1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
|
# ONNX with Python
Next sections highlight the main functions used to build
an ONNX graph with the {ref}`Python API <l-python-onnx-api>`
*onnx* offers.
(l-onnx-linear-regression-onnx-api)=
## A simple example: a linear regression
The linear regression is the most simple model
in machine learning described by the following expression
$Y = XA + B$. We can see it as a function of three
variables $Y = f(X, A, B)$ decomposed into
`y = Add(MatMul(X, A), B)`. That what's we need to represent
with ONNX operators. The first thing is to implement a function
with {ref}`ONNX operators <l-onnx-operators>`.
ONNX is strongly typed. Shape and type must be defined for both
input and output of the function. That said, we need four functions
to build the graph among the {ref}`l-onnx-make-function`:
- `make_tensor_value_info`: declares a variable (input or output)
given its shape and type
- `make_node`: creates a node defined by an operation
(an operator type), its inputs and outputs
- `make_graph`: a function to create an ONNX graph with
the objects created by the two previous functions
- `make_model`: a last function which merges the graph and
additional metadata
All along the creation, we need to give a name to every input,
output of every node of the graph. Input and output of the graph
are defined by onnx objects, strings are used to refer to
intermediate results. This is how it looks like.
```{eval-rst}
.. exec_code::
# imports
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# inputs
# 'X' is the name, TensorProto.FLOAT the type, [None, None] the shape
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
# outputs, the shape is left undefined
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
# nodes
# It creates a node defined by the operator type MatMul,
# 'X', 'A' are the inputs of the node, 'XA' the output.
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
# from nodes to graph
# the graph is built from the list of nodes, the list of inputs,
# the list of outputs and a name.
graph = make_graph([node1, node2], # nodes
'lr', # a name
[X, A, B], # inputs
[Y]) # outputs
# onnx graph
# there is no metadata in this case.
onnx_model = make_model(graph)
# Let's check the model is consistent,
# this function is described in section
# Checker and Shape Inference.
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
```
```{image} images/dot_linreg.png
```
An empty shape (`None`) means any shape, a shape defined as `[None, None]`
tells this object is a tensor with two dimensions without any further precision.
The ONNX graph can also be inspected by looking into the fields
of each object of the graph.
```{eval-rst}
.. exec_code::
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
def shape2tuple(shape):
return tuple(getattr(d, 'dim_value', 0) for d in shape.dim)
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# the list of inputs
print('** inputs **')
print(onnx_model.graph.input)
# in a more nicely format
print('** inputs **')
for obj in onnx_model.graph.input:
print("name=%r dtype=%r shape=%r" % (
obj.name, obj.type.tensor_type.elem_type,
shape2tuple(obj.type.tensor_type.shape)))
# the list of outputs
print('** outputs **')
print(onnx_model.graph.output)
# in a more nicely format
print('** outputs **')
for obj in onnx_model.graph.output:
print("name=%r dtype=%r shape=%r" % (
obj.name, obj.type.tensor_type.elem_type,
shape2tuple(obj.type.tensor_type.shape)))
# the list of nodes
print('** nodes **')
print(onnx_model.graph.node)
# in a more nicely format
print('** nodes **')
for node in onnx_model.graph.node:
print("name=%r type=%r input=%r output=%r" % (
node.name, node.op_type, node.input, node.output))
```
The tensor type is an integer (= 1). The helper function {func}`onnx.helper.tensor_dtype_to_np_dtype` gives the
corresponding type with numpy.
```{eval-rst}
.. exec_code::
from onnx import TensorProto
from onnx.helper import tensor_dtype_to_np_dtype, tensor_dtype_to_string
np_dtype = tensor_dtype_to_np_dtype(TensorProto.FLOAT)
print(f"The converted numpy dtype for {tensor_dtype_to_string(TensorProto.FLOAT)} is {np_dtype}.")
```
## Serialization
ONNX is built on the top of protobuf. It adds the necessary definitions
to describe a machine learning model and most of the time, ONNX is used
to serialize or deserialize a model. First section addresses this need.
Second section introduces the serialization and deserialization of
data such as tensors, sparse tensors...
### Model Serialization
The model needs to be saved to be deployed.
ONNX is based on protobuf. It minimizes the space needed
to save the graph on disk. Every object (see {ref}`l-onnx-classes`)
in onnx can be serialized with method `SerializeToString`. That's
the case for the whole model.
```{eval-rst}
.. exec_code::
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
def shape2tuple(shape):
return tuple(getattr(d, 'dim_value', 0) for d in shape.dim)
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# The serialization
with open("linear_regression.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
# display
print(onnx_model)
```
The graph can be restored with function `load`:
```{eval-rst}
.. exec_code::
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
# display
print(onnx_model)
```
It looks exactly the same. Any model can be serialized this way
unless they are bigger than 2 Gb. protobuf is limited to size
smaller than this threshold. Next sections will show how to
overcome that limit.
