File: Add_gfx12x_support.patch

package info (click to toggle)
onnxruntime 1.21.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 333,732 kB
  • sloc: cpp: 3,153,079; python: 179,219; ansic: 109,131; asm: 37,791; cs: 34,424; perl: 13,070; java: 11,047; javascript: 6,330; pascal: 4,126; sh: 3,277; xml: 598; objc: 281; makefile: 59
file content (2280 lines) | stat: -rw-r--r-- 106,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
diff --git a/CMakeLists.txt b/CMakeLists.txt
index bc326c8b5..db5ad5052 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -117,7 +117,7 @@ else()
     add_definitions(-DPROFILER_ONLY)
     set(GPU_TARGETS "" CACHE STRING "" FORCE)
     if(GPU_TARGETS)
-        message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, or gfx11")
+        message(FATAL_ERROR "For PROFILE_ONLY build, please do not set GPU_TARGETS, use GPU_ARCH = gfx90, gfx94, gfx10, gfx11 or gfx12")
     endif()
     if(GPU_ARCH MATCHES "gfx90")
         rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx908;gfx90a")
@@ -127,8 +127,10 @@ else()
         rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1030")
     elseif(GPU_ARCH MATCHES "gfx11")
         rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1100;gfx1101;gfx1102")
+    elseif(GPU_ARCH MATCHES "gfx12")
+        rocm_check_target_ids(DEFAULT_GPU_TARGETS TARGETS "gfx1200;gfx1201")
     else()
-        message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, or gfx11")
+        message(FATAL_ERROR "For PROFILE_ONLY build, please specify GPU_ARCH as gfx90, gfx94, gfx10, gfx11 or gfx12")
     endif()
     set(GPU_TARGETS "${DEFAULT_GPU_TARGETS}" CACHE STRING " " FORCE)
 endif()
diff --git a/Jenkinsfile b/Jenkinsfile
index 75800bfc9..b72e2ca4e 100644
--- a/Jenkinsfile
+++ b/Jenkinsfile
@@ -493,6 +493,7 @@ def Build_CK(Map conf=[:]){

         def variant = env.STAGE_NAME
         def retimage
+
         gitStatusWrapper(credentialsId: "${env.status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCm', repo: 'composable_kernel') {
             try {
                 (retimage, image) = getDockerImage(conf)
@@ -660,9 +661,6 @@ CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCM

 pipeline {
     agent none
-    triggers {
-        parameterizedCron(CRON_SETTINGS)
-    }
     options {
         parallelsAlwaysFailFast()
     }
diff --git a/cmake/EnableCompilerWarnings.cmake b/cmake/EnableCompilerWarnings.cmake
index 8654170b3..42070051b 100644
--- a/cmake/EnableCompilerWarnings.cmake
+++ b/cmake/EnableCompilerWarnings.cmake
@@ -66,7 +66,7 @@ else()
             -Wunreachable-code
             -Wunused
             -Wno-reserved-identifier
-            -Werror
+	    -Werror
             -Wno-option-ignored
             -Wsign-compare
             -Wno-extra-semi-stmt
diff --git a/example/01_gemm/gemm_wmma_fp16.cpp b/example/01_gemm/gemm_wmma_fp16.cpp
index 8c52e4f7d..f8afe8d6d 100644
--- a/example/01_gemm/gemm_wmma_fp16.cpp
+++ b/example/01_gemm/gemm_wmma_fp16.cpp
@@ -23,45 +23,45 @@ static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecializa

 // clang-format off
 using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmWmma_CShuffle
-         < ALayout,
-           BLayout,
-           CLayout,
-           ADataType,
+         < ALayout,
+           BLayout,
+           CLayout,
+           ADataType,
            BDataType,
-           CDataType,
-           AccDataType,
-           CShuffleDataType,
-           AElementOp,
-           BElementOp,
-           CElementOp,
-           GemmDefault,
+           CDataType,
+           AccDataType,
+           CShuffleDataType,
+           AElementOp,
+           BElementOp,
+           CElementOp,
+           GemmDefault,
            1,           // Prefetch stage
            128,         // BlockSize
            64,          // MPerBlock
            128,         // NPerBlock
