1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
<!--
Copyright (c) ONNX Project Contributors
SPDX-License-Identifier: Apache-2.0
-->
# Python API Overview
The full API is described at [API Reference](https://onnx.ai/onnx/api).
## Loading an ONNX Model
```python
import onnx
# onnx_model is an in-memory ModelProto
onnx_model = onnx.load("path/to/the/model.onnx")
```
Runnable IPython notebooks:
- [load_model.ipynb](/onnx/examples/load_model.ipynb)
## Loading an ONNX Model with External Data
* [Default] If the external data is under the same directory of the model, simply use `onnx.load()`
```python
import onnx
onnx_model = onnx.load("path/to/the/model.onnx")
```
* If the external data is under another directory, use `load_external_data_for_model()` to specify the directory path and load after using `onnx.load()`
```python
import onnx
from onnx.external_data_helper import load_external_data_for_model
onnx_model = onnx.load("path/to/the/model.onnx", load_external_data=False)
load_external_data_for_model(onnx_model, "data/directory/path/")
# Then the onnx_model has loaded the external data from the specific directory
```
## Converting an ONNX Model to External Data
```python
from onnx.external_data_helper import convert_model_to_external_data
# onnx_model is an in-memory ModelProto
onnx_model = ...
convert_model_to_external_data(onnx_model, all_tensors_to_one_file=True, location="filename", size_threshold=1024, convert_attribute=False)
# Then the onnx_model has converted raw data as external data
# Must be followed by save
```
## Saving an ONNX Model
```python
import onnx
# onnx_model is an in-memory ModelProto
onnx_model = ...
# Save the ONNX model
onnx.save(onnx_model, "path/to/the/model.onnx")
```
Runnable IPython notebooks:
- [save_model.ipynb](/onnx/examples/save_model.ipynb)
## Converting and Saving an ONNX Model to External Data
```python
import onnx
# onnx_model is an in-memory ModelProto
onnx_model = ...
onnx.save_model(onnx_model, "path/to/save/the/model.onnx", save_as_external_data=True, all_tensors_to_one_file=True, location="filename", size_threshold=1024, convert_attribute=False)
# Then the onnx_model has converted raw data as external data and saved to specific directory
```
## Manipulating TensorProto and Numpy Array
```python
import numpy
import onnx
from onnx import numpy_helper
# Preprocessing: create a Numpy array
numpy_array = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=float)
print(f"Original Numpy array:\n{numpy_array}\n")
# Convert the Numpy array to a TensorProto
tensor = numpy_helper.from_array(numpy_array)
print(f"TensorProto:\n{tensor}")
# Convert the TensorProto to a Numpy array
new_array = numpy_helper.to_array(tensor)
print(f"After round trip, Numpy array:\n{new_array}\n")
# Save the TensorProto
with open("tensor.pb", "wb") as f:
f.write(tensor.SerializeToString())
# Load a TensorProto
new_tensor = onnx.TensorProto()
with open("tensor.pb", "rb") as f:
new_tensor.ParseFromString(f.read())
print(f"After saving and loading, new TensorProto:\n{new_tensor}")
from onnx import TensorProto, helper
# Conversion utilities for mapping attributes in ONNX IR
# The functions below are available after ONNX 1.13
np_dtype = helper.tensor_dtype_to_np_dtype(TensorProto.FLOAT)
print(f"The converted numpy dtype for {helper.tensor_dtype_to_string(TensorProto.FLOAT)} is {np_dtype}.")
storage_dtype = helper.tensor_dtype_to_storage_tensor_dtype(TensorProto.FLOAT)
print(f"The storage dtype for {helper.tensor_dtype_to_string(TensorProto.FLOAT)} is {helper.tensor_dtype_to_string(storage_dtype)}.")
field_name = helper.tensor_dtype_to_field(TensorProto.FLOAT)
print(f"The field name for {helper.tensor_dtype_to_string(TensorProto.FLOAT)} is {field_name}.")
tensor_dtype = helper.np_dtype_to_tensor_dtype(np_dtype)
print(f"The tensor data type for numpy dtype: {np_dtype} is {helper.tensor_dtype_to_string(tensor_dtype)}.")
