summary>

```python
node = onnx.helper.make_node(
    "ArrayFeatureExtractor",
    inputs=["x", "y"],
    outputs=["z"],
    domain="ai.onnx.ml",
)

x = np.arange(12).reshape((3, 4)).astype(np.float32)
y = np.array([0, 1], dtype=np.int64)
z = np.array([[0, 4, 8], [1, 5, 9]], dtype=np.float32).T
expect(
    node,
    inputs=[x, y],
    outputs=[z],
    name="test_ai_onnx_ml_array_feature_extractor",
)
```

</details>


### <a name="ai.onnx.ml.Binarizer"></a><a name="ai.onnx.ml.binarizer">**ai.onnx.ml.Binarizer**</a>

  Maps the values of the input tensor to either 0 or 1, element-wise, based on the outcome of a comparison against a threshold value.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>threshold</tt> : float (default is 0.0)</dt>
<dd>Values greater than this are mapped to 1, others to 0.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be binarized</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T</dt>
<dd>Binarized output data</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type. The output will be of the same tensor type.</dd>
</dl>


#### Examples

<details>
<summary>binarizer</summary>

```python
threshold = 1.0
node = onnx.helper.make_node(
    "Binarizer",
    inputs=["X"],
    outputs=["Y"],
    threshold=threshold,
    domain="ai.onnx.ml",
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = compute_binarizer(x, threshold)[0]

expect(node, inputs=[x], outputs=[y], name="test_ai_onnx_ml_binarizer")
```

</details>


### <a name="ai.onnx.ml.CastMap"></a><a name="ai.onnx.ml.castmap">**ai.onnx.ml.CastMap**</a>

  Converts a map to a tensor.<br>The map key must be an int64 and the values will be ordered
      in ascending order based on this key.<br>The operator supports dense packing or sparse packing.
      If using sparse packing, the key cannot exceed the max_map-1 value.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>cast_to</tt> : string (default is TO_FLOAT)</dt>
<dd>A string indicating the desired element type of the output tensor, one of 'TO_FLOAT', 'TO_STRING', 'TO_INT64'.</dd>
<dt><tt>map_form</tt> : string (default is DENSE)</dt>
<dd>Indicates whether to only output as many values as are in the input (dense), or position the input based on using the key of the map as the index of the output (sparse).<br>One of 'DENSE', 'SPARSE'.</dd>
<dt><tt>max_map</tt> : int (default is 1)</dt>
<dd>If the value of map_form is 'SPARSE,' this attribute indicates the total length of the output tensor.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>The input map that is to be cast to a tensor</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>A tensor representing the same data as the input map, ordered by their keys</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : map(int64, string), map(int64, float)</dt>
<dd>The input must be an integer map to either string or float.</dd>
<dt><tt>T2</tt> : tensor(string), tensor(float), tensor(int64)</dt>
<dd>The output is a 1-D tensor of string, float, or integer.</dd>
</dl>


### <a name="ai.onnx.ml.CategoryMapper"></a><a name="ai.onnx.ml.categorymapper">**ai.onnx.ml.CategoryMapper**</a>

  Converts strings to integers and vice versa.<br>
      Two sequences of equal length are used to map between integers and strings,
      with strings and integers at the same index detailing the mapping.<br>
      Each operator converts either integers to strings or strings to integers, depending
      on which default value attribute is provided. Only one default value attribute
      should be defined.<br>
      If the string default value is set, it will convert integers to strings.
      If the int default value is set, it will convert strings to integers.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>cats_int64s</tt> : list of ints</dt>
<dd>The integers of the map. This sequence must be the same length as the 'cats_strings' sequence.</dd>
<dt><tt>cats_strings</tt> : list of strings</dt>
<dd>The strings of the map. This sequence must be the same length as the 'cats_int64s' sequence</dd>
<dt><tt>default_int64</tt> : int (default is -1)</dt>
<dd>An integer to use when an input string value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.</dd>
<dt><tt>default_string</tt> : string (default is _Unused)</dt>
<dd>A string to use when an input integer value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Input data</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Output data. If strings are input, the output values are integers, and vice versa.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(string), tensor(int64)</dt>
<dd>The input must be a tensor of strings or integers, either [N,C] or [C].</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output is a tensor of strings or integers. Its shape will be the same as the input shape.</dd>
</dl>