            64,          // KPerBlock
-           8,           // K1
+           2,           // K1
            16,          // MPerWmma
            16,          // NPerWmma
            2,           // M-Repeat // M-PerWmma / M-Repeat = M-Wave
            4,           // N-Repeat // N-PerWmma / N-Repeat = N-Wave
-           S<4, 32, 1>,
-           S<1, 0, 2>,
-           S<1, 0, 2>,
-           2,
-           8,
-           8,
-           true,
-           S<4, 32, 1>,
-           S<1, 0, 2>,
-           S<1, 0, 2>,
-           2,
-           8,
-           8,
-           true,
+           S<4, 32, 1>,
+           S<1, 0, 2>,
+           S<1, 0, 2>,
+           2,
+           2,
+           2,
+           true,
+           S<4, 32, 1>,
+           S<1, 0, 2>,
+           S<1, 0, 2>,
+           2,
+           2,
+           2,
+           true,
            1,           // C shuffle (M Repeat) Per store
            1,           // C shuffle (N Repeat) Per store
-           S<1, 32, 1,  4>,
+           S<1, 32, 1,  4>,
            8>;
 // clang-format on

diff --git a/example/01_gemm/run_gemm_example.inc b/example/01_gemm/run_gemm_example.inc
index b04e4e53a..cb15186c3 100644
--- a/example/01_gemm/run_gemm_example.inc
+++ b/example/01_gemm/run_gemm_example.inc
@@ -159,7 +159,7 @@ bool run_gemm(const ProblemType& problem_size, const ExecutionConfig& config)
         ck::utils::FillUniformDistributionIntegerValue<BDataType>{-5.f, 5.f}(b_k_n);
         break;
     case 4:
-        ck::utils::FillUniformDistributionIntegerValue<ADataType>{1.f, 1.f}(a_m_k);
+        ck::utils::FillUniformDistributionIntegerValue<ADataType>{-5.f, 5.f}(a_m_k);
         ck::utils::FillUniformDistributionIntegerValue<BDataType>{1.f, 1.f}(b_k_n);
         break;
     case 5:
diff --git a/example/04_gemm_add_add_fastgelu/CMakeLists.txt b/example/04_gemm_add_add_fastgelu/CMakeLists.txt
index ab19f819e..be47665a2 100644
--- a/example/04_gemm_add_add_fastgelu/CMakeLists.txt
+++ b/example/04_gemm_add_add_fastgelu/CMakeLists.txt
@@ -24,4 +24,4 @@ foreach(gpu IN LISTS GPU_TARGETS)
         add_example_dependencies(example_gemm_add_add_fastgelu_xdl example_gemm_add_add_fastgelu_xdl_lds_direct_load_fp32)
         set(target 1)
     endif()
-endforeach()
\ No newline at end of file
+endforeach()
diff --git a/example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp b/example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
index 2bbf430c4..f556be887 100644
--- a/example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
+++ b/example/29_batched_gemm_bias_e_permute/batched_gemm_bias_e_permute_wmma_fp16.cpp
@@ -83,14 +83,14 @@ using DeviceOpInstanceKKNN =
                                                                                   2,
                                                                                   4,
                                                                                   4,
-                                                                                  true,
+                                                                                  false,
                                                                                   S<4, 32, 1>,
                                                                                   S<1, 0, 2>,
                                                                                   S<1, 0, 2>,
                                                                                   2,
                                                                                   4,
                                                                                   4,
-                                                                                  true,
+                                                                                  false,
                                                                                   1,