### Data Serialization
The serialization of tensor usually happens like the following:
```{eval-rst}
.. exec_code::
import numpy
from onnx.numpy_helper import from_array
numpy_tensor = numpy.array([0, 1, 4, 5, 3], dtype=numpy.float32)
print(type(numpy_tensor))
onnx_tensor = from_array(numpy_tensor)
print(type(onnx_tensor))
serialized_tensor = onnx_tensor.SerializeToString()
print(type(serialized_tensor))
with open("saved_tensor.pb", "wb") as f:
f.write(serialized_tensor)
```
And the deserialization like:
```{eval-rst}
.. exec_code::
from onnx import TensorProto
from onnx.numpy_helper import to_array
with open("saved_tensor.pb", "rb") as f:
serialized_tensor = f.read()
print(type(serialized_tensor))
onnx_tensor = TensorProto()
onnx_tensor.ParseFromString(serialized_tensor)
print(type(onnx_tensor))
numpy_tensor = to_array(onnx_tensor)
print(numpy_tensor)
```
The same schema can be used for but not limited to {ref}`l-tensorproto`:
```{eval-rst}
.. exec_code::
import onnx
import pprint
pprint.pprint([p for p in dir(onnx)
if p.endswith('Proto') and p[0] != '_'])
```
This code can be simplified with function *load_tensor_from_string*
(see {ref}`l-onnx-load-data`).
```{eval-rst}
.. exec_code::
from onnx import load_tensor_from_string
with open("saved_tensor.pb", "rb") as f:
serialized = f.read()
proto = load_tensor_from_string(serialized)
print(type(proto))
```
(l-onnx-linear-regression-onnx-api-init)=
## Initializer, default value
The previous model assumed the coefficients of the linear regression
were also input of the model. That's not very convenient. They should be
part of the model itself as constant or **initializer** to follow
onnx semantic. Next example modifies the previous one to change inputs
`A` and `B` into initializers. The package implements two functions to
convert from numpy into onnx and the other way around
(see {ref}`l-numpy-helper-onnx-array`).
- `onnx.numpy_helper.to_array`: converts from onnx to numpy
- `onnx.numpy_helper.from_array`: converts from numpy to onnx
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# initializers
value = numpy.array([0.5, -0.6], dtype=numpy.float32)
A = numpy_helper.from_array(value, name='A')
value = numpy.array([0.4], dtype=numpy.float32)
C = numpy_helper.from_array(value, name='C')
# the part which does not change
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['AX'])
node2 = make_node('Add', ['AX', 'C'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C])
onnx_model = make_model(graph)
check_model(onnx_model)
print(onnx_model)
```
```{image} images/dot_linreg2.png
```
Again, it is possible to go through the onnx structure to check
how the initializers look like.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# initializers
value = numpy.array([0.5, -0.6], dtype=numpy.float32)
A = numpy_helper.from_array(value, name='A')
value = numpy.array([0.4], dtype=numpy.float32)
C = numpy_helper.from_array(value, name='C')
# the part which does not change
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['AX'])
node2 = make_node('Add', ['AX', 'C'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X], [Y], [A, C])
onnx_model = make_model(graph)
check_model(onnx_model)
print('** initializer **')
for init in onnx_model.graph.initializer:
print(init)
```
The type is defined as integer as well with the same meaning.
In this second example, there is only one input left.
Input `A` and `B` were removed. They could be kept. In that case,
they are optional: every initiliazer sharing the same name as input
is considered as a default value. It replaces the input if this one
is not given.
## Attributes
Some operators need attributes such as {ref}`l-onnx-doc-Transpose` operator.
Let's build the graph for expression $y = XA' + B$ or
`y = Add(MatMul(X, Transpose(A)) + B)`. Transpose needs an attribute
defining the permutation of axes: `perm=[1, 0]`. It is added
as a named attribute in function `make_node`.
```{eval-rst}
.. exec_code::
from onnx import TensorProto
from onnx.helper import (
make_model, make_node, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# unchanged
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
# added
node_transpose = make_node('Transpose', ['A'], ['tA'], perm=[1, 0])
# unchanged except A is replaced by tA
node1 = make_node('MatMul', ['X', 'tA'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
# node_transpose is added to the list
graph = make_graph([node_transpose, node1, node2],
'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
```
```{image} images/dot_att.png
```
The whole list of *make* functions is the following. Many of them
are described in section {ref}`l-onnx-make-function`.
```{eval-rst}
.. exec_code::
import onnx
import pprint
pprint.pprint([k for k in dir(onnx.helper)
if k.startswith('make')])
```
## Opset and metadata
Let's load the ONNX file previously created and check
what kind of metadata it has.
