1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
|
## Operator Schemas
*This file is automatically generated from the
[def files](/onnx/defs) via [this script](/onnx/defs/gen_doc.py).
Do not modify directly and instead edit operator definitions.*
* ai.onnx.ml
* <a href="#ai.onnx.ml.ArrayFeatureExtractor">ai.onnx.ml.ArrayFeatureExtractor</a>
* <a href="#ai.onnx.ml.Binarizer">ai.onnx.ml.Binarizer</a>
* <a href="#ai.onnx.ml.CastMap">ai.onnx.ml.CastMap</a>
* <a href="#ai.onnx.ml.CategoryMapper">ai.onnx.ml.CategoryMapper</a>
* <a href="#ai.onnx.ml.DictVectorizer">ai.onnx.ml.DictVectorizer</a>
* <a href="#ai.onnx.ml.FeatureVectorizer">ai.onnx.ml.FeatureVectorizer</a>
* <a href="#ai.onnx.ml.Imputer">ai.onnx.ml.Imputer</a>
* <a href="#ai.onnx.ml.LabelEncoder">ai.onnx.ml.LabelEncoder</a>
* <a href="#ai.onnx.ml.LinearClassifier">ai.onnx.ml.LinearClassifier</a>
* <a href="#ai.onnx.ml.LinearRegressor">ai.onnx.ml.LinearRegressor</a>
* <a href="#ai.onnx.ml.Normalizer">ai.onnx.ml.Normalizer</a>
* <a href="#ai.onnx.ml.OneHotEncoder">ai.onnx.ml.OneHotEncoder</a>
* <a href="#ai.onnx.ml.SVMClassifier">ai.onnx.ml.SVMClassifier</a>
* <a href="#ai.onnx.ml.SVMRegressor">ai.onnx.ml.SVMRegressor</a>
* <a href="#ai.onnx.ml.Scaler">ai.onnx.ml.Scaler</a>
* <a href="#ai.onnx.ml.TreeEnsembleClassifier">ai.onnx.ml.TreeEnsembleClassifier</a>
* <a href="#ai.onnx.ml.TreeEnsembleRegressor">ai.onnx.ml.TreeEnsembleRegressor</a>
* <a href="#ai.onnx.ml.ZipMap">ai.onnx.ml.ZipMap</a>
## ai.onnx.ml
### <a name="ai.onnx.ml.ArrayFeatureExtractor"></a><a name="ai.onnx.ml.arrayfeatureextractor">**ai.onnx.ml.ArrayFeatureExtractor**</a>
Select elements of the input tensor based on the indices passed.<br>
The indices are applied to the last axes of the tensor.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be selected</dd>
<dt><tt>Y</tt> : tensor(int64)</dt>
<dd>The indices, based on 0 as the first index of any dimension.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Z</tt> : T</dt>
<dd>Selected output data as an array</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32), tensor(string)</dt>
<dd>The input must be a tensor of a numeric type or string. The output will be of the same tensor type.</dd>
</dl>
### <a name="ai.onnx.ml.Binarizer"></a><a name="ai.onnx.ml.binarizer">**ai.onnx.ml.Binarizer**</a>
Maps the values of the input tensor to either 0 or 1, element-wise, based on the outcome of a comparison against a threshold value.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>threshold</tt> : float (default is 0.0)</dt>
<dd>Values greater than this are mapped to 1, others to 0.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be binarized</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T</dt>
<dd>Binarized output data</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type. The output will be of the same tensor type.</dd>
</dl>
### <a name="ai.onnx.ml.CastMap"></a><a name="ai.onnx.ml.castmap">**ai.onnx.ml.CastMap**</a>
Converts a map to a tensor.<br>The map key must be an int64 and the values will be ordered
in ascending order based on this key.<br>The operator supports dense packing or sparse packing.