### <a name="ai.onnx.ml.DictVectorizer"></a><a name="ai.onnx.ml.dictvectorizer">**ai.onnx.ml.DictVectorizer**</a>

  Uses an index mapping to convert a dictionary to an array.<br>
      Given a dictionary, each key is looked up in the vocabulary attribute corresponding to
      the key type. The index into the vocabulary array at which the key is found is then
      used to index the output 1-D tensor 'Y' and insert into it the value found in the dictionary 'X'.<br>
      The key type of the input map must correspond to the element type of the defined vocabulary attribute.
      Therefore, the output array will be equal in length to the index mapping vector parameter.
      All keys in the input dictionary must be present in the index mapping vector.
      For each item in the input dictionary, insert its value in the output array.
      Any keys not present in the input dictionary, will be zero in the output array.<br>
      For example: if the ``string_vocabulary`` parameter is set to ``["a", "c", "b", "z"]``,
      then an input of ``{"a": 4, "c": 8}`` will produce an output of ``[4, 8, 0, 0]``.


#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>int64_vocabulary</tt> : list of ints</dt>
<dd>An integer vocabulary array.<br>One and only one of the vocabularies must be defined.</dd>
<dt><tt>string_vocabulary</tt> : list of strings</dt>
<dd>A string vocabulary array.<br>One and only one of the vocabularies must be defined.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>A dictionary.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>A 1-D tensor holding values from the input dictionary.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : map(string, int64), map(int64, string), map(int64, float), map(int64, double), map(string, float), map(string, double)</dt>
<dd>The input must be a map from strings or integers to either strings or a numeric type. The key and value types cannot be the same.</dd>
<dt><tt>T2</tt> : tensor(int64), tensor(float), tensor(double), tensor(string)</dt>
<dd>The output will be a tensor of the value type of the input map. It's shape will be [1,C], where C is the length of the input dictionary.</dd>
</dl>


### <a name="ai.onnx.ml.FeatureVectorizer"></a><a name="ai.onnx.ml.featurevectorizer">**ai.onnx.ml.FeatureVectorizer**</a>

  Concatenates input tensors into one continuous output.<br>
      All input shapes are 2-D and are concatenated along the second dimension. 1-D tensors are treated as [1,C].
      Inputs are copied to the output maintaining the order of the input arguments.<br>
      All inputs must be integers or floats, while the output will be all floating point values.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>inputdimensions</tt> : list of ints</dt>
<dd>The size of each input in the input list</dd>
</dl>

#### Inputs (1 - &#8734;)

<dl>
<dt><tt>X</tt> (variadic) : T1</dt>
<dd>An ordered collection of tensors, all with the same element type.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>The output array, elements ordered as the inputs.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(int32), tensor(int64), tensor(float), tensor(double)</dt>
<dd>The input type must be a tensor of a numeric type.</dd>
</dl>


### <a name="ai.onnx.ml.Imputer"></a><a name="ai.onnx.ml.imputer">**ai.onnx.ml.Imputer**</a>

  Replaces inputs that equal one value with another, leaving all other elements alone.<br>
      This operator is typically used to replace missing values in situations where they have a canonical
      representation, such as -1, 0, NaN, or some extreme value.<br>
      One and only one of imputed_value_floats or imputed_value_int64s should be defined -- floats if the input tensor
      holds floats, integers if the input tensor holds integers. The imputed values must all fit within the
      width of the tensor element type. One and only one of the replaced_value_float or replaced_value_int64 should be defined,
      which one depends on whether floats or integers are being processed.<br>
      The imputed_value attribute length can be 1 element, or it can have one element per input feature.<br>In other words, if the input tensor has the shape [*,F], then the length of the attribute array may be 1 or F. If it is 1, then it is broadcast along the last dimension and applied to each feature.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>imputed_value_floats</tt> : list of floats</dt>
<dd>Value(s) to change to</dd>
<dt><tt>imputed_value_int64s</tt> : list of ints</dt>
<dd>Value(s) to change to.</dd>
<dt><tt>replaced_value_float</tt> : float (default is 0.0)</dt>
<dd>A value that needs replacing.</dd>
<dt><tt>replaced_value_int64</tt> : int (default is 0)</dt>
<dd>A value that needs replacing.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be processed.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T</dt>
<dd>Imputed output data</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type, either [N,C] or [C]. The output type will be of the same tensor type and shape.</dd>
</dl>