                                                                                   1,
                                                                                   S<1, 64, 1, 2>,
diff --git a/example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp b/example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
index 4c92c5497..fac19f8b5 100644
--- a/example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
+++ b/example/32_batched_gemm_scale_softmax_gemm/cross_attention_forward_wmma_fp16.cpp
@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC  = ck::tensor_operation::device::TensorSpecial
 #define CK_MHA_USE_WAVE_1
 #define CK_MHA_USE_WAVE_2
 #define CK_MHA_USE_WAVE_4
-#define CK_MHA_USE_WAVE_8
+//#define CK_MHA_USE_WAVE_8
 using DeviceMHAFactory =
     std::tuple<
 #ifdef CK_MHA_USE_WAVE_1
@@ -277,10 +277,10 @@ using DeviceMHAFactory =
             S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
             // CShuffleBlockTransfer MN
             1, 1, S<1, 64, 1, 2>, 8,
-            MaskingSpec>,
+            MaskingSpec>
 #endif
 #ifdef CK_MHA_USE_WAVE_8
-        ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
+        ,ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
             NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
             ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
             AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
diff --git a/example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp b/example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
index 8e037272b..d463cc871 100644
--- a/example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
+++ b/example/32_batched_gemm_scale_softmax_gemm/self_attention_forward_wmma_fp16.cpp
@@ -71,7 +71,7 @@ static constexpr auto TensorSpecC  = ck::tensor_operation::device::TensorSpecial
 #define CK_MHA_USE_WAVE_1
 #define CK_MHA_USE_WAVE_2
 #define CK_MHA_USE_WAVE_4
-#define CK_MHA_USE_WAVE_8
+//#define CK_MHA_USE_WAVE_8
 using DeviceMHAFactory =
     std::tuple<
 #ifdef CK_MHA_USE_WAVE_1
@@ -277,10 +277,10 @@ using DeviceMHAFactory =
             S<2, 8, 8>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 1, false,
             // CShuffleBlockTransfer MN
             1, 1, S<1, 64, 1, 2>, 8,
-            MaskingSpec>,
+            MaskingSpec>
 #endif
 #ifdef CK_MHA_USE_WAVE_8
-        ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
+        ,ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle<
             NumDimG, NumDimM, NumDimN, NumDimK, NumDimO,
             ADataType, B0DataType, B1DataType, CDataType, Acc0BiasDataType, Acc0DataType, Acc1BiasDataType, Acc1DataType, CShuffleDataType,
             AElementOp, B0ElementOp, Acc0ElementOp, B1ElementOp, CElementOp,
diff --git a/example/CMakeLists.txt b/example/CMakeLists.txt
index 5465adb77..7534bff3b 100644
--- a/example/CMakeLists.txt
+++ b/example/CMakeLists.txt
@@ -60,7 +60,7 @@ function(add_example_executable EXAMPLE_NAME FILE_NAME)
     endforeach()
     #Do not build any WMMA examples if gfx11 targets are not on the list
     foreach(source IN LISTS FILE_NAME)
-        if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma")
+	if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
             message("removing wmma example ${source} ")
             list(REMOVE_ITEM FILE_NAME "${source}")
         endif()
@@ -134,7 +134,7 @@ function(add_example_executable_no_testing EXAMPLE_NAME FILE_NAME)
     endforeach()
     #Do not build any WMMA examples if gfx11 targets are not on the list
     foreach(source IN LISTS FILE_NAME)
-        if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma")
+	if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
             message("removing wmma example ${source} ")
             list(REMOVE_ITEM FILE_NAME "${source}")
         endif()