If using sparse packing, the key cannot exceed the max_map-1 value.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>cast_to</tt> : string (default is TO_FLOAT)</dt>
<dd>A string indicating the desired element type of the output tensor, one of 'TO_FLOAT', 'TO_STRING', 'TO_INT64'.</dd>
<dt><tt>map_form</tt> : string (default is DENSE)</dt>
<dd>Indicates whether to only output as many values as are in the input (dense), or position the input based on using the key of the map as the index of the output (sparse).<br>One of 'DENSE', 'SPARSE'.</dd>
<dt><tt>max_map</tt> : int (default is 1)</dt>
<dd>If the value of map_form is 'SPARSE,' this attribute indicates the total length of the output tensor.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>The input map that is to be cast to a tensor</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>A tensor representing the same data as the input map, ordered by their keys</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : map(int64, string), map(int64, float)</dt>
<dd>The input must be an integer map to either string or float.</dd>
<dt><tt>T2</tt> : tensor(string), tensor(float), tensor(int64)</dt>
<dd>The output is a 1-D tensor of string, float, or integer.</dd>
</dl>
### <a name="ai.onnx.ml.CategoryMapper"></a><a name="ai.onnx.ml.categorymapper">**ai.onnx.ml.CategoryMapper**</a>
Converts strings to integers and vice versa.<br>
Two sequences of equal length are used to map between integers and strings,
with strings and integers at the same index detailing the mapping.<br>
Each operator converts either integers to strings or strings to integers, depending
on which default value attribute is provided. Only one default value attribute
should be defined.<br>
If the string default value is set, it will convert integers to strings.
If the int default value is set, it will convert strings to integers.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>cats_int64s</tt> : list of ints</dt>
<dd>The integers of the map. This sequence must be the same length as the 'cats_strings' sequence.</dd>
<dt><tt>cats_strings</tt> : list of strings</dt>
<dd>The strings of the map. This sequence must be the same length as the 'cats_int64s' sequence</dd>
<dt><tt>default_int64</tt> : int (default is -1)</dt>
<dd>An integer to use when an input string value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.</dd>
<dt><tt>default_string</tt> : string (default is _Unused)</dt>
<dd>A string to use when an input integer value is not found in the map.<br>One and only one of the 'default_*' attributes must be defined.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Input data</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Output data. If strings are input, the output values are integers, and vice versa.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(string), tensor(int64)</dt>
<dd>The input must be a tensor of strings or integers, either [N,C] or [C].</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output is a tensor of strings or integers. Its shape will be the same as the input shape.</dd>
</dl>
### <a name="ai.onnx.ml.DictVectorizer"></a><a name="ai.onnx.ml.dictvectorizer">**ai.onnx.ml.DictVectorizer**</a>
Uses an index mapping to convert a dictionary to an array.<br>
Given a dictionary, each key is looked up in the vocabulary attribute corresponding to
the key type. The index into the vocabulary array at which the key is found is then
used to index the output 1-D tensor 'Y' and insert into it the value found in the dictionary 'X'.<br>
The key type of the input map must correspond to the element type of the defined vocabulary attribute.
Therefore, the output array will be equal in length to the index mapping vector parameter.
All keys in the input dictionary must be present in the index mapping vector.
For each item in the input dictionary, insert its value in the output array.
Any keys not present in the input dictionary, will be zero in the output array.<br>
For example: if the ``string_vocabulary`` parameter is set to ``["a", "c", "b", "z"]``,
then an input of ``{"a": 4, "c": 8}`` will produce an output of ``[4, 8, 0, 0]``.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>int64_vocabulary</tt> : list of ints</dt>
<dd>An integer vocabulary array.<br>One and only one of the vocabularies must be defined.</dd>
<dt><tt>string_vocabulary</tt> : list of strings</dt>
<dd>A string vocabulary array.<br>One and only one of the vocabularies must be defined.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>A dictionary.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>A 1-D tensor holding values from the input dictionary.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : map(string, int64), map(int64, string), map(int64, float), map(int64, double), map(string, float), map(string, double)</dt>
<dd>The input must be a map from strings or integers to either strings or a numeric type. The key and value types cannot be the same.</dd>
<dt><tt>T2</tt> : tensor(int64), tensor(float), tensor(double), tensor(string)</dt>
<dd>The output will be a tensor of the value type of the input map. It's shape will be [1,C], where C is the length of the input dictionary.</dd>
</dl>
### <a name="ai.onnx.ml.FeatureVectorizer"></a><a name="ai.onnx.ml.featurevectorizer">**ai.onnx.ml.FeatureVectorizer**</a>
Concatenates input tensors into one continuous output.<br>
All input shapes are 2-D and are concatenated along the second dimention. 1-D tensors are treated as [1,C].