for tensor_dtype in helper.get_all_tensor_dtypes():
print(helper.tensor_dtype_to_string(tensor_dtype))
```
Runnable IPython notebooks:
- [np_array_tensorproto.ipynb](/onnx/examples/np_array_tensorproto.ipynb)
## Creating an ONNX Model Using Helper Functions
```python
import onnx
from onnx import helper
from onnx import AttributeProto, TensorProto, GraphProto
# The protobuf definition can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/onnx.proto
# Create one input (ValueInfoProto)
X = helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])
pads = helper.make_tensor_value_info("pads", TensorProto.FLOAT, [1, 4])
value = helper.make_tensor_value_info("value", AttributeProto.FLOAT, [1])
# Create one output (ValueInfoProto)
Y = helper.make_tensor_value_info("Y", TensorProto.FLOAT, [3, 4])
# Create a node (NodeProto) - This is based on Pad-11
node_def = helper.make_node(
"Pad", # name
["X", "pads", "value"], # inputs
["Y"], # outputs
mode="constant", # attributes
)
# Create the graph (GraphProto)
graph_def = helper.make_graph(
[node_def], # nodes
"test-model", # name
[X, pads, value], # inputs
[Y], # outputs
)
# Create the model (ModelProto)
model_def = helper.make_model(graph_def, producer_name="onnx-example")
print(f"The model is:\n{model_def}")
onnx.checker.check_model(model_def)
print("The model is checked!")
```
Runnable IPython notebooks:
- [make_model.ipynb](/onnx/examples/make_model.ipynb)
- [Protobufs.ipynb](/onnx/examples/Protobufs.ipynb)
## Conversion utilities for mapping attributes in ONNX IR
```python
from onnx import TensorProto, helper
np_dtype = helper.tensor_dtype_to_np_dtype(TensorProto.FLOAT)
print(f"The converted numpy dtype for {helper.tensor_dtype_to_string(TensorProto.FLOAT)} is {np_dtype}.")
field_name = helper.tensor_dtype_to_field(TensorProto.FLOAT)
print(f"The field name for {helper.tensor_dtype_to_string(TensorProto.FLOAT)} is {field_name}.")
# There are other useful conversion utilities. Please checker onnx.helper
```
## Checking an ONNX Model
```python
import onnx
# Preprocessing: load the ONNX model
model_path = "path/to/the/model.onnx"
onnx_model = onnx.load(model_path)
print(f"The model is:\n{onnx_model}")
# Check the model
try:
onnx.checker.check_model(onnx_model)
except onnx.checker.ValidationError as e:
print(f"The model is invalid: {e}")
else:
print("The model is valid!")
```
Runnable IPython notebooks:
- [check_model.ipynb](/onnx/examples/check_model.ipynb)
### Checking a Large ONNX Model >2GB
Current checker supports checking models with external data, but for those models larger than 2GB, please use the model path for onnx.checker and the external data needs to be under the same directory.
```python
import onnx
onnx.checker.check_model("path/to/the/model.onnx")
# onnx.checker.check_model(loaded_onnx_model) will fail if given >2GB model
```
## Running Shape Inference on an ONNX Model
```python
import onnx
from onnx import helper, shape_inference
from onnx import TensorProto
# Preprocessing: create a model with two nodes, Y"s shape is unknown
node1 = helper.make_node("Transpose", ["X"], ["Y"], perm=[1, 0, 2])
node2 = helper.make_node("Transpose", ["Y"], ["Z"], perm=[1, 0, 2])
graph = helper.make_graph(
[node1, node2],
"two-transposes",
[helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 3, 4))],
[helper.make_tensor_value_info("Z", TensorProto.FLOAT, (2, 3, 4))],
)
original_model = helper.make_model(graph, producer_name="onnx-examples")
# Check the model and print Y"s shape information
onnx.checker.check_model(original_model)
print(f"Before shape inference, the shape info of Y is:\n{original_model.graph.value_info}")
# Apply shape inference on the model
inferred_model = shape_inference.infer_shapes(original_model)
# Check the model and print Y"s shape information
onnx.checker.check_model(inferred_model)
print(f"After shape inference, the shape info of Y is:\n{inferred_model.graph.value_info}")
```
Runnable IPython notebooks:
- [shape_inference.ipynb](/onnx/examples/shape_inference.ipynb)
### Shape inference a Large ONNX Model >2GB
Current shape_inference supports models with external data, but for those models larger than 2GB, please use the model path for onnx.shape_inference.infer_shapes_path and the external data needs to be under the same directory. You can specify the output path for saving the inferred model; otherwise, the default output path is same as the original model path.