diff --git a/include/ck/ck.hpp b/include/ck/ck.hpp
index 55f562061..69a7abf62 100644
--- a/include/ck/ck.hpp
+++ b/include/ck/ck.hpp
@@ -69,6 +69,9 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
 #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
 #define __gfx11__
 #endif
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define __gfx12__
+#endif

 // buffer resource
 #ifndef __HIP_DEVICE_COMPILE__ // for host code
@@ -77,7 +80,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
 #elif defined(__gfx103__)
 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
-#elif defined(__gfx11__)
+#elif defined(__gfx11__) || defined(__gfx12__)
 #define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
 #endif

@@ -89,7 +92,7 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
 #define CK_USE_AMD_V_FMAC_F32
 #define CK_USE_AMD_V_DOT2_F32_F16
 #define CK_USE_AMD_V_DOT4_I32_I8
-#elif defined(__gfx11__)
+#elif defined(__gfx11__) || defined(__gfx12__)
 #define CK_USE_AMD_V_FMAC_F32
 #define CK_USE_AMD_V_DOT2_F32_F16
 #define CK_USE_AMD_V_DOT4_I32_I8_GFX11
@@ -110,13 +113,6 @@ CK_DECLARE_ENV_VAR_BOOL(CK_LOGGING)
 #define CK_USE_AMD_MFMA_GFX940
 #endif

-// WMMA instruction
-#ifndef __HIP_DEVICE_COMPILE__ // for host code
-#define CK_USE_AMD_WMMA
-#elif defined(__gfx11__) // for GPU code
-#define CK_USE_AMD_WMMA
-#endif
-
 // buffer load
 #define CK_USE_AMD_BUFFER_LOAD 1

diff --git a/include/ck/host_utility/device_prop.hpp b/include/ck/host_utility/device_prop.hpp
index 116bb3ea0..83af2efe8 100644
--- a/include/ck/host_utility/device_prop.hpp
+++ b/include/ck/host_utility/device_prop.hpp
@@ -84,4 +84,9 @@ inline bool is_gfx11_supported()
            ck::get_device_name() == "gfx1102" || ck::get_device_name() == "gfx1103";
 }

+inline bool is_gfx12_supported()
+{
+    return ck::get_device_name() == "gfx1200" || ck::get_device_name() == "gfx1201";
+}
+
 } // namespace ck
diff --git a/include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp b/include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
index f8ee283c6..7eb7d42eb 100644
--- a/include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
@@ -13,6 +13,504 @@

 namespace ck {

+#ifdef __gfx12__
+template <index_t BlockSize,
+          typename FloatA,
+          typename FloatB,
+          typename FloatAcc,
+          typename ABlockDesc,
+          typename BBlockDesc,
+          index_t MPerBlock,
+          index_t NPerBlock,
+          index_t KPerBlock,
+          index_t MPerWMMA,
+          index_t NPerWMMA,
+          index_t MRepeat,
+          index_t NRepeat,
+          index_t KPack,
+          bool AEnableLds = true,
+          bool BEnableLds = true,
+          bool TransposeC = false>
+/* Option: Read from LDS, big buffer hold all threads required data
+ * Source
+ * A: K0PerBlock x MPerBlock x K1
+ * B: K0PerBlock x NPerBlock x K1
+ * Destination
+ * C, non-transpose
+ * thread level: MRepeat x NRepeat x MAccVgprs
+ * block  level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
+ * KPACK == WMMA_K = 16
+ *
+ * Option: Read from VMEM, small buffer hold each thread own required data (Skip LDS)
+ * Source:
+ * A(if skip LDS): MRepeat x KPack
+ * B(if skip LDS): NRepeat x KPack
+ * Destination
+ * C, non-transpose
+ * block level: MRepeat x MWave x MSubGroup x NRepeat x NWave x NThreadPerSubGroup x MAccVgprs
+ */
+struct BlockwiseGemmWMMA
+{
+    static constexpr auto I0    = Number<0>{};
+    static constexpr auto I1    = Number<1>{};
+    static constexpr auto I2    = Number<2>{};
+    static constexpr auto I3    = Number<3>{};
+    static constexpr auto I4    = Number<4>{};
+    static constexpr auto I5    = Number<5>{};
+    static constexpr auto WmmaK = Number<16>{};
+
+    using ThisThreadBlock = ThisThreadBlock<BlockSize>;
+
+    // Hardcode of WaveSize, since current HIP Runtime(5.4.0-10984) could not return correct one.