Inputs are copied to the output maintaining the order of the input arguments.<br>
All inputs must be integers or floats, while the output will be all floating point values.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>inputdimensions</tt> : list of ints</dt>
<dd>The size of each input in the input list</dd>
</dl>
#### Inputs (1 - ∞)
<dl>
<dt><tt>X</tt> (variadic) : T1</dt>
<dd>An ordered collection of tensors, all with the same element type.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>The output array, elements ordered as the inputs.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(int32), tensor(int64), tensor(float), tensor(double)</dt>
<dd>The input type must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.Imputer"></a><a name="ai.onnx.ml.imputer">**ai.onnx.ml.Imputer**</a>
Replaces inputs that equal one value with another, leaving all other elements alone.<br>
This operator is typically used to replace missing values in situations where they have a canonical
representation, such as -1, 0, NaN, or some extreme value.<br>
One and only one of imputed_value_floats or imputed_value_int64s should be defined -- floats if the input tensor
holds floats, integers if the input tensor holds integers. The imputed values must all fit within the
width of the tensor element type. One and only one of the replaced_value_float or replaced_value_int64 should be defined,
which one depends on whether floats or integers are being processed.<br>
The imputed_value attribute length can be 1 element, or it can have one element per input feature.<br>In other words, if the input tensor has the shape [*,F], then the length of the attribute array may be 1 or F. If it is 1, then it is broadcast along the last dimension and applied to each feature.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>imputed_value_floats</tt> : list of floats</dt>
<dd>Value(s) to change to</dd>
<dt><tt>imputed_value_int64s</tt> : list of ints</dt>
<dd>Value(s) to change to.</dd>
<dt><tt>replaced_value_float</tt> : float (default is 0.0)</dt>
<dd>A value that needs replacing.</dd>
<dt><tt>replaced_value_int64</tt> : int (default is 0)</dt>
<dd>A value that needs replacing.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be processed.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T</dt>
<dd>Imputed output data</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type, either [N,C] or [C]. The output type will be of the same tensor type and shape.</dd>
</dl>
### <a name="ai.onnx.ml.LabelEncoder"></a><a name="ai.onnx.ml.labelencoder">**ai.onnx.ml.LabelEncoder**</a>
Maps each element in the input tensor to another value.<br>
The mapping is determined by the two parallel attributes, 'keys_*' and
'values_*' attribute. The i-th value in the specified 'keys_*' attribute
would be mapped to the i-th value in the specified 'values_*' attribute. It
implies that input's element type and the element type of the specified
'keys_*' should be identical while the output type is identical to the
specified 'values_*' attribute. If an input element can not be found in the
specified 'keys_*' attribute, the 'default_*' that matches the specified
'values_*' attribute may be used as its output value.<br>
Let's consider an example which maps a string tensor to an integer tensor.
Assume and 'keys_strings' is ["Amy", "Sally"], 'values_int64s' is [5, 6],
and 'default_int64' is '-1'. The input ["Dori", "Amy", "Amy", "Sally",
"Sally"] would be mapped to [-1, 5, 5, 6, 6].<br>
Since this operator is an one-to-one mapping, its input and output shapes
are the same. Notice that only one of 'keys_*'/'values_*' can be set.<br>
For key look-up, bit-wise comparison is used so even a float NaN can be
mapped to a value in 'values_*' attribute.<br>
#### Version
This version of the operator has been available since version 2 of the 'ai.onnx.ml' operator set.