```python
import onnx
# output the inferred model to the original model path
onnx.shape_inference.infer_shapes_path("path/to/the/model.onnx")
# output the inferred model to the specified model path
onnx.shape_inference.infer_shapes_path("path/to/the/model.onnx", "output/inferred/model.onnx")
# inferred_model = onnx.shape_inference.infer_shapes(loaded_onnx_model) will fail if given >2GB model
```
## Running Type Inference on an ONNX Function
```python
import onnx
import onnx.helper
import onnx.parser
import onnx.shape_inference
function_text = """
<opset_import: [ "" : 18 ], domain: "local">
CastTo <dtype> (x) => (y) {
y = Cast <to : int = @dtype> (x)
}
"""
function = onnx.parser.parse_function(function_text)
# The function above has one input-parameter x, and one attribute-parameter dtype.
# To apply type-and-shape-inference to this function, we must supply the type of
# input-parameter and an attribute value for the attribute-parameter as below:
float_type_ = onnx.helper.make_tensor_type_proto(1, None)
dtype_6 = onnx.helper.make_attribute("dtype", 6)
result = onnx.shape_inference.infer_function_output_types(
function, [float_type_], [dtype_6]
)
print(result) # a list containing the (single) output type
```
## Converting Version of an ONNX Model within Default Domain (""/"ai.onnx")
```python
import onnx
from onnx import version_converter, helper
# Preprocessing: load the model to be converted.
model_path = "path/to/the/model.onnx"
original_model = onnx.load(model_path)
print(f"The model before conversion:\n{original_model}")
# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/main/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model = version_converter.convert_version(original_model, <int target_version>)
print(f"The model after conversion:\n{converted_model}")
```
## Utility Functions
### Extracting Sub-model with Inputs Outputs Tensor Names
Function `extract_model()` extracts sub-model from an ONNX model.
The sub-model is defined by the names of the input and output tensors *exactly*.
```python
import onnx
input_path = "path/to/the/original/model.onnx"
output_path = "path/to/save/the/extracted/model.onnx"
input_names = ["input_0", "input_1", "input_2"]
output_names = ["output_0", "output_1"]
onnx.utils.extract_model(input_path, output_path, input_names, output_names)
```
Note: For control-flow operators, e.g. If and Loop, the _boundary of sub-model_,
which is defined by the input and output tensors, should not _cut through_ the
subgraph that is connected to the _main graph_ as attributes of these operators.
### ONNX Compose
`onnx.compose` module provides tools to create combined models.
`onnx.compose.merge_models` can be used to merge two models, by connecting some of the outputs
from the first model with inputs from the second model. By default, inputs/outputs not present in the
`io_map` argument will remain as inputs/outputs of the combined model.
In this example we merge two models by connecting each output of the first model to an input in the second. The resulting model will have the same inputs as the first model and the same outputs as the second:
```python
import onnx
model1 = onnx.load("path/to/model1.onnx")
# agraph (float[N] A, float[N] B) => (float[N] C, float[N] D)
# {
# C = Add(A, B)
# D = Sub(A, B)
# }
model2 = onnx.load("path/to/model2.onnx")
# agraph (float[N] X, float[N] Y) => (float[N] Z)
# {
# Z = Mul(X, Y)
# }
combined_model = onnx.compose.merge_models(
model1, model2,
io_map=[("C", "X"), ("D", "Y")]
)
```
Additionally, a user can specify a list of `inputs`/`outputs` to be included in the combined model,
effectively dropping the part of the graph that does't contribute to the combined model outputs.