+    static constexpr index_t WaveSize = 32;
+
+    // When use LDS, each Row(16 consecutive lanes) read whole data from source buffer
+    // When not use LDS, each Row read half of whole data from source buffer, exchange the data via
+    // permutation
+    static constexpr index_t A_KRow = 2;
+    static constexpr index_t B_KRow = 2;
+
+    static constexpr index_t A_K1 = ABlockDesc{}.GetLength(I5);
+    static constexpr index_t B_K1 = BBlockDesc{}.GetLength(I5);
+
+    static constexpr auto wmma_gemm =
+        WmmaGemm<FloatA, FloatB, FloatAcc, MPerWMMA, NPerWMMA, KPack, TransposeC>{};
+
+    static constexpr index_t MWaves = MPerBlock / (MRepeat * MPerWMMA);
+    static constexpr index_t NWaves = NPerBlock / (NRepeat * NPerWMMA);
+
+    StaticBufferTupleOfVector<AddressSpaceEnum::Vgpr,
+                              FloatAcc,
+                              MRepeat * NRepeat,
+                              wmma_gemm.GetRegSizePerWmma(),
+                              true>
+        c_thread_buf_;
+
+    __host__ __device__ constexpr auto& GetCThreadBuffer() { return c_thread_buf_; }
+
+    __device__ static auto GetWaveIdx()
+    {
+        const index_t thread_id = ThisThreadBlock::GetThreadId();
+
+        constexpr auto threadid_to_wave_idx_adaptor = make_single_stage_tensor_adaptor(
+            make_tuple(make_merge_transform(make_tuple(MWaves, NWaves, WaveSize))),
+            make_tuple(Sequence<0, 1, 2>{}),
+            make_tuple(Sequence<0>{}));
+
+        return threadid_to_wave_idx_adaptor.CalculateBottomIndex(make_multi_index(thread_id));
+    }
+
+    // Default, Block buffer in LDS, thread level offset enabled
+    __device__ static auto CalculateAThreadOriginDataIndex()
+    {
+        if constexpr(AEnableLds)
+        {
+            const auto wave_idx   = GetWaveIdx();
+            const auto waveId_m   = wave_idx[I0];
+            const auto WMMA_a_idx = wmma_gemm.CalculateAThreadOriginDataIndex();
+
+            //  |KRepeat   |MRepeat|MWave    |KRow  |MLane  |KPack
+            return make_tuple(0, 0, waveId_m, wmma_gemm.GetSubGroupId(), WMMA_a_idx, 0);
+        }
+        else
+        {
+            return make_tuple(0, 0, 0, 0, 0, 0);
+        }
+    }
+
+    __device__ static auto CalculateBThreadOriginDataIndex()
+    {
+        if constexpr(BEnableLds)
+        {
+            const auto wave_idx   = GetWaveIdx();
+            const auto waveId_n   = wave_idx[I1];
+            const auto WMMA_b_idx = wmma_gemm.CalculateBThreadOriginDataIndex();
+
+            //  |KRepeat   |NRepeat|Nwave     |KRow  |NLane  |KPack
+            return make_tuple(0, 0, waveId_n, wmma_gemm.GetSubGroupId(), WMMA_b_idx, 0);
+        }
+        else
+        {
+            return make_tuple(0, 0, 0, 0, 0, 0);
+        }
+    }
+
+    template <index_t m0, index_t n0>
+    __device__ static auto CalculateCThreadOriginDataIndex(Number<m0>, Number<n0>)
+    {
+        const auto wave_idx = GetWaveIdx();
+
+        const auto waveId_m = wave_idx[I0];
+        const auto waveId_n = wave_idx[I1];
+
+        const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk();
+
+        constexpr auto mrepeat_mwave_mperWMMA_to_m_adaptor = make_single_stage_tensor_adaptor(
+            make_tuple(make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerWMMA))),
+            make_tuple(Sequence<0>{}),
+            make_tuple(Sequence<0, 1, 2>{}));
+
+        constexpr auto nrepeat_nwave_nperWMMA_to_n_adaptor = make_single_stage_tensor_adaptor(
+            make_tuple(make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerWMMA))),
+            make_tuple(Sequence<0>{}),
+            make_tuple(Sequence<0, 1, 2>{}));
+
+        const index_t c_thread_m = mrepeat_mwave_mperWMMA_to_m_adaptor.CalculateBottomIndex(
+            make_tuple(m0, waveId_m, blk_idx[I0]))[I0];
+        const index_t c_thread_n = nrepeat_nwave_nperWMMA_to_n_adaptor.CalculateBottomIndex(
+            make_tuple(n0, waveId_n, blk_idx[I1]))[I0];
+
+        return make_tuple(c_thread_m, c_thread_n);
+    }
+
+    template <index_t m0, index_t n0>
+    __device__ static auto CalculateCThreadOriginDataIndex7D(Number<m0>, Number<n0>)
+    {
+        const auto wave_idx = GetWaveIdx();
+
+        const auto waveId_m = wave_idx[I0];
+        const auto waveId_n = wave_idx[I1];
+
+        const auto blk_idx = wmma_gemm.GetBeginOfThreadBlk3D();
+
+        return make_tuple(
+            Number<m0>{}, waveId_m, blk_idx[I0], Number<n0>{}, waveId_n, blk_idx[I1], blk_idx[I2]);
+    }
+
+    using Tuple6 = decltype(CalculateAThreadOriginDataIndex());
+    __host__ __device__ BlockwiseGemmWMMA(Tuple6 a_origin = CalculateAThreadOriginDataIndex(),
+                                          Tuple6 b_origin = CalculateBThreadOriginDataIndex())