```{eval-rst}
.. exec_code::
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
for field in ['doc_string', 'domain', 'functions',
'ir_version', 'metadata_props', 'model_version',
'opset_import', 'producer_name', 'producer_version',
'training_info']:
print(field, getattr(onnx_model, field))
```
Most of them are empty because it was not filled when the ONNX
graph was created. Two of them have a value:
```{eval-rst}
.. exec_code::
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
print("ir_version:", onnx_model.ir_version)
for opset in onnx_model.opset_import:
print("opset domain=%r version=%r" % (opset.domain, opset.version))
```
`IR` defined the version of ONNX language.
Opset defines the version of operators being used.
Without any precision, ONNX uses the latest version available
coming from the installed package.
Another one can be used.
```{eval-rst}
.. exec_code::
from onnx import load
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
del onnx_model.opset_import[:]
opset = onnx_model.opset_import.add()
opset.domain = ''
opset.version = 14
for opset in onnx_model.opset_import:
print("opset domain=%r version=%r" % (opset.domain, opset.version))
```
Any opset can be used as long as all operators are defined
the way ONNX specifies it. Version 5 of operator *Reshape*
defines the shape as an input and not as an attribute like in
version 1. The opset tells which specifications is followed
while describing the graph.
The other metadata can be used to store any information,
to store information about the way the model was generated,
a way to distinguish a model from another one with a version
number.
```{eval-rst}
.. exec_code::
from onnx import load, helper
with open("linear_regression.onnx", "rb") as f:
onnx_model = load(f)
onnx_model.model_version = 15
onnx_model.producer_name = "something"
onnx_model.producer_version = "some other thing"
onnx_model.doc_string = "documentation about this model"
prop = onnx_model.metadata_props
data = dict(key1="value1", key2="value2")
helper.set_model_props(onnx_model, data)
print(onnx_model)
```
Field `training_info` can be used to store additional graphs.
See [training_tool_test.py](https://github.com/onnx/onnx/blob/main/onnx/test/training_tool_test.py)
to see how it works.
## Subgraph: test and loops
They are usually grouped in a category called *control flow*.
It is usually better to avoid them as they are not as efficient
as the matrix operation are much faster and optimized.
### If
A test can be implemented with operator {ref}`l-onnx-doc-If`.
It executes one subgraph or another depending on one
boolean. This is not used very often as a function usually
needs the result of many comparisons in a batch.
The following example computes the sum of all floats
in a matrix based on the sign, returns 1 or -1.
```{eval-rst}
.. exec_code::
import numpy
import onnx
from onnx.helper import (
make_node, make_graph, make_model, make_tensor_value_info)
from onnx.numpy_helper import from_array
from onnx.checker import check_model
from onnxruntime import InferenceSession
# initializers
value = numpy.array([0], dtype=numpy.float32)
zero = from_array(value, name='zero')
# Same as before, X is the input, Y is the output.
X = make_tensor_value_info('X', onnx.TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', onnx.TensorProto.FLOAT, [None])
# The node building the condition. The first one
# sum over all axes.
rsum = make_node('ReduceSum', ['X'], ['rsum'])
# The second compares the result to 0.
cond = make_node('Greater', ['rsum', 'zero'], ['cond'])
# Builds the graph is the condition is True.
# Input for then
then_out = make_tensor_value_info(
'then_out', onnx.TensorProto.FLOAT, None)
# The constant to return.
then_cst = from_array(numpy.array([1]).astype(numpy.float32))
# The only node.
then_const_node = make_node(
'Constant', inputs=[],
outputs=['then_out'],
value=then_cst, name='cst1')
# And the graph wrapping these elements.
then_body = make_graph(
[then_const_node], 'then_body', [], [then_out])
# Same process for the else branch.
else_out = make_tensor_value_info(
'else_out', onnx.TensorProto.FLOAT, [5])
else_cst = from_array(numpy.array([-1]).astype(numpy.float32))
else_const_node = make_node(
'Constant', inputs=[],
outputs=['else_out'],
value=else_cst, name='cst2')
else_body = make_graph(
[else_const_node], 'else_body',
[], [else_out])
# Finally the node If taking both graphs as attributes.
if_node = onnx.helper.make_node(
'If', ['cond'], ['Y'],
then_branch=then_body,
else_branch=else_body)
# The final graph.
graph = make_graph([rsum, cond, if_node], 'if', [X], [Y], [zero])
onnx_model = make_model(graph)
check_model(onnx_model)
# Let's freeze the opset.
del onnx_model.opset_import[:]
opset = onnx_model.opset_import.add()
opset.domain = ''
opset.version = 15
onnx_model.ir_version = 8
# Save.
with open("onnx_if_sign.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
# Let's see the output.
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
x = numpy.ones((3, 2), dtype=numpy.float32)
res = sess.run(None, {'X': x})
# It works.
print("result", res)
print()
# Some display.
print(onnx_model)
```
The whole is easier to visualize with the following image.
```{image} images/dot_if_py.png
```
Both else and then branches are very simple.
Node *If* could even be replaced with a node *Where* and
that would be faster. It becomes interesting when both branches
are bigger and skipping one is more efficient.
