1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
#include <benchmark/benchmark.h>
#include <onnx/onnx_pb.h>
using namespace ONNX_NAMESPACE;
inline void createValueInfo4D(
ValueInfoProto& value_info,
const std::string& name,
int64_t n,
int64_t c,
int64_t h,
int64_t w) {
value_info.set_name(name);
TypeProto_Tensor* tensor_type =
value_info.mutable_type()->mutable_tensor_type();
tensor_type->set_elem_type(TensorProto_DataType_FLOAT);
TensorShapeProto* shape = tensor_type->mutable_shape();
shape->add_dim()->set_dim_value(n);
shape->add_dim()->set_dim_value(c);
shape->add_dim()->set_dim_value(h);
shape->add_dim()->set_dim_value(w);
}
inline void createValueInfo2D(
ValueInfoProto& value_info,
const std::string& name,
int64_t h,
int64_t w) {
value_info.set_name(name);
TypeProto* type = value_info.mutable_type();
TypeProto_Tensor* tensor_type = type->mutable_tensor_type();
tensor_type->set_elem_type(TensorProto_DataType_FLOAT);
TensorShapeProto* shape = tensor_type->mutable_shape();
shape->add_dim()->set_dim_value(h);
shape->add_dim()->set_dim_value(w);
}
inline void createConv2D(
NodeProto& node,
const std::string& input,
const std::string& weights,
const std::string& bias,
const std::string& output,
uint32_t kernel_size) {
node.set_op_type("Conv");
node.add_input(input);
node.add_input(weights);
node.add_input(bias);
node.add_output(output);
{
AttributeProto* kernel = node.add_attribute();
kernel->set_name("kernel_shape");
kernel->set_type(AttributeProto::INTS);
kernel->add_ints(kernel_size);
kernel->add_ints(kernel_size);
}
{
AttributeProto* dilation = node.add_attribute();
dilation->set_name("dilations");
dilation->set_type(AttributeProto::INTS);
dilation->add_ints(1);
dilation->add_ints(1);
}
{
AttributeProto* stride = node.add_attribute();
stride->set_name("strides");
stride->set_type(AttributeProto::INTS);
stride->add_ints(1);
stride->add_ints(1);
}
{
AttributeProto* group = node.add_attribute();
group->set_name("group");
group->set_type(AttributeProto::INTS);
group->set_i(1);
}
{
AttributeProto* padding = node.add_attribute();
padding->set_name("pads");
padding->set_type(AttributeProto::INTS);
/* Use "same" padding */
padding->add_ints(kernel_size / 2);
padding->add_ints(kernel_size / 2);
padding->add_ints(kernel_size - 1 - kernel_size / 2);
padding->add_ints(kernel_size - 1 - kernel_size / 2);
}
}
static void ConvGraph(benchmark::State& state) {
while (state.KeepRunning()) {
std::string data;
GraphProto graph;
createConv2D(*graph.add_node(), "input", "weights", "bias", "output", 3);
createValueInfo4D(*graph.add_input(), "input", 1, 3, 224, 224);
createValueInfo4D(*graph.add_input(), "weights", 16, 16, 3, 3);
createValueInfo2D(*graph.add_input(), "bias", 1, 16);
createValueInfo4D(*graph.add_output(), "output", 16, 3, 224, 224);
graph.SerializeToString(&data);
GraphProto decodedGraph;
decodedGraph.ParseFromString(data);
}
state.SetItemsProcessed(int64_t(state.iterations()));
}
BENCHMARK(ConvGraph)->Unit(benchmark::kMicrosecond);
static void ConvModel(benchmark::State& state) {
while (state.KeepRunning()) {
std::string data;
ModelProto model;
model.set_ir_version(IR_VERSION);
OperatorSetIdProto* op_set_id = model.add_opset_import();
op_set_id->set_domain("");
op_set_id->set_version(4);
GraphProto* graph = model.mutable_graph();
createConv2D(*graph->add_node(), "input", "weights", "bias", "output", 3);
createValueInfo4D(*graph->add_input(), "input", 1, 3, 224, 224);
createValueInfo4D(*graph->add_input(), "weights", 16, 16, 3, 3);
createValueInfo2D(*graph->add_input(), "bias", 1, 16);
createValueInfo4D(*graph->add_output(), "output", 16, 3, 224, 224);
model.SerializeToString(&data);
ModelProto decodedModel;
decodedModel.ParseFromString(data);
}
state.SetItemsProcessed(int64_t(state.iterations()));
}
BENCHMARK(ConvModel)->Unit(benchmark::kMicrosecond);
BENCHMARK_MAIN();
|