+        : a_thread_copy_(a_origin), b_thread_copy_(b_origin)
+    {
+        static_assert(ABlockDesc::IsKnownAtCompileTime() && BBlockDesc::IsKnownAtCompileTime(),
+                      "wrong! Desc should be known at compile-time");
+
+        static_assert(ThisThreadBlock::GetNumOfThread() == MWaves * NWaves * WaveSize,
+                      "ThisThreadBlock::GetNumOfThread() != MWaves * NWaves * WaveSize\n");
+
+        static_assert(MPerBlock % (MPerWMMA * MRepeat) == 0 &&
+                          NPerBlock % (NPerWMMA * NRepeat) == 0,
+                      "wrong!");
+    }
+
+    // transposed WMMA output C' = B' * A'
+    __host__ __device__ static constexpr auto
+    GetCThreadDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
+    {
+        constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
+            wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
+
+        constexpr auto NAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
+
+        return make_naive_tensor_descriptor_packed(
+            //        |MRepeat            |MWave |MSubGroup |NRepeat           |NWave
+            //        |NThreadPerSubGroup |MAccVgprs
+            make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, NAccVgprs));
+    }
+
+    // Thread level, register decriptor. Vector-write
+    __host__ __device__ static constexpr auto
+    GetCThreadDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
+    {
+        constexpr auto c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens =
+            wmma_gemm.GetCMSubGroupNThreadPerSubGroupMAccVgprsThreadBlkLengths();
+
+        constexpr auto MAccVgprs = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I2];
+        constexpr auto AccStride = c_msubgroup_nthreadpersubgroup_maccvgprs_tblk_lens[I3];
+        return make_naive_tensor_descriptor(
+            //        |MRepeat           |MWave |MSubGroup |NRepeat           |NWave
+            //        |NThreadPerSubGroup |MAccVgprs
+            make_tuple(Number<MRepeat>{}, I1, I1, Number<NRepeat>{}, I1, I1, MAccVgprs),
+            make_tuple(Number<NRepeat>{} * MAccVgprs * AccStride,
+                       Number<NRepeat>{} * MAccVgprs * AccStride,
+                       Number<NRepeat>{} * MAccVgprs * AccStride,
+                       MAccVgprs * AccStride,
+                       MAccVgprs * AccStride,
+                       MAccVgprs * AccStride,
+                       AccStride));
+    }
+
+    template <typename CGridDesc_M_N>
+    __host__ __device__ static constexpr auto
+    MakeCGridDescriptor_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
+        const CGridDesc_M_N& c_grid_desc_m_n)
+    {
+        const auto M = c_grid_desc_m_n.GetLength(I0);
+        const auto N = c_grid_desc_m_n.GetLength(I1);
+
+        const auto c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma =
+            transform_tensor_descriptor(
+                c_grid_desc_m_n,
+                make_tuple(
+                    make_unmerge_transform(make_tuple(M / (MWaves * MPerWMMA), MWaves, MPerWMMA)),
+                    make_unmerge_transform(make_tuple(N / (NWaves * NPerWMMA), NWaves, NPerWMMA))),
+                make_tuple(Sequence<0>{}, Sequence<1>{}),
+                make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
+
+        return wmma_gemm
+            .MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
+                c_grid_desc_mblockxrepeat_mwave_mperwmma_nblockxrepeat_nwave_nperwmma);
+    }
+
+    // transposed WMMA output C' = B' * A'
+    __host__ __device__ static constexpr auto
+    GetCBlockDescriptor_MRepeat_MWave_MThreadPerSubGroup_NRepeat_NWave_NSubGroup_NAccVgprs()
+    {
+        constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
+            make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
+                                                           Number<MWaves>{},
+                                                           Number<MPerWMMA>{},
+                                                           Number<NRepeat>{},
+                                                           Number<NWaves>{},
+                                                           Number<NPerWMMA>{}));
+
+        return wmma_gemm
+            .MakeCDesc_MBlockxRepeat_MWave_MThreadPerSubGroup_NBlockxRepeat_NWave_NSubGroup_NAccVgprs(
+                c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
+    }
+
+    // Provide dimension size
+    __host__ __device__ static constexpr auto
+    GetCBlockDescriptor_MRepeat_MWave_MSubGroup_NRepeat_NWave_NThreadPerSubGroup_MAccVgprs()
+    {
+        constexpr auto c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma =
+            make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