### Scan
{ref}`l-onnx-doc-Scan` seems quite complex when reading the specifications.
It is useful to loop over one dimension of a tensor and store
the results in a preallocated tensor.
The following example implements a classic nearest neighbors for
a regression problem. The first step consists in computing the
pairwise distances between the input features *X* and the training
set *W*: $dist(X,W) = (M_{ij}) = (\norm{X_i - W_j}^2)_{ij}$. It is
followed by an operator {ref}`l-onnx-doc-TopK` which extracts the *k* nearest
neighbors.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor, make_graph,
make_tensor_value_info)
from onnx.checker import check_model
# subgraph
initializers = []
nodes = []
inputs = []
outputs = []
value = make_tensor_value_info('next_in', 1, [None, 4])
inputs.append(value)
value = make_tensor_value_info('next', 1, [None])
inputs.append(value)
value = make_tensor_value_info('next_out', 1, [None, None])
outputs.append(value)
value = make_tensor_value_info('scan_out', 1, [None])
outputs.append(value)
node = make_node(
'Identity', ['next_in'], ['next_out'],
name='cdistd_17_Identity', domain='')
nodes.append(node)
node = make_node(
'Sub', ['next_in', 'next'], ['cdistdf_17_C0'],
name='cdistdf_17_Sub', domain='')
nodes.append(node)
node = make_node(
'ReduceSumSquare', ['cdistdf_17_C0'], ['cdistdf_17_reduced0'],
name='cdistdf_17_ReduceSumSquare', axes=[1], keepdims=0, domain='')
nodes.append(node)
node = make_node(
'Identity', ['cdistdf_17_reduced0'],
['scan_out'], name='cdistdf_17_Identity', domain='')
nodes.append(node)
graph = make_graph(nodes, 'OnnxIdentity',
inputs, outputs, initializers)
# main graph
initializers = []
nodes = []
inputs = []
outputs = []
opsets = {'': 15, 'ai.onnx.ml': 15}
target_opset = 15 # subgraphs
# initializers
list_value = [23.29599822460675, -120.86516699239603, -144.70495899914215, -260.08772982740413,
154.65272105889147, -122.23295157108991, 247.45232560871727, -182.83789715805776,
-132.92727431421793, 147.48710175784703, 88.27761768038069, -14.87785569894749,
111.71487894705504, 301.0518319089629, -29.64235742280055, -113.78493504731911,
-204.41218591022718, 112.26561056133608, 66.04032954135549,
-229.5428380626701, -33.549262642481615, -140.95737409864623, -87.8145187836131,
-90.61397011283958, 57.185488100413366, 56.864151796743855, 77.09054590340892,
-187.72501631246712, -42.779503579806025, -21.642642730674076, -44.58517761667535,
78.56025104939847, -23.92423223842056, 234.9166231927213, -73.73512816431007,
-10.150864499514297, -70.37105466673813, 65.5755688281476, 108.68676290979731, -78.36748960443065]
value = numpy.array(list_value, dtype=numpy.float64).reshape((2, 20))
tensor = numpy_helper.from_array(
value, name='knny_ArrayFeatureExtractorcst')
initializers.append(tensor)
list_value = [1.1394007205963135, -0.6848101019859314, -1.234825849533081, 0.4023416340351105,
0.17742614448070526, 0.46278226375579834, -0.4017809331417084, -1.630198359489441,
-0.5096521973609924, 0.7774903774261475, -0.4380742907524109, -1.2527953386306763,
-1.0485529899597168, 1.950775384902954, -1.420017957687378, -1.7062702178955078,
1.8675580024719238, -0.15135720372200012, -0.9772778749465942, 0.9500884413719177,
-2.5529897212982178, -0.7421650290489197, 0.653618574142456, 0.8644362092018127,
1.5327792167663574, 0.37816253304481506, 1.4693588018417358, 0.154947429895401,
-0.6724604368209839, -1.7262825965881348, -0.35955315828323364, -0.8131462931632996,
-0.8707971572875977, 0.056165341287851334, -0.5788496732711792, -0.3115525245666504,
1.2302906513214111, -0.302302747964859, 1.202379822731018, -0.38732680678367615,
2.269754648208618, -0.18718385696411133, -1.4543657302856445, 0.04575851559638977,
-0.9072983860969543, 0.12898291647434235, 0.05194539576768875, 0.7290905714035034,
1.4940791130065918, -0.8540957570075989, -0.2051582634449005, 0.3130677044391632,
1.764052391052246, 2.2408931255340576, 0.40015721321105957, 0.978738009929657,
0.06651721894741058, -0.3627411723136902, 0.30247190594673157, -0.6343221068382263,
-0.5108051300048828, 0.4283318817615509, -1.18063223361969, -0.02818222902715206,
-1.6138978004455566, 0.38690251111984253, -0.21274028718471527, -0.8954665660858154,