Other versions of this operator: <a href="Changelog-ml.md#ai.onnx.ml.LabelEncoder-1">ai.onnx.ml.LabelEncoder-1</a>
#### Attributes
<dl>
<dt><tt>default_float</tt> : float (default is -0.0)</dt>
<dd>A float.</dd>
<dt><tt>default_int64</tt> : int (default is -1)</dt>
<dd>An integer.</dd>
<dt><tt>default_string</tt> : string (default is _Unused)</dt>
<dd>A string.</dd>
<dt><tt>keys_floats</tt> : list of floats</dt>
<dd>A list of floats.</dd>
<dt><tt>keys_int64s</tt> : list of ints</dt>
<dd>A list of ints.</dd>
<dt><tt>keys_strings</tt> : list of strings</dt>
<dd>A list of strings. One and only one of 'keys_*'s should be set.</dd>
<dt><tt>values_floats</tt> : list of floats</dt>
<dd>A list of floats.</dd>
<dt><tt>values_int64s</tt> : list of ints</dt>
<dd>A list of ints.</dd>
<dt><tt>values_strings</tt> : list of strings</dt>
<dd>A list of strings. One and only one of 'value_*'s should be set.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Input data. It can be either tensor or scalar.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Output data.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(string), tensor(int64), tensor(float)</dt>
<dd>The input type is a tensor of any shape.</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64), tensor(float)</dt>
<dd>Output type is determined by the specified 'values_*' attribute.</dd>
</dl>
### <a name="ai.onnx.ml.LinearClassifier"></a><a name="ai.onnx.ml.linearclassifier">**ai.onnx.ml.LinearClassifier**</a>
Linear classifier
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>classlabels_ints</tt> : list of ints</dt>
<dd>Class labels when using integer labels. One and only one 'classlabels' attribute must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>Class labels when using string labels. One and only one 'classlabels' attribute must be defined.</dd>
<dt><tt>coefficients</tt> : list of floats (required)</dt>
<dd>A collection of weights of the model(s).</dd>
<dt><tt>intercepts</tt> : list of floats</dt>
<dd>A collection of intercepts.</dd>
<dt><tt>multi_class</tt> : int (default is 0)</dt>
<dd>Indicates whether to do OvR or multinomial (0=OvR is the default).</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the scores vector.<br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Data to be classified.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Classification outputs (one class per example).</dd>
<dt><tt>Z</tt> : tensor(float)</dt>
<dd>Classification scores ([N,E] - one score for each class and example</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type, and of of shape [N,C] or [C]. In the latter case, it will be treated as [1,C]</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output will be a tensor of strings or integers.</dd>
</dl>
### <a name="ai.onnx.ml.LinearRegressor"></a><a name="ai.onnx.ml.linearregressor">**ai.onnx.ml.LinearRegressor**</a>
Generalized linear regression evaluation.<br>
If targets is set to 1 (default) then univariate regression is performed.<br>
If targets is set to M then M sets of coefficients must be passed in as a sequence
and M results will be output for each input n in N.<br>
The coefficients array is of length n, and the coefficients for each target are contiguous.
Intercepts are optional but if provided must match the number of targets.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd>Weights of the model(s).</dd>
<dt><tt>intercepts</tt> : list of floats</dt>
<dd>Weights of the intercepts, if used.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the regression output vector.<br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
<dt><tt>targets</tt> : int (default is 1)</dt>
<dd>The total number of regression targets, 1 if not defined.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be regressed.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Regression outputs (one per target, per example).</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.Normalizer"></a><a name="ai.onnx.ml.normalizer">**ai.onnx.ml.Normalizer**</a>
Normalize the input. There are three normalization modes, which have the corresponding formulas,
defined using element-wise infix operators '/' and '^' and tensor-wide functions 'max' and 'sum':<br>
<br>
Max: Y = X / max(X)<br>
L1: Y = X / sum(X)<br>
L2: Y = sqrt(X^2 / sum(X^2)}<br>
In all modes, if the divisor is zero, Y == X.