### <a name="ai.onnx.ml.LabelEncoder"></a><a name="ai.onnx.ml.labelencoder">**ai.onnx.ml.LabelEncoder**</a>

  Maps each element in the input tensor to another value.<br>
      The mapping is determined by the two parallel attributes, 'keys_*' and
      'values_*' attribute. The i-th value in the specified 'keys_*' attribute
      would be mapped to the i-th value in the specified 'values_*' attribute. It
      implies that input's element type and the element type of the specified
      'keys_*' should be identical while the output type is identical to the
      specified 'values_*' attribute. Note that the 'keys_*' and 'values_*' attributes
      must have the same length. If an input element can not be found in the
      specified 'keys_*' attribute, the 'default_*' that matches the specified
      'values_*' attribute may be used as its output value. The type of the 'default_*'
      attribute must match the 'values_*' attribute chosen. <br>
      Let's consider an example which maps a string tensor to an integer tensor.
      Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6],
      and 'default_int64' is '-1'.  The input ["Dori", "Amy", "Amy", "Sally",
      "Sally"] would be mapped to [-1, 5, 5, 6, 6].<br>
      Since this operator is an one-to-one mapping, its input and output shapes
      are the same. Notice that only one of 'keys_*'/'values_*' can be set.<br>
      Float keys with value 'NaN' match any input 'NaN' value regardless of bit
      value. If a key is repeated, the last key takes precedence.

#### Version

This version of the operator has been available since version 4 of the 'ai.onnx.ml' operator set.

Other versions of this operator: <a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-1">1</a>, <a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-2">2</a>

#### Attributes

<dl>
<dt><tt>default_float</tt> : float (default is -0.0)</dt>
<dd>A float.</dd>
<dt><tt>default_int64</tt> : int (default is -1)</dt>
<dd>An integer.</dd>
<dt><tt>default_string</tt> : string (default is _Unused)</dt>
<dd>A string.</dd>
<dt><tt>default_tensor</tt> : tensor</dt>
<dd>A default tensor. {"_Unused"} if values_* has string type, {-1} if values_* has integral type, and {-0.f} if values_* has float type.</dd>
<dt><tt>keys_floats</tt> : list of floats</dt>
<dd>A list of floats.</dd>
<dt><tt>keys_int64s</tt> : list of ints</dt>
<dd>A list of ints.</dd>
<dt><tt>keys_strings</tt> : list of strings</dt>
<dd>A list of strings.</dd>
<dt><tt>keys_tensor</tt> : tensor</dt>
<dd>Keys encoded as a 1D tensor. One and only one of 'keys_*'s should be set.</dd>
<dt><tt>values_floats</tt> : list of floats</dt>
<dd>A list of floats.</dd>
<dt><tt>values_int64s</tt> : list of ints</dt>
<dd>A list of ints.</dd>
<dt><tt>values_strings</tt> : list of strings</dt>
<dd>A list of strings.</dd>
<dt><tt>values_tensor</tt> : tensor</dt>
<dd>Values encoded as a 1D tensor. One and only one of 'values_*'s should be set.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Input data. It must have the same element type as the keys_* attribute set.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Output data. This tensor's element type is based on the values_* attribute set.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(string), tensor(int64), tensor(float), tensor(int32), tensor(int16), tensor(double)</dt>
<dd>The input type is a tensor of any shape.</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64), tensor(float), tensor(int32), tensor(int16), tensor(double)</dt>
<dd>Output type is determined by the specified 'values_*' attribute.</dd>
</dl>


#### Examples

<details>
<summary>string_int_label_encoder</summary>

```python
node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=["a", "b", "c"],
    values_int64s=[0, 1, 2],
    default_int64=42,
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_string_int",
)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=["a", "b", "c"],
    values_int64s=[0, 1, 2],
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, -1, 2, -1]).astype(np.int64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_string_int_no_default",
)
```

