1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
# Python API Overview
## Loading an ONNX Model
```python
import onnx
onnx_model = onnx.load('path/to/the/model.onnx')
# `onnx_model` is a ModelProto struct
```
Runnable IPython notebooks:
- [load_model.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/load_model.ipynb)
## Saving an ONNX Model
```python
import onnx
onnx_model = ... # Your model in memory as ModelProto
# Save the ONNX model
onnx.save(onnx_model, 'path/to/the/model.onnx')
```
Runnable IPython notebooks:
- [save_model.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/save_model.ipynb)
## Manipulating TensorProto and Numpy Array
```python
import numpy
import onnx
from onnx import numpy_helper
# Preprocessing: create a Numpy array
numpy_array = numpy.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], dtype=float)
print('Original Numpy array:\n{}\n'.format(numpy_array))
# Convert the Numpy array to a TensorProto
tensor = numpy_helper.from_array(numpy_array)
print('TensorProto:\n{}'.format(tensor))
# Convert the TensorProto to a Numpy array
new_array = numpy_helper.to_array(tensor)
print('After round trip, Numpy array:\n{}\n'.format(new_array))
# Save the TensorProto
with open('tensor.pb', 'wb') as f:
f.write(tensor.SerializeToString())
# Load a TensorProto
new_tensor = onnx.TensorProto()
with open('tensor.pb', 'rb') as f:
new_tensor.ParseFromString(f.read())
print('After saving and loading, new TensorProto:\n{}'.format(new_tensor))
```
Runnable IPython notebooks:
- [np_array_tensorproto.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/np_array_tensorproto.ipynb)
## Creating an ONNX Model Using Helper Functions
```python
import onnx
from onnx import helper
from onnx import AttributeProto, TensorProto, GraphProto
# The protobuf definition can be found here:
# https://github.com/onnx/onnx/blob/master/onnx/onnx.proto
# Create one input (ValueInfoProto)
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [3, 2])
pads = helper.make_tensor_value_info('pads', TensorProto.FLOAT, [1, 4])
value = helper.make_tensor_value_info('value', AttributeProto.FLOAT, [1])
# Create one output (ValueInfoProto)
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [3, 4])
# Create a node (NodeProto) - This is based on Pad-11
node_def = helper.make_node(
'Pad', # node name
['X', 'pads', 'value'], # inputs
['Y'], # outputs
mode='constant', # attributes
)
# Create the graph (GraphProto)
graph_def = helper.make_graph(
[node_def],
'test-model',
[X, pads, value],
[Y],
)
# Create the model (ModelProto)
model_def = helper.make_model(graph_def, producer_name='onnx-example')
print('The model is:\n{}'.format(model_def))
onnx.checker.check_model(model_def)
print('The model is checked!')
```
Runnable IPython notebooks:
- [make_model.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/make_model.ipynb)
- [Protobufs.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/Protobufs.ipynb)
## Checking an ONNX Model
```python
import onnx
# Preprocessing: load the ONNX model
model_path = 'path/to/the/model.onnx'
onnx_model = onnx.load(model_path)
print('The model is:\n{}'.format(onnx_model))
# Check the model
onnx.checker.check_model(onnx_model)
print('The model is checked!')
```
Runnable IPython notebooks:
- [check_model.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/check_model.ipynb)
## Optimizing an ONNX Model
```python
import onnx
from onnx import optimizer
# Preprocessing: load the model to be optimized.
model_path = 'path/to/the/model.onnx'
original_model = onnx.load(model_path)
print('The model before optimization:\n{}'.format(original_model))
# A full list of supported optimization passes can be found using get_available_passes()
all_passes = optimizer.get_available_passes()
print("Available optimization passes:")
for p in all_passes:
print(p)
print()
# Pick one pass as example
passes = ['fuse_consecutive_transposes']
# Apply the optimization on the original model
optimized_model = optimizer.optimize(original_model, passes)
print('The model after optimization:\n{}'.format(optimized_model))
# One can also apply the default passes on the (serialized) model
# Check the default passes here: https://github.com/onnx/onnx/blob/master/onnx/optimizer.py#L43
optimized_model = optimizer.optimize(original_model)
```
Runnable IPython notebooks:
- [optimize_onnx.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/optimize_onnx.ipynb)
## Running Shape Inference on an ONNX Model
```python
import onnx
from onnx import helper, shape_inference
from onnx import TensorProto
# Preprocessing: create a model with two nodes, Y's shape is unknown
node1 = helper.make_node('Transpose', ['X'], ['Y'], perm=[1, 0, 2])
node2 = helper.make_node('Transpose', ['Y'], ['Z'], perm=[1, 0, 2])
graph = helper.make_graph(
[node1, node2],
'two-transposes',
[helper.make_tensor_value_info('X', TensorProto.FLOAT, (2, 3, 4))],
[helper.make_tensor_value_info('Z', TensorProto.FLOAT, (2, 3, 4))],
)
original_model = helper.make_model(graph, producer_name='onnx-examples')
# Check the model and print Y's shape information
onnx.checker.check_model(original_model)
print('Before shape inference, the shape info of Y is:\n{}'.format(original_model.graph.value_info))
# Apply shape inference on the model
inferred_model = shape_inference.infer_shapes(original_model)
# Check the model and print Y's shape information
onnx.checker.check_model(inferred_model)
print('After shape inference, the shape info of Y is:\n{}'.format(inferred_model.graph.value_info))
```
Runnable IPython notebooks:
- [shape_inference.ipynb](https://github.com/onnx/onnx/tree/master/onnx/examples/shape_inference.ipynb)
## Converting Version of an ONNX Model within Default Domain (""/"ai.onnx")
```python
import onnx
from onnx import version_converter, helper
# Preprocessing: load the model to be converted.
model_path = 'path/to/the/model.onnx'
original_model = onnx.load(model_path)
print('The model before conversion:\n{}'.format(original_model))
# A full list of supported adapters can be found here:
# https://github.com/onnx/onnx/blob/master/onnx/version_converter.py#L21
# Apply the version conversion on the original model
converted_model = version_converter.convert_version(original_model, <int target_version>)
print('The model after conversion:\n{}'.format(converted_model))
```
## Utility Functions
### Polishing the Model
Function `polish_model` runs model checker, optimizer, shape inference engine on the model,
and also strips the doc_string for you.
```python
import onnx
import onnx.utils
model = onnx.load('path/to/the/model.onnx')
polished_model = onnx.utils.polish_model(model)
```
## Tools
### Updating Model's Inputs Outputs Dimension Sizes with Variable Length
Function `update_inputs_outputs_dims` updates the dimension of the inputs and outputs of the model,
to the provided values in the parameter. You could provide both static and dynamic dimension size,
by using dim_param. For more information on static and dynamic dimension size, checkout [Tensor Shapes](IR.md#tensor-shapes).
The function runs model checker after the input/output sizes are updated.
```python
import onnx
from onnx.tools import update_model_dims
model = onnx.load('path/to/the/model.onnx')
# Here both 'seq', 'batch' and -1 are dynamic using dim_param.
variable_length_model = update_model_dims.update_inputs_outputs_dims(model, {'input_name': ['seq', 'batch', 3, -1]}, {'output_name': ['seq', 'batch', 1, -1]})
```
|