0.7610377073287964, 0.3336743414402008, 0.12167501449584961, 0.44386324286460876,
-0.10321885347366333, 1.4542734622955322, 0.4105985164642334, 0.14404356479644775,
-0.8877857327461243, 0.15634897351264954, -1.980796456336975, -0.34791216254234314]
value = numpy.array(list_value, dtype=numpy.float32).reshape((20, 4))
tensor = numpy_helper.from_array(value, name='Sc_Scancst')
initializers.append(tensor)
value = numpy.array([2], dtype=numpy.int64)
tensor = numpy_helper.from_array(value, name='To_TopKcst')
initializers.append(tensor)
value = numpy.array([2, -1, 2], dtype=numpy.int64)
tensor = numpy_helper.from_array(value, name='knny_Reshapecst')
initializers.append(tensor)
# inputs
value = make_tensor_value_info('input', 1, [None, 4])
inputs.append(value)
# outputs
value = make_tensor_value_info('variable', 1, [None, 2])
outputs.append(value)
# nodes
node = make_node(
'Scan', ['input', 'Sc_Scancst'], ['UU032UU', 'UU033UU'],
name='Sc_Scan', body=graph, num_scan_inputs=1, domain='')
nodes.append(node)
node = make_node(
'Transpose', ['UU033UU'], ['Tr_transposed0'],
name='Tr_Transpose', perm=[1, 0], domain='')
nodes.append(node)
node = make_node(
'Sqrt', ['Tr_transposed0'], ['Sq_Y0'],
name='Sq_Sqrt', domain='')
nodes.append(node)
node = make_node(
'TopK', ['Sq_Y0', 'To_TopKcst'], ['To_Values0', 'To_Indices1'],
name='To_TopK', largest=0, sorted=1, domain='')
nodes.append(node)
node = make_node(
'Flatten', ['To_Indices1'], ['knny_output0'],
name='knny_Flatten', domain='')
nodes.append(node)
node = make_node(
'ArrayFeatureExtractor',
['knny_ArrayFeatureExtractorcst', 'knny_output0'], ['knny_Z0'],
name='knny_ArrayFeatureExtractor', domain='ai.onnx.ml')
nodes.append(node)
node = make_node(
'Reshape', ['knny_Z0', 'knny_Reshapecst'], ['knny_reshaped0'],
name='knny_Reshape', allowzero=0, domain='')
nodes.append(node)
node = make_node(
'Transpose', ['knny_reshaped0'], ['knny_transposed0'],
name='knny_Transpose', perm=[1, 0, 2], domain='')
nodes.append(node)
node = make_node(
'Cast', ['knny_transposed0'], ['Ca_output0'],
name='Ca_Cast', to=TensorProto.FLOAT, domain='')
nodes.append(node)
node = make_node(
'ReduceMean', ['Ca_output0'], ['variable'],
name='Re_ReduceMean', axes=[2], keepdims=0, domain='')
nodes.append(node)
# graph
graph = make_graph(nodes, 'KNN regressor', inputs, outputs, initializers)
# model
onnx_model = make_model(graph)
onnx_model.ir_version = 8
onnx_model.producer_name = 'skl2onnx'
onnx_model.producer_version = ''
onnx_model.domain = 'ai.onnx'
onnx_model.model_version = 0
onnx_model.doc_string = ''
set_model_props(onnx_model, {})
# opsets
del onnx_model.opset_import[:]
for dom, value in opsets.items():
op_set = onnx_model.opset_import.add()
op_set.domain = dom
op_set.version = value
check_model(onnx_model)
with open("knnr.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
print(onnx_model)
```
Visually it looks like the following:
```{image} images/dot_scan_py.png
```
The subgraph is executed by operator {ref}`l-onnx-doc-Scan`. In this case,
there is one *scan* input meaning the operator only builds one output.
```
node = make_node(
'Scan', ['X1', 'X2'], ['Y1', 'Y2'],
name='Sc_Scan', body=graph, num_scan_inputs=1, domain='')
```
At the first iteration, the subgraph gets *X1* and the first row of *X2*.
The graph produces two outputs. The first one replaces *X1* in the next iteration,
the second one is store in a container to form *Y2*. At the second iteration,
second input of the subgraph is the second row of *X2*.
Here is a short summary. Green is the first iteration, blue the second.
```{image} images/scanop.png
:width: 400
```
## Functions
As mentioned in previous chapter, functions can be used to shorten
the code to build the model and offer more possibilities to the runtime
running predictions to be faster if there exists a specific implementation
of this function. If it is not the case, the runtime can still use
the default implementation based on existing operators.
Function `make_function` is used to define a function.
It works like a graph with less types. It is more like a
template. This API may evolve. It does not include initializers either.