</details>


<details>
<summary>tensor_based_label_encoder</summary>

```python
tensor_keys = make_tensor(
    "keys_tensor", onnx.TensorProto.STRING, (3,), ["a", "b", "c"]
)
repeated_string_keys = ["a", "b", "c"]
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int16)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_tensor=tensor_keys,
    values_tensor=make_tensor(
        "values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
    ),
    default_tensor=make_tensor(
        "default_tensor", onnx.TensorProto.INT16, (1,), [42]
    ),
)

expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_tensor_mapping",
)

node = onnx.helper.make_node(
    "LabelEncoder",
    inputs=["X"],
    outputs=["Y"],
    domain="ai.onnx.ml",
    keys_strings=repeated_string_keys,
    values_tensor=make_tensor(
        "values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
    ),
    default_tensor=make_tensor(
        "default_tensor", onnx.TensorProto.INT16, (1,), [42]
    ),
)

expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_label_encoder_tensor_value_only_mapping",
)
```

</details>


### <a name="ai.onnx.ml.LinearClassifier"></a><a name="ai.onnx.ml.linearclassifier">**ai.onnx.ml.LinearClassifier**</a>

  Linear classifier

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>classlabels_ints</tt> : list of ints</dt>
<dd>Class labels when using integer labels. One and only one 'classlabels' attribute must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>Class labels when using string labels. One and only one 'classlabels' attribute must be defined.</dd>
<dt><tt>coefficients</tt> : list of floats (required)</dt>
<dd>A collection of weights of the model(s).</dd>
<dt><tt>intercepts</tt> : list of floats</dt>
<dd>A collection of intercepts.</dd>
<dt><tt>multi_class</tt> : int (default is 0)</dt>
<dd>Indicates whether to do OvR or multinomial (0=OvR is the default).</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the scores vector.<br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Data to be classified.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Classification outputs (one class per example).</dd>
<dt><tt>Z</tt> : tensor(float)</dt>
<dd>Classification scores ([N,E] - one score for each class and example</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type, and of shape [N,C] or [C]. In the latter case, it will be treated as [1,C]</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output will be a tensor of strings or integers.</dd>
</dl>


### <a name="ai.onnx.ml.LinearRegressor"></a><a name="ai.onnx.ml.linearregressor">**ai.onnx.ml.LinearRegressor**</a>

  Generalized linear regression evaluation.<br>
      If targets is set to 1 (default) then univariate regression is performed.<br>
      If targets is set to M then M sets of coefficients must be passed in as a sequence
      and M results will be output for each input n in N.<br>
      The coefficients array is of length n, and the coefficients for each target are contiguous.
      Intercepts are optional but if provided must match the number of targets.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd>Weights of the model(s).</dd>
<dt><tt>intercepts</tt> : list of floats</dt>
<dd>Weights of the intercepts, if used.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the regression output vector.<br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
<dt><tt>targets</tt> : int (default is 1)</dt>
<dd>The total number of regression targets, 1 if not defined.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be regressed.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Regression outputs (one per target, per example).</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>


### <a name="ai.onnx.ml.Normalizer"></a><a name="ai.onnx.ml.normalizer">**ai.onnx.ml.Normalizer**</a>

  Normalize the input.  There are three normalization modes, which have the corresponding formulas,
      defined using element-wise infix operators '/' and '^' and tensor-wide functions 'max' and 'sum':<br>
  <br>
      Max: Y = X / max(X)<br>
      L1:  Y = X / sum(X)<br>
      L2:  Y = sqrt(X^2 / sum(X^2)}<br>
      In all modes, if the divisor is zero, Y == X.
  <br>
      For batches, that is, [N,C] tensors, normalization is done along the C axis. In other words, each row
      of the batch is normalized independently.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>norm</tt> : string (default is MAX)</dt>
<dd>One of 'MAX,' 'L1,' 'L2'</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be encoded, a tensor of shape [N,C] or [C]</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Encoded output data</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>