+                                                           Number<MWaves>{},
+                                                           Number<MPerWMMA>{},
+                                                           Number<NRepeat>{},
+                                                           Number<NWaves>{},
+                                                           Number<NPerWMMA>{}));
+
+        return wmma_gemm
+            .MakeCDesc_MBlockxRepeat_MWave_MSubGroup_NBlockxRepeat_NWave_NThreadPerSubGroup_MAccVgprs(
+                c_block_desc_mrepeat_mwave_mperwmma_nrepeat_nwave_nperwmma);
+    }
+
+    // Describe how data allocated in thread copy src buffer
+    // M0_M1_M2 = MRepeat_MWave_MPerWmma, N0_N1_N2 = NRepeat_NWave_NPerWmma
+    static constexpr ABlockDesc a_block_desc_k0_m0_m1_m2_k1;
+    static constexpr BBlockDesc b_block_desc_k0_n0_n1_n2_k1;
+
+    template <typename ABlockBuffer, typename BBlockBuffer, typename CThreadBuffer>
+    __device__ void Run(const ABlockBuffer& a_block_buf,
+                        const BBlockBuffer& b_block_buf,
+                        CThreadBuffer& c_thread_buf) const
+    {
+        auto a_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatA>(
+            a_thread_desc_.GetElementSpaceSize());
+        auto b_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatB>(
+            b_thread_desc_.GetElementSpaceSize());
+
+        static_assert(KPack % (A_K1 * A_KRow) == 0, "");
+        static_assert(KPack % (B_K1 * B_KRow) == 0, "");
+
+        // basic intrinsic to determine loopover direction
+        if constexpr(MRepeat < NRepeat)
+        {
+            static_for<0, KPerBlock / KPack, 1>{}(
+                [&](auto k) { // k=0,1,2 instead of k=0,kpack*1, ...
+                    static_for<0, MRepeat, 1>{}([&](auto m0) {
+                        // read A
+                        a_thread_copy_.Run(
+                            a_block_desc_k0_m0_m1_m2_k1,
+                            make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
+                            a_block_buf,
+                            a_thread_desc_,
+                            make_tuple(I0, m0, I0, I0, I0, I0),
+                            a_thread_buf);
+
+                        static_for<0, NRepeat, 1>{}([&](auto n0) {
+                            // read B
+                            b_thread_copy_.Run(
+                                b_block_desc_k0_n0_n1_n2_k1,
+                                make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
+                                b_block_buf,
+                                b_thread_desc_,
+                                make_tuple(I0, n0, I0, I0, I0, I0),
+                                b_thread_buf);
+
+                            vector_type<FloatA, KPack / A_KRow> a_thread_vec;
+                            vector_type<FloatB, KPack / B_KRow> b_thread_vec;
+
+                            static_for<0, KPack / A_KRow, 1>{}([&](auto i) {
+                                a_thread_vec.template AsType<FloatA>()(i) =
+                                    a_thread_buf[Number<a_thread_desc_.CalculateOffset(
+                                        make_tuple(i / A_K1, m0, 0, 0, 0, i % A_K1))>{}];
+                            });
+
+                            static_for<0, KPack / B_KRow, 1>{}([&](auto i) {
+                                b_thread_vec.template AsType<FloatB>()(i) =
+                                    b_thread_buf[Number<b_thread_desc_.CalculateOffset(
+                                        make_tuple(i / B_K1, n0, 0, 0, 0, i % B_K1))>{}];
+                            });
+
+                            using wmma_input_type_a =
+                                typename vector_type<FloatA, WmmaK / A_KRow>::type;
+                            using wmma_input_type_b =
+                                typename vector_type<FloatB, WmmaK / B_KRow>::type;
+
+                            constexpr index_t c_offset =
+                                c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
+
+                            wmma_gemm.template Run(
+                                a_thread_vec.template AsType<wmma_input_type_a>(),
+                                b_thread_vec.template AsType<wmma_input_type_b>(),
+                                c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
+                        });
+                    });
+                });
+        }
+        else
+        {
+            static_for<0, NRepeat, 1>{}([&](auto n0) {
+                static_for<0, MRepeat, 1>{}([&](auto m0) {
+                    static_for<0, KPerBlock / KPack, 1>{}([&](auto k) { // k=0,1,2 instead of
+                                                                        // k=0,kpack*1, ..