<br>
For batches, that is, [N,C] tensors, normalization is done along the C axis. In other words, each row
of the batch is normalized independently.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>norm</tt> : string (default is MAX)</dt>
<dd>One of 'MAX,' 'L1,' 'L2'</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be encoded, a tensor of shape [N,C] or [C]</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Encoded output data</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.OneHotEncoder"></a><a name="ai.onnx.ml.onehotencoder">**ai.onnx.ml.OneHotEncoder**</a>
Replace each input element with an array of ones and zeros, where a single
one is placed at the index of the category that was passed in. The total category count
will determine the size of the extra dimension of the output array Y.<br>
For example, if we pass a tensor with a single value of 4, and a category count of 8,
the output will be a tensor with ``[0,0,0,0,1,0,0,0]``.<br>
This operator assumes every input feature is from the same set of categories.<br>
If the input is a tensor of float, int32, or double, the data will be cast
to integers and the cats_int64s category list will be used for the lookups.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>cats_int64s</tt> : list of ints</dt>
<dd>List of categories, ints.<br>One and only one of the 'cats_*' attributes must be defined.</dd>
<dt><tt>cats_strings</tt> : list of strings</dt>
<dd>List of categories, strings.<br>One and only one of the 'cats_*' attributes must be defined.</dd>
<dt><tt>zeros</tt> : int (default is 1)</dt>
<dd>If true and category is not present, will return all zeros; if false and a category if not found, the operator will fail.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be encoded.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Encoded output data, having one more dimension than X.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(string), tensor(int64), tensor(int32), tensor(float), tensor(double)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.SVMClassifier"></a><a name="ai.onnx.ml.svmclassifier">**ai.onnx.ml.SVMClassifier**</a>
Support Vector Machine classifier
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>classlabels_ints</tt> : list of ints</dt>
<dd>Class labels if using integer labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>Class labels if using string labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd></dd>
<dt><tt>kernel_params</tt> : list of floats</dt>
<dd>List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.</dd>
<dt><tt>kernel_type</tt> : string (default is LINEAR)</dt>
<dd>The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
<dt><tt>prob_a</tt> : list of floats</dt>
<dd>First set of probability coefficients.</dd>
<dt><tt>prob_b</tt> : list of floats</dt>
<dd>Second set of probability coefficients. This array must be same size as prob_a.<br>If these are provided then output Z are probability estimates, otherwise they are raw scores.</dd>
<dt><tt>rho</tt> : list of floats</dt>
<dd></dd>
<dt><tt>support_vectors</tt> : list of floats</dt>
<dd></dd>
<dt><tt>vectors_per_class</tt> : list of ints</dt>
<dd></dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Data to be classified.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>Classification outputs (one class per example).</dd>
<dt><tt>Z</tt> : tensor(float)</dt>
<dd>Class scores (one per class per example), if prob_a and prob_b are provided they are probabilities for each class, otherwise they are raw scores.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type, either [C] or [N,C].</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output type will be a tensor of strings or integers, depending on which of the the classlabels_* attributes is used. Its size will match the bactch size of the input.</dd>
</dl>
### <a name="ai.onnx.ml.SVMRegressor"></a><a name="ai.onnx.ml.svmregressor">**ai.onnx.ml.SVMRegressor**</a>
Support Vector Machine regression prediction and one-class SVM anomaly detection.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>coefficients</tt> : list of floats</dt>
<dd>Support vector coefficients.</dd>
<dt><tt>kernel_params</tt> : list of floats</dt>
<dd>List of 3 elements containing gamma, coef0, and degree, in that order. Zero if unused for the kernel.</dd>
<dt><tt>kernel_type</tt> : string (default is LINEAR)</dt>
<dd>The kernel type, one of 'LINEAR,' 'POLY,' 'RBF,' 'SIGMOID'.</dd>
<dt><tt>n_supports</tt> : int (default is 0)</dt>
<dd>The number of support vectors.</dd>
<dt><tt>one_class</tt> : int (default is 0)</dt>
<dd>Flag indicating whether the regression is a one-class SVM or not.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT.'</dd>
<dt><tt>rho</tt> : list of floats</dt>
<dd></dd>
<dt><tt>support_vectors</tt> : list of floats</dt>
<dd>Chosen support vectors</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be regressed.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Regression outputs (one score per target per example).</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type, either [C] or [N,C].</dd>
</dl>
### <a name="ai.onnx.ml.Scaler"></a><a name="ai.onnx.ml.scaler">**ai.onnx.ml.Scaler**</a>
Rescale input data, for example to standardize features by removing the mean and scaling to unit variance.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>offset</tt> : list of floats</dt>
<dd>First, offset by this.<br>Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.</dd>
<dt><tt>scale</tt> : list of floats</dt>
<dd>Second, multiply by this.<br>Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.<br>Must be same length as 'offset'</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Data to be scaled.</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>Scaled output data.</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.TreeEnsembleClassifier"></a><a name="ai.onnx.ml.treeensembleclassifier">**ai.onnx.ml.TreeEnsembleClassifier**</a>
Tree Ensemble classifier. Returns the top class for each of N inputs.<br>
The attributes named 'nodes_X' form a sequence of tuples, associated by
index into the sequences, which must all be of equal length. These tuples
define the nodes.<br>
Similarly, all fields prefixed with 'class_' are tuples of votes at the leaves.