### <a name="ai.onnx.ml.OneHotEncoder"></a><a name="ai.onnx.ml.onehotencoder">**ai.onnx.ml.OneHotEncoder**</a>

  Replace each input element with an array of ones and zeros, where a single
      one is placed at the index of the category that was passed in. The total category count
      will determine the size of the extra dimension of the output array Y.<br>
      For example, if we pass a tensor with a single value of 4, and a category count of 8,
      the output will be a tensor with ``[0,0,0,0,1,0,0,0]``.<br>
      This operator assumes every input feature is from the same set of categories.<br>
      If the input is a tensor of float, int32, or double, the data will be cast
      to integers and the cats_int64s category list will be used for the lookups.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>cats_int64s</tt> : list of ints</dt>
<dd>List of categories, ints.<br>One and only one of the 'cats_*' attributes must be defined.</dd>
<dt><tt>cats_strings</tt> : list of strings</dt>
<dd>List of categories, strings.<br>One and only one of the 'cats_*' attributes must be defined.</dd>
<dt><tt>zeros</tt> : int (default is 1)</dt>
<dd>If true and category is not present, will return all zeros; if false and a category if not found, the operator will fail.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be encoded.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Encoded output data, having one more dimension than X.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(string), tensor(int64), tensor(int32), tensor(float), tensor(double)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>


### <a name="ai.onnx.ml.SVMClassifier"></a><a name="ai.onnx.ml.svmclassifier">**ai.onnx.ml.SVMClassifier**</a>

  Support Vector Machine classifier

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>classlabels_ints</tt> : list of ints</dt>
<dd>Class labels if using integer labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>Class labels if using string labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd></dd>
<dt><tt>kernel_params</tt> : list of floats</dt>
<dd>List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.</dd>
<dt><tt>kernel_type</tt> : string (default is LINEAR)</dt>
<dd>The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
<dt><tt>prob_a</tt> : list of floats</dt>
<dd>First set of probability coefficients.</dd>
<dt><tt>prob_b</tt> : list of floats</dt>
<dd>Second set of probability coefficients. This array must be same size as prob_a.<br>If these are provided then output Z are probability estimates, otherwise they are raw scores.</dd>
<dt><tt>rho</tt> : list of floats</dt>
<dd></dd>
<dt><tt>support_vectors</tt> : list of floats</dt>
<dd></dd>
<dt><tt>vectors_per_class</tt> : list of ints</dt>
<dd></dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Data to be classified.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Classification outputs (one class per example).</dd>
<dt><tt>Z</tt> : tensor(float)</dt>
<dd>Class scores (one per class per example), if prob_a and prob_b are provided they are probabilities for each class, otherwise they are raw scores.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T1</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type, either [C] or [N,C].</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output type will be a tensor of strings or integers, depending on which of the classlabels_* attributes is used. Its size will match the bactch size of the input.</dd>
</dl>


### <a name="ai.onnx.ml.SVMRegressor"></a><a name="ai.onnx.ml.svmregressor">**ai.onnx.ml.SVMRegressor**</a>

  Support Vector Machine regression prediction and one-class SVM anomaly detection.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd>Support vector coefficients.</dd>
<dt><tt>kernel_params</tt> : list of floats</dt>
<dd>List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.</dd>
<dt><tt>kernel_type</tt> : string (default is LINEAR)</dt>
<dd>The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.</dd>
<dt><tt>n_supports</tt> : int (default is 0)</dt>
<dd>The number of support vectors.</dd>
<dt><tt>one_class</tt> : int (default is 0)</dt>
<dd>Flag indicating whether the regression is a one-class SVM or not.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT.'</dd>
<dt><tt>rho</tt> : list of floats</dt>
<dd></dd>
<dt><tt>support_vectors</tt> : list of floats</dt>
<dd>Chosen support vectors</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be regressed.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Regression outputs (one score per target per example).</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type, either [C] or [N,C].</dd>
</dl>


### <a name="ai.onnx.ml.Scaler"></a><a name="ai.onnx.ml.scaler">**ai.onnx.ml.Scaler**</a>

  Rescale input data, for example to standardize features by removing the mean and scaling to unit variance.

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>offset</tt> : list of floats</dt>
<dd>First, offset by this.<br>Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.</dd>
<dt><tt>scale</tt> : list of floats</dt>
<dd>Second, multiply by this.<br>Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.<br>Must be same length as 'offset'</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be scaled.</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Scaled output data.</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>


### <a name="ai.onnx.ml.TreeEnsemble"></a><a name="ai.onnx.ml.treeensemble">**ai.onnx.ml.TreeEnsemble**</a>

  Tree Ensemble operator.  Returns the regressed values for each input in a batch.
      Inputs have dimensions `[N, F]` where `N` is the input batch size and `F` is the number of input features.
      Outputs have dimensions `[N, num_targets]` where `N` is the batch size and `num_targets` is the number of targets, which is a configurable attribute.