In the following example, we are connecting only one of the two outputs in the first model
to both inputs in the second. By specifying the outputs of the combined model explicitly, we are dropping the output not consumed from the first model, and the relevant part of the graph:
```python
import onnx
# Default case. Include all outputs in the combined model
combined_model = onnx.compose.merge_models(
model1, model2,
io_map=[("C", "X"), ("C", "Y")],
) # outputs: "D", "Z"
# Explicit outputs. "Y" output and the Sub node are not present in the combined model
combined_model = onnx.compose.merge_models(
model1, model2,
io_map=[("C", "X"), ("C", "Y")],
outputs=["Z"],
) # outputs: "Z"
```
`onnx.compose.add_prefix` allows you to add a prefix to names in the model, to avoid a name collision
when merging them. By default, it renames all names in the graph: inputs, outputs, edges, nodes,
initializers, sparse initializers and value infos.
```python
import onnx
model = onnx.load("path/to/the/model.onnx")
# model - outputs: ["out0", "out1"], inputs: ["in0", "in1"]
new_model = onnx.compose.add_prefix(model, prefix="m1/")
# new_model - outputs: ["m1/out0", "m1/out1"], inputs: ["m1/in0", "m1/in1"]
# Can also be run in-place
onnx.compose.add_prefix(model, prefix="m1/", inplace=True)
```
`onnx.compose.expand_out_dim` can be used to connect models that expect a different number
of dimensions by inserting dimensions with extent one. This can be useful, when combining a
model producing samples with a model that works with batches of samples.
```python
import onnx
# outputs: "out0", shape=[200, 200, 3]
model1 = onnx.load("path/to/the/model1.onnx")
# outputs: "in0", shape=[N, 200, 200, 3]
model2 = onnx.load("path/to/the/model2.onnx")
# outputs: "out0", shape=[1, 200, 200, 3]
new_model1 = onnx.compose.expand_out_dims(model1, dim_idx=0)
# Models can now be merged
combined_model = onnx.compose.merge_models(
new_model1, model2, io_map=[("out0", "in0")]
)
# Can also be run in-place
onnx.compose.expand_out_dims(model1, dim_idx=0, inplace=True)
```
## Tools
### Updating Model"s Inputs Outputs Dimension Sizes with Variable Length
Function `update_inputs_outputs_dims` updates the dimension of the inputs and outputs of the model,
to the provided values in the parameter. You could provide both static and dynamic dimension size,
by using dim_param. For more information on static and dynamic dimension size, checkout [Tensor Shapes](IR.md#tensor-shapes).
The function runs model checker after the input/output sizes are updated.
```python
import onnx
from onnx.tools import update_model_dims
model = onnx.load("path/to/the/model.onnx")
# Here both "seq", "batch" and -1 are dynamic using dim_param.
variable_length_model = update_model_dims.update_inputs_outputs_dims(model, {"input_name": ["seq", "batch", 3, -1]}, {"output_name": ["seq", "batch", 1, -1]})
```
## ONNX Parser
Functions `onnx.parser.parse_model` and `onnx.parser.parse_graph` can be used to create an ONNX model
or graph from a textual representation as shown below. See [Language Syntax](Syntax.md) for more details
about the language syntax.
```python
input = """
agraph (float[N, 128] X, float[128, 10] W, float[10] B) => (float[N, 10] C)
{
T = MatMul(X, W)
S = Add(T, B)
C = Softmax(S)
}
"""
graph = onnx.parser.parse_graph(input)
input = """
<
ir_version: 7,
opset_import: ["" : 10]
>
agraph (float[N, 128] X, float[128, 10] W, float[10] B) => (float[N, 10] C)
{
T = MatMul(X, W)
S = Add(T, B)
C = Softmax(S)
}
"""
model = onnx.parser.parse_model(input)
```
## ONNX Inliner
Functions `onnx.inliner.inline_local_functions` and `inline_selected_functions` can be used
to inline model-local functions in an ONNX model. In particular, `inline_local_functions` can
be used to produce a function-free model (suitable for backends that do not handle or support
functions). On the other hand, `inline_selected_functions` can be used to inline selected
functions. There is no support yet for inlining ONNX standard ops that are functions (also known
as schema-defined functions).
```python
import onnx
import onnx.inliner
model = onnx.load("path/to/the/model.onnx")
inlined = onnx.inliner.inline_local_functions(model)
onnx.save("path/to/the/inlinedmodel.onnx")
```
|