A leaf may have multiple votes, where each vote is weighted by
the associated class_weights index.<br>
One and only one of classlabels_strings or classlabels_int64s
will be defined. The class_ids are indices into this list.
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>base_values</tt> : list of floats</dt>
<dd>Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)</dd>
<dt><tt>class_ids</tt> : list of ints</dt>
<dd>The index of the class list that each weight is for.</dd>
<dt><tt>class_nodeids</tt> : list of ints</dt>
<dd>node id that this weight is for.</dd>
<dt><tt>class_treeids</tt> : list of ints</dt>
<dd>The id of the tree that this node is in.</dd>
<dt><tt>class_weights</tt> : list of floats</dt>
<dd>The weight for the class in class_id.</dd>
<dt><tt>classlabels_int64s</tt> : list of ints</dt>
<dd>Class labels if using integer labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>Class labels if using string labels.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>nodes_falsenodeids</tt> : list of ints</dt>
<dd>Child node if expression is false.</dd>
<dt><tt>nodes_featureids</tt> : list of ints</dt>
<dd>Feature id for each node.</dd>
<dt><tt>nodes_hitrates</tt> : list of floats</dt>
<dd>Popularity of each node, used for performance and may be omitted.</dd>
<dt><tt>nodes_missing_value_tracks_true</tt> : list of ints</dt>
<dd>For each node, define what to do in the presence of a missing value: if a value is missing (NaN), use the 'true' or 'false' branch based on the value in this array.<br>This attribute may be left undefined, and the defalt value is false (0) for all nodes.</dd>
<dt><tt>nodes_modes</tt> : list of strings</dt>
<dd>The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'</dd>
<dt><tt>nodes_nodeids</tt> : list of ints</dt>
<dd>Node id for each node. Ids may restart at zero for each tree, but it not required to.</dd>
<dt><tt>nodes_treeids</tt> : list of ints</dt>
<dd>Tree id for each node.</dd>
<dt><tt>nodes_truenodeids</tt> : list of ints</dt>
<dd>Child node if expression is true.</dd>
<dt><tt>nodes_values</tt> : list of floats</dt>
<dd>Thresholds to do the splitting on for each node.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br> One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT.'</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T1</dt>
<dd>Input of shape [N,F]</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : T2</dt>
<dd>N, Top class for each point</dd>
<dt><tt>Z</tt> : tensor(float)</dt>
<dd>The class score for each class, for each point, a tensor of shape [N,E].</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T1</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type.</dd>
<dt><tt>T2</tt> : tensor(string), tensor(int64)</dt>
<dd>The output type will be a tensor of strings or integers, depending on which of the the classlabels_* attributes is used.</dd>
</dl>
### <a name="ai.onnx.ml.TreeEnsembleRegressor"></a><a name="ai.onnx.ml.treeensembleregressor">**ai.onnx.ml.TreeEnsembleRegressor**</a>
Tree Ensemble regressor. Returns the regressed values for each input in N.<br>
All args with nodes_ are fields of a tuple of tree nodes, and
it is assumed they are the same length, and an index i will decode the
tuple across these inputs. Each node id can appear only once
for each tree id.<br>
All fields prefixed with target_ are tuples of votes at the leaves.<br>
A leaf may have multiple votes, where each vote is weighted by
the associated target_weights index.<br>
All trees must have their node ids start at 0 and increment by 1.<br>
Mode enum is BRANCH_LEQ, BRANCH_LT, BRANCH_GTE, BRANCH_GT, BRANCH_EQ, BRANCH_NEQ, LEAF
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>aggregate_function</tt> : string (default is SUM)</dt>
<dd>Defines how to aggregate leaf values within a target. <br>One of 'AVERAGE,' 'SUM,' 'MIN,' 'MAX.'</dd>