### A function with no attribute
That's the more simple case. Every input of the function is a dynamic
object known at execution time.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
# Let's define a function for a linear regression
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
linear_regression = make_function(
new_domain, # domain name
'LinearRegression', # function name
['X', 'A', 'B'], # input names
['Y'], # output names
[node1, node2], # nodes
opset_imports, # opsets
[]) # attribute names
# Let's use it in a graph.
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
graph = make_graph(
[make_node('LinearRegression', ['X', 'A', 'B'], ['Y1'], domain=new_domain),
make_node('Abs', ['Y1'], ['Y'])],
'example',
[X, A, B], [Y])
onnx_model = make_model(
graph, opset_imports=opset_imports,
functions=[linear_regression]) # functions to add)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
```
### A function with attributes
```{index} ref_attr_name
```
The following functions are equivalent to the previous one except
one input, *B*, was converted into an argument named *bias*.
The code is almost the same except the bias is now a constant.
Inside the function definition, a node *Constant* is created
to insert the argument as a result. It is linked to the argument
with the attribute `ref_attr_name`.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto, AttributeProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
# Let's define a function for a linear regression
# The first step consists in creating a constant
# equal to the input parameter of the function.
cst = make_node('Constant', [], ['B'])
att = AttributeProto()
att.name = "value"
# This line indicates the value comes from the argument
# named 'bias' the function is given.
att.ref_attr_name = "bias"
att.type = AttributeProto.TENSOR
cst.attribute.append(att)
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
linear_regression = make_function(
new_domain, # domain name
'LinearRegression', # function name
['X', 'A'], # input names
['Y'], # output names
[cst, node1, node2], # nodes
opset_imports, # opsets
["bias"]) # attribute names
# Let's use it in a graph.
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
graph = make_graph(
[make_node('LinearRegression', ['X', 'A'], ['Y1'], domain=new_domain,
# bias is now an argument of the function and is defined as a tensor
bias=make_tensor('former_B', TensorProto.FLOAT, [1], [0.67])),
make_node('Abs', ['Y1'], ['Y'])],
'example',
[X, A], [Y])
onnx_model = make_model(
graph, opset_imports=opset_imports,
functions=[linear_regression]) # functions to add)
check_model(onnx_model)
# the work is done, let's display it...
print(onnx_model)
```
## Parsing
Module onnx provides a faster way to define a graph
and is lot easier to read. That's easy to use when the graph is built
in a single function, less easy when the graph is built from many
different functions converting each piece of a machine learning
pipeline.
```
import onnx.parser
from onnx.checker import check_model
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,J] X, float[I] A, float[I] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
onnx_model = onnx.parser.parse_model(input)
check_model(onnx_model)
print(onnx_model)
```
```
ir_version: 8
graph {
node {
input: "X"
input: "A"
output: "XA"
op_type: "MatMul"
domain: ""
}
node {
input: "XA"
input: "B"
output: "Y"
op_type: "Add"
domain: ""
}
name: "agraph"
input {
name: "X"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
dim {
dim_param: "J"
}
}
}
}
}
input {
name: "A"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
input {
name: "B"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
output {
name: "Y"
type {
tensor_type {
elem_type: 1
shape {
dim {
dim_param: "I"
}
}
}
}
}
}
opset_import {
domain: ""
version: 15
}
```
This way is used to create small models but it is rarely used
in converting libraries.
## Checker and Shape Inference
onnx provides a function to check the model is valid.
It checks input type or shapes whenever it can detect inconsistency.
The following example adds two matrices of different types
which is not allowed.
```{eval-rst}
.. exec_code::
import onnx.parser
import onnx.checker
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,4] X, float[4,2] A, int[4] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
try:
onnx_model = onnx.parser.parse_model(input)
onnx.checker.check_model(onnx_model)
except Exception as e:
print(e)
```
`check_model` raises an error due to that inconsistency.
This work for all operators defined in the main domain or the ML domain.
It remains silent for any custom operator not defined in any specification.
Shape inference serves one purpose: estimate the shape
and the type of intermediate results.
If known, the runtime can estimate the memory consumption
beforehand and optimize the computation. It can fuse some
operators, it can do the computation inplace...
```{eval-rst}
.. exec_code::
import onnx.parser
from onnx import helper, shape_inference
input = '''
<
ir_version: 8,
opset_import: [ "" : 15]
>
agraph (float[I,4] X, float[4,2] A, float[4] B) => (float[I] Y) {
XA = MatMul(X, A)
Y = Add(XA, B)
}
'''
onnx_model = onnx.parser.parse_model(input)
inferred_model = shape_inference.infer_shapes(onnx_model)
print(inferred_model)
```
There is a new attribute `value_info` which stores the inferred shapes.
Letter `I` in `dim_param: "I"` can be seen as a variable. It depends on the inputs
but the function is able to tell which intermediate result will share
the same dimension.
Shape inference does not work all the time. For example,
a Reshape operator. Shape inference only works if the shape is constant.
If not constant, the shape cannot be easily inferred unless
the following nodes expect specific shape.
## Evaluation and Runtime
The ONNX standard allows frameworks to export trained models in ONNX format,
and enables inference using any backend that supports the ONNX format.