      The encoding of this attribute is split along interior nodes and the leaves of the trees. Notably, attributes with the prefix `nodes_*` are associated with interior nodes, and attributes with the prefix `leaf_*` are associated with leaves.
      The attributes `nodes_*` must all have the same length and encode a sequence of tuples, as defined by taking all the `nodes_*` fields at a given position.

      All fields prefixed with `leaf_*` represent tree leaves, and similarly define tuples of leaves and must have identical length.

      This operator can be used to implement both the previous `TreeEnsembleRegressor` and `TreeEnsembleClassifier` nodes.
      The `TreeEnsembleRegressor` node maps directly to this node and requires changing how the nodes are represented.
      The `TreeEnsembleClassifier` node can be implemented by adding a `ArgMax` node after this node to determine the top class.
      To encode class labels, a `LabelEncoder` or `GatherND` operator may be used.

#### Version

This version of the operator has been available since version 5 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>aggregate_function</tt> : int (default is 1)</dt>
<dd>Defines how to aggregate leaf values within a target. <br>One of 'AVERAGE' (0) 'SUM' (1) 'MIN' (2) 'MAX (3) defaults to 'SUM' (1)</dd>
<dt><tt>leaf_targetids</tt> : list of ints (required)</dt>
<dd>The index of the target that this leaf contributes to (this must be in range `[0, n_targets)`).</dd>
<dt><tt>leaf_weights</tt> : tensor (required)</dt>
<dd>The weight for each leaf.</dd>
<dt><tt>membership_values</tt> : tensor</dt>
<dd>Members to test membership of for each set membership node. List all of the members to test again in the order that the 'BRANCH_MEMBER' mode appears in `node_modes`, delimited by `NaN`s. Will have the same number of sets of values as nodes with mode 'BRANCH_MEMBER'. This may be omitted if the node doesn't contain any 'BRANCH_MEMBER' nodes.</dd>
<dt><tt>n_targets</tt> : int</dt>
<dd>The total number of targets.</dd>
<dt><tt>nodes_falseleafs</tt> : list of ints (required)</dt>
<dd>1 if false branch is leaf for each node and 0 if an interior node. To represent a tree that is a leaf (only has one node), one can do so by having a single `nodes_*` entry with true and false branches referencing the same `leaf_*` entry</dd>
<dt><tt>nodes_falsenodeids</tt> : list of ints (required)</dt>
<dd>If `nodes_falseleafs` is false at an entry, this represents the position of the false branch node. This position can be used to index into a `nodes_*` entry. If `nodes_falseleafs` is false, it is an index into the leaf_* attributes.</dd>
<dt><tt>nodes_featureids</tt> : list of ints (required)</dt>
<dd>Feature id for each node.</dd>
<dt><tt>nodes_hitrates</tt> : tensor</dt>
<dd>Popularity of each node, used for performance and may be omitted.</dd>
<dt><tt>nodes_missing_value_tracks_true</tt> : list of ints</dt>
<dd>For each node, define whether to follow the true branch (if attribute value is 1) or false branch (if attribute value is 0) in the presence of a NaN input feature. This attribute may be left undefined and the default value is false (0) for all nodes.</dd>
<dt><tt>nodes_modes</tt> : tensor (required)</dt>
<dd>The comparison operation performed by the node. This is encoded as an enumeration of 0 ('BRANCH_LEQ'), 1 ('BRANCH_LT'), 2 ('BRANCH_GTE'), 3 ('BRANCH_GT'), 4 ('BRANCH_EQ'), 5 ('BRANCH_NEQ'), and 6 ('BRANCH_MEMBER'). Note this is a tensor of type uint8.</dd>
<dt><tt>nodes_splits</tt> : tensor (required)</dt>
<dd>Thresholds to do the splitting on for each node with mode that is not 'BRANCH_MEMBER'.</dd>
<dt><tt>nodes_trueleafs</tt> : list of ints (required)</dt>
<dd>1 if true branch is leaf for each node and 0 an interior node. To represent a tree that is a leaf (only has one node), one can do so by having a single `nodes_*` entry with true and false branches referencing the same `leaf_*` entry</dd>
<dt><tt>nodes_truenodeids</tt> : list of ints (required)</dt>
<dd>If `nodes_trueleafs` is false at an entry, this represents the position of the true branch node. This position can be used to index into a `nodes_*` entry. If `nodes_trueleafs` is false, it is an index into the leaf_* attributes.</dd>
<dt><tt>post_transform</tt> : int (default is 0)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE' (0), 'SOFTMAX' (1), 'LOGISTIC' (2), 'SOFTMAX_ZERO' (3) or 'PROBIT' (4), defaults to 'NONE' (0)</dd>
<dt><tt>tree_roots</tt> : list of ints (required)</dt>
<dd>Index into `nodes_*` for the root of each tree. The tree structure is derived from the branching of each node.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : T</dt>
<dd>Input of shape [Batch Size, Number of Features]</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Y</tt> : T</dt>
<dd>Output of shape [Batch Size, Number of targets]</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(float16)</dt>
<dd>The input type must be a tensor of a numeric type.</dd>
</dl>