<dt><tt>base_values</tt> : list of floats</dt>
<dd>Base values for classification, added to final class score; the size must be the same as the classes or can be left unassigned (assumed 0)</dd>
<dt><tt>n_targets</tt> : int</dt>
<dd>The total number of targets.</dd>
<dt><tt>nodes_falsenodeids</tt> : list of ints</dt>
<dd>Child node if expression is false</dd>
<dt><tt>nodes_featureids</tt> : list of ints</dt>
<dd>Feature id for each node.</dd>
<dt><tt>nodes_hitrates</tt> : list of floats</dt>
<dd>Popularity of each node, used for performance and may be omitted.</dd>
<dt><tt>nodes_missing_value_tracks_true</tt> : list of ints</dt>
<dd>For each node, define what to do in the presence of a NaN: use the 'true' (if the attribute value is 1) or 'false' (if the attribute value is 0) branch based on the value in this array.<br>This attribute may be left undefined and the defalt value is false (0) for all nodes.</dd>
<dt><tt>nodes_modes</tt> : list of strings</dt>
<dd>The node kind, that is, the comparison to make at the node. There is no comparison to make at a leaf node.<br>One of 'BRANCH_LEQ', 'BRANCH_LT', 'BRANCH_GTE', 'BRANCH_GT', 'BRANCH_EQ', 'BRANCH_NEQ', 'LEAF'</dd>
<dt><tt>nodes_nodeids</tt> : list of ints</dt>
<dd>Node id for each node. Node ids must restart at zero for each tree and increase sequentially.</dd>
<dt><tt>nodes_treeids</tt> : list of ints</dt>
<dd>Tree id for each node.</dd>
<dt><tt>nodes_truenodeids</tt> : list of ints</dt>
<dd>Child node if expression is true</dd>
<dt><tt>nodes_values</tt> : list of floats</dt>
<dd>Thresholds to do the splitting on for each node.</dd>
<dt><tt>post_transform</tt> : string (default is NONE)</dt>
<dd>Indicates the transform to apply to the score. <br>One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'</dd>
<dt><tt>target_ids</tt> : list of ints</dt>
<dd>The index of the target that each weight is for</dd>
<dt><tt>target_nodeids</tt> : list of ints</dt>
<dd>The node id of each weight</dd>
<dt><tt>target_treeids</tt> : list of ints</dt>
<dd>The id of the tree that each node is in.</dd>
<dt><tt>target_weights</tt> : list of floats</dt>
<dd>The weight for each target</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : T</dt>
<dd>Input of shape [N,F]</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Y</tt> : tensor(float)</dt>
<dd>N classes</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : tensor(float), tensor(double), tensor(int64), tensor(int32)</dt>
<dd>The input type must be a tensor of a numeric type.</dd>
</dl>
### <a name="ai.onnx.ml.ZipMap"></a><a name="ai.onnx.ml.zipmap">**ai.onnx.ml.ZipMap**</a>
Creates a map from the input and the attributes.<br>
The values are provided by the input tensor, while the keys are specified by the attributes.
Must provide keys in either classlabels_strings or classlabels_int64s (but not both).<br>
The columns of the tensor correspond one-by-one to the keys specified by the attributes. There must be as many columns as keys.<br>
#### Version
This version of the operator has been available since version 1 of the 'ai.onnx.ml' operator set.
#### Attributes
<dl>
<dt><tt>classlabels_int64s</tt> : list of ints</dt>
<dd>The keys when using int keys.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
<dt><tt>classlabels_strings</tt> : list of strings</dt>
<dd>The keys when using string keys.<br>One and only one of the 'classlabels_*' attributes must be defined.</dd>
</dl>
#### Inputs
<dl>
<dt><tt>X</tt> : tensor(float)</dt>
<dd>The input values</dd>
</dl>
#### Outputs
<dl>
<dt><tt>Z</tt> : T</dt>
<dd>The output map</dd>
</dl>
#### Type Constraints
<dl>
<dt><tt>T</tt> : seq(map(string, float)), seq(map(int64, float))</dt>
<dd>The output will be a sequence of string or integer maps to float.</dd>
</dl>
|