*onnxruntime* is one efficient option. It is available in many platforms.
It is optimized for fast inference. Its coverage can be tracked on
[ONNX Backend Dashboard](https://onnx.ai/backend-scoreboard/).
*onnx* implements a python runtime useful to help understand a model.
It is not intended to be used for production and performance is not a goal.
### Evaluation of a linear regression
Full API is described at {ref}`l-reference-implementation`.
It takes a model (a *ModelProto*, a filename, ...).
Method `run` returns the outputs for a given set of inputs
specified in a dictionary.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
sess = ReferenceEvaluator(onnx_model)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 1).astype(numpy.float32)
b = numpy.random.randn(1, 1).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
```
### Evaluation of a node
The evaluator can also evaluate a simple node to check how an operator
behaves on a specific input.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import make_node
from onnx.reference import ReferenceEvaluator
node = make_node('EyeLike', ['X'], ['Y'])
sess = ReferenceEvaluator(node)
x = numpy.random.randn(4, 2).astype(numpy.float32)
feeds = {'X': x}
print(sess.run(None, feeds))
```
Similar code would also work on *GraphProto* or *FunctionProto*.
### Evaluation Step by Step
A converting library takes an existing model trained with a machine
learning framework (*pytorch*, *scikit-learn*, ...) and
converts the model into an ONNX graph. Complex models usually do not work
on the first try and seeing intermediate results may help to find the
part incorrectly converted. Parameter `verbose` displays information
about intermediate results.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'B'], ['Y'])
graph = make_graph([node1, node2], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
for verbose in [1, 2, 3, 4]:
print()
print(f"------ verbose={verbose}")
print()
sess = ReferenceEvaluator(onnx_model, verbose=verbose)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 1).astype(numpy.float32)
b = numpy.random.randn(1, 1).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
```
### Evaluate a custom node
The following example still implements a linear regression
but adds the identity matrix to *A*: $Y = X(A + I) + B$.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info)
from onnx.checker import check_model
from onnx.reference import ReferenceEvaluator
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node0 = make_node('EyeLike', ['A'], ['Eye'])
node1 = make_node('Add', ['A', 'Eye'], ['A1'])
node2 = make_node('MatMul', ['X', 'A1'], ['XA1'])
node3 = make_node('Add', ['XA1', 'B'], ['Y'])
graph = make_graph([node0, node1, node2, node3], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph)
check_model(onnx_model)
with open("linear_regression.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
sess = ReferenceEvaluator(onnx_model, verbose=2)
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 2).astype(numpy.float32) / 10
b = numpy.random.randn(1, 2).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
```
What if we combine operators *EyeLike* and *Add* into *AddEyeLike* to
make it more efficient. Next example replaces these two operators
by a single one from domain `'optimized'`.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid)
from onnx.checker import check_model
X = make_tensor_value_info('X', TensorProto.FLOAT, [None, None])
A = make_tensor_value_info('A', TensorProto.FLOAT, [None, None])
B = make_tensor_value_info('B', TensorProto.FLOAT, [None, None])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, [None])
node01 = make_node('AddEyeLike', ['A'], ['A1'], domain='optimized')
node2 = make_node('MatMul', ['X', 'A1'], ['XA1'])
node3 = make_node('Add', ['XA1', 'B'], ['Y'])
graph = make_graph([node01, node2, node3], 'lr', [X, A, B], [Y])
onnx_model = make_model(graph, opset_imports=[
make_opsetid('', 18), make_opsetid('optimized', 1)
])
check_model(onnx_model)
with open("linear_regression_improved.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
```
We need to evaluate this model is equivalent to the first one.
This requires an implementation for this particular node.
```{eval-rst}
.. exec_code::
import numpy
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
class AddEyeLike(OpRun):
op_domain = "optimized"
def _run(self, X, alpha=1.):
assert len(X.shape) == 2
assert X.shape[0] == X.shape[1]
X = X.copy()
ind = numpy.diag_indices(X.shape[0])
X[ind] += alpha
return (X,)
sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike])
x = numpy.random.randn(4, 2).astype(numpy.float32)
a = numpy.random.randn(2, 2).astype(numpy.float32) / 10
b = numpy.random.randn(1, 2).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
print(sess.run(None, feeds))
# Let's check with the previous model.
sess0 = ReferenceEvaluator("linear_regression.onnx",)
sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike])
y0 = sess0.run(None, feeds)[0]
y1 = sess1.run(None, feeds)[0]
print(y0)
print(y1)
print(f"difference: {numpy.abs(y0 - y1).max()}")
```
Predictions are the same. Let's compare the performance
on a matrix big enough to see a significant difference.