#### Examples

<details>
<summary>tree_ensemble_set_membership</summary>

```python
node = onnx.helper.make_node(
    "TreeEnsemble",
    ["X"],
    ["Y"],
    domain="ai.onnx.ml",
    n_targets=4,
    aggregate_function=1,
    membership_values=make_tensor(
        "membership_values",
        onnx.TensorProto.FLOAT,
        (8,),
        [1.2, 3.7, 8, 9, np.nan, 12, 7, np.nan],
    ),
    nodes_missing_value_tracks_true=None,
    nodes_hitrates=None,
    post_transform=0,
    tree_roots=[0],
    nodes_modes=make_tensor(
        "nodes_modes",
        onnx.TensorProto.UINT8,
        (3,),
        np.array([0, 6, 6], dtype=np.uint8),
    ),
    nodes_featureids=[0, 0, 0],
    nodes_splits=make_tensor(
        "nodes_splits",
        onnx.TensorProto.FLOAT,
        (3,),
        np.array([11, 232344.0, np.nan], dtype=np.float32),
    ),
    nodes_trueleafs=[0, 1, 1],
    nodes_truenodeids=[1, 0, 1],
    nodes_falseleafs=[1, 0, 1],
    nodes_falsenodeids=[2, 2, 3],
    leaf_targetids=[0, 1, 2, 3],
    leaf_weights=make_tensor(
        "leaf_weights", onnx.TensorProto.FLOAT, (4,), [1, 10, 1000, 100]
    ),
)

x = np.array([1.2, 3.4, -0.12, np.nan, 12, 7], np.float32).reshape(-1, 1)
expected = np.array(
    [
        [1, 0, 0, 0],
        [0, 0, 0, 100],
        [0, 0, 0, 100],
        [0, 0, 1000, 0],
        [0, 0, 1000, 0],
        [0, 10, 0, 0],
    ],
    dtype=np.float32,
)
expect(
    node,
    inputs=[x],
    outputs=[expected],
    name="test_ai_onnx_ml_tree_ensemble_set_membership",
)
```

</details>


<details>
<summary>tree_ensemble_single_tree</summary>

```python
node = onnx.helper.make_node(
    "TreeEnsemble",
    ["X"],
    ["Y"],
    domain="ai.onnx.ml",
    n_targets=2,
    membership_values=None,
    nodes_missing_value_tracks_true=None,
    nodes_hitrates=None,
    aggregate_function=1,
    post_transform=0,
    tree_roots=[0],
    nodes_modes=make_tensor(
        "nodes_modes",
        onnx.TensorProto.UINT8,
        (3,),
        np.array([0, 0, 0], dtype=np.uint8),
    ),
    nodes_featureids=[0, 0, 0],
    nodes_splits=make_tensor(
        "nodes_splits",
        onnx.TensorProto.DOUBLE,
        (3,),
        np.array([3.14, 1.2, 4.2], dtype=np.float64),
    ),
    nodes_truenodeids=[1, 0, 1],
    nodes_trueleafs=[0, 1, 1],
    nodes_falsenodeids=[2, 2, 3],
    nodes_falseleafs=[0, 1, 1],
    leaf_targetids=[0, 1, 0, 1],
    leaf_weights=make_tensor(
        "leaf_weights",
        onnx.TensorProto.DOUBLE,
        (4,),
        np.array([5.23, 12.12, -12.23, 7.21], dtype=np.float64),
    ),
)

x = np.array([1.2, 3.4, -0.12, 1.66, 4.14, 1.77], np.float64).reshape(3, 2)
y = np.array([[5.23, 0], [5.23, 0], [0, 12.12]], dtype=np.float64)
expect(
    node,
    inputs=[x],
    outputs=[y],
    name="test_ai_onnx_ml_tree_ensemble_single_tree",
)
```

</details>


### <a name="ai.onnx.ml.TreeEnsembleClassifier"></a><a name="ai.onnx.ml.treeensembleclassifier">**ai.onnx.ml.TreeEnsembleClassifier** (deprecated)</a>

  This operator is DEPRECATED. Please use TreeEnsemble with provides similar functionality.
      In order to determine the top class, the ArgMax node can be applied to the output of TreeEnsemble.
      To encode class labels, use a LabelEncoder operator.
      Tree Ensemble classifier. Returns the top class for each of N inputs.<br>
      The attributes named 'nodes_X' form a sequence of tuples, associated by
      index into the sequences, which must all be of equal length. These tuples
      define the nodes.<br>
      Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
      A leaf may have multiple votes, where each vote is weighted by
      the associated class_weights index.<br>
      One and only one of classlabels_strings or classlabels_int64s
      will be defined. The class_ids are indices into this list.
      All fields ending with <i>_as_tensor</i> can be used instead of the
      same parameter without the suffix if the element type is double and not float.

#### Version

This version of the operator has been deprecated since version 5 of the 'ai.onnx.ml' operator set.

Other versions of this operator: <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleClassifier-1">1</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleClassifier-3">3</a>


### <a name="ai.onnx.ml.TreeEnsembleRegressor"></a><a name="ai.onnx.ml.treeensembleregressor">**ai.onnx.ml.TreeEnsembleRegressor** (deprecated)</a>

  This operator is DEPRECATED. Please use TreeEnsemble instead which provides the same
      functionality.<br>
      Tree Ensemble regressor.  Returns the regressed values for each input in N.<br>
      All args with nodes_ are fields of a tuple of tree nodes, and
      it is assumed they are the same length, and an index i will decode the
      tuple across these inputs.  Each node id can appear only once
      for each tree id.<br>
      All fields prefixed with target_ are tuples of votes at the leaves.<br>
      A leaf may have multiple votes, where each vote is weighted by
      the associated target_weights index.<br>
      All fields ending with <i>_as_tensor</i> can be used instead of the
      same parameter without the suffix if the element type is double and not float.
      All trees must have their node ids start at 0 and increment by 1.<br>
      Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF

#### Version

This version of the operator has been deprecated since version 5 of the 'ai.onnx.ml' operator set.

Other versions of this operator: <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleRegressor-1">1</a>, <a href="Changelog-ml.md#ai.onnx.ml.TreeEnsembleRegressor-3">3</a>


### <a name="ai.onnx.ml.ZipMap"></a><a name="ai.onnx.ml.zipmap">**ai.onnx.ml.ZipMap**</a>

  Creates a map from the input and the attributes.<br>
      The values are provided by the input tensor, while the keys are specified by the attributes.
      Must provide keys in either classlabels_strings or classlabels_int64s (but not both).<br>
      The columns of the tensor correspond one-by-one to the keys specified by the attributes. There must be as many columns as keys.<br>

#### Version

This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.

#### Attributes

<dl>
<dt><tt>classlabels_int64s</tt> : list of ints</dt>
<dd>The keys when using int keys.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>The keys when using string keys.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
</dl>

#### Inputs

<dl>
<dt><tt>X</tt> : tensor(float)</dt>
<dd>The input values</dd>
</dl>

#### Outputs

<dl>
<dt><tt>Z</tt> : T</dt>
<dd>The output map</dd>
</dl>

#### Type Constraints

<dl>
<dt><tt>T</tt> : seq(map(string, float)), seq(map(int64, float))</dt>
<dd>The output will be a sequence of string or integer maps to float.</dd>
</dl>