```{eval-rst}
.. exec_code::
import timeit
import numpy
from onnx.reference import ReferenceEvaluator
from onnx.reference.op_run import OpRun
class AddEyeLike(OpRun):
op_domain = "optimized"
def _run(self, X, alpha=1.):
assert len(X.shape) == 2
assert X.shape[0] == X.shape[1]
X = X.copy()
ind = numpy.diag_indices(X.shape[0])
X[ind] += alpha
return (X,)
sess = ReferenceEvaluator("linear_regression_improved.onnx", verbose=2, new_ops=[AddEyeLike])
x = numpy.random.randn(4, 100).astype(numpy.float32)
a = numpy.random.randn(100, 100).astype(numpy.float32) / 10
b = numpy.random.randn(1, 100).astype(numpy.float32)
feeds = {'X': x, 'A': a, 'B': b}
sess0 = ReferenceEvaluator("linear_regression.onnx")
sess1 = ReferenceEvaluator("linear_regression_improved.onnx", new_ops=[AddEyeLike])
y0 = sess0.run(None, feeds)[0]
y1 = sess1.run(None, feeds)[0]
print(f"difference: {numpy.abs(y0 - y1).max()}")
print(f"time with EyeLike+Add: {timeit.timeit(lambda: sess0.run(None, feeds), number=1000)}")
print(f"time with AddEyeLike: {timeit.timeit(lambda: sess1.run(None, feeds), number=1000)}")
```
It seems worth adding an optimized node in this case.
This kind of optimization is usually called *fusion*.
Two consecutive operators are fused into an optimized version of both.
Production usually relies on *onnxruntime* but since
the optimization uses basic matrix operation, it should bring
the same performance gain on any other runtime.
## Implementation details
### Python and C++
onnx relies on protobuf to define its type.
You would assume that a python object is just a wrapper around
a C pointer on the internal structure. Therefore, it should be
possible to access internal data from a function receiving a python
object of type `ModelProto`. But it is not. According to
[Protobuf 4, changes](https://developers.google.com/protocol-buffers/docs/news/2022-05-06),
this is no longer possible after version 4 and it is safer to assume the
only way to get a hold on the content is to serialize the model
into bytes, give it to the C function, then deserialize it.
Functions like `check_model` or
`shape_inference` are calling `SerializeToString` then
`ParseFromString` before checking the model with a C code.
### Attributes and inputs
There is a clear distinction between the two. Inputs are dynamic and
may change at every execution. Attributes never changes and an optimizer
can improve the execution graph assuming it never changes.
Therefore, it is impossible to turn an input into an attribute.
And the operator *Constant* is the only operator changing an
attribute into an input.
### Shape or no shape
onnx usually expects a shape for every input or output
assuming the rank (or the number of dimensions) is known.
What if we need to create a valid graph for every dimension?
This case is still puzzling.
```{eval-rst}
.. exec_code::
import numpy
from onnx import numpy_helper, TensorProto, FunctionProto
from onnx.helper import (
make_model, make_node, set_model_props, make_tensor,
make_graph, make_tensor_value_info, make_opsetid,
make_function)
from onnx.checker import check_model
from onnxruntime import InferenceSession
def create_model(shapes):
new_domain = 'custom'
opset_imports = [make_opsetid("", 14), make_opsetid(new_domain, 1)]
node1 = make_node('MatMul', ['X', 'A'], ['XA'])
node2 = make_node('Add', ['XA', 'A'], ['Y'])
X = make_tensor_value_info('X', TensorProto.FLOAT, shapes['X'])
A = make_tensor_value_info('A', TensorProto.FLOAT, shapes['A'])
Y = make_tensor_value_info('Y', TensorProto.FLOAT, shapes['Y'])
graph = make_graph([node1, node2], 'example', [X, A], [Y])
onnx_model = make_model(graph, opset_imports=opset_imports)
# Let models runnable by onnxruntime with a released ir_version
onnx_model.ir_version = 8
return onnx_model
print("----------- case 1: 2D x 2D -> 2D")
onnx_model = create_model({'X': [None, None], 'A': [None, None], 'Y': [None, None]})
check_model(onnx_model)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2, 2).astype(numpy.float32)})
print(res)
print("----------- case 2: 2D x 1D -> 1D")
onnx_model = create_model({'X': [None, None], 'A': [None], 'Y': [None]})
check_model(onnx_model)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2).astype(numpy.float32)})
print(res)
print("----------- case 3: 2D x 0D -> 0D")
onnx_model = create_model({'X': [None, None], 'A': [], 'Y': []})
check_model(onnx_model)
try:
InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
except Exception as e:
print(e)
print("----------- case 4: 2D x None -> None")
onnx_model = create_model({'X': [None, None], 'A': None, 'Y': None})
try:
check_model(onnx_model)
except Exception as e:
print(type(e), e)
sess = InferenceSession(onnx_model.SerializeToString(),
providers=["CPUExecutionProvider"])
res = sess.run(None, {
'X': numpy.random.randn(2, 2).astype(numpy.float32),
'A': numpy.random.randn(2).astype(numpy.float32)})
print(res)
print("----------- end")
```
|