+                        // read B
+                        b_thread_copy_.Run(
+                            b_block_desc_k0_n0_n1_n2_k1,
+                            make_tuple(Number<k * KPack / B_K1 / B_KRow>{}, n0, I0, I0, I0, I0),
+                            b_block_buf,
+                            b_thread_desc_,
+                            make_tuple(I0, n0, I0, I0, I0, I0),
+                            b_thread_buf);
+                        // read A
+                        a_thread_copy_.Run(
+                            a_block_desc_k0_m0_m1_m2_k1,
+                            make_tuple(Number<k * KPack / A_K1 / A_KRow>{}, m0, I0, I0, I0, I0),
+                            a_block_buf,
+                            a_thread_desc_,
+                            make_tuple(I0, m0, I0, I0, I0, I0),
+                            a_thread_buf);
+
+                        vector_type<FloatA, KPack / A_KRow> a_thread_vec;
+                        vector_type<FloatB, KPack / B_KRow> b_thread_vec;
+
+                        static_for<0, KPack / A_KRow, 1>{}([&](auto i) {
+                            a_thread_vec.template AsType<FloatA>()(i) =
+                                a_thread_buf[Number<a_thread_desc_.CalculateOffset(
+                                    make_tuple(i / A_K1, m0, 0, 0, 0, i % A_K1))>{}];
+                        });
+
+                        static_for<0, KPack / B_KRow, 1>{}([&](auto i) {
+                            b_thread_vec.template AsType<FloatB>()(i) =
+                                b_thread_buf[Number<b_thread_desc_.CalculateOffset(
+                                    make_tuple(i / B_K1, n0, 0, 0, 0, i % B_K1))>{}];
+                        });
+
+                        using wmma_input_type_a =
+                            typename vector_type<FloatA, WmmaK / A_KRow>::type;
+                        using wmma_input_type_b =
+                            typename vector_type<FloatB, WmmaK / B_KRow>::type;
+
+                        constexpr index_t c_offset =
+                            c_thread_desc_.CalculateOffset(make_tuple(m0, n0, 0));
+
+                        wmma_gemm.template Run(
+                            a_thread_vec.template AsType<wmma_input_type_a>(),
+                            b_thread_vec.template AsType<wmma_input_type_b>(),
+                            c_thread_buf.GetVectorTypeReference(Number<c_offset>{}));
+                    });
+                });
+            });
+        }
+    }
+
+    protected:
+    static constexpr auto a_thread_desc_ = make_naive_tensor_descriptor(
+        make_tuple(Number<KPack / A_K1 / A_KRow>{}, Number<MRepeat>{}, I1, I1, I1, Number<A_K1>{}),
+        make_tuple(Number<A_K1>{},
+                   Number<KPack / A_KRow>{},
+                   Number<A_K1>{},
+                   Number<A_K1>{},
+                   Number<A_K1>{},
+                   Number<1>{}));
+
+    static constexpr auto b_thread_desc_ = make_naive_tensor_descriptor(
+        make_tuple(Number<KPack / B_K1 / B_KRow>{}, Number<NRepeat>{}, I1, I1, I1, Number<B_K1>{}),
+        make_tuple(Number<B_K1>{},
+                   Number<KPack / B_KRow>{},
+                   Number<B_K1>{},
+                   Number<B_K1>{},
+                   Number<B_K1>{},
+                   Number<1>{}));
+
+    // C[M, N, NumRegWMMA]
+    static constexpr auto c_thread_desc_ = make_naive_tensor_descriptor_packed(
+        make_tuple(Number<MRepeat>{}, Number<NRepeat>{}, wmma_gemm.GetRegSizePerWmma()));
+
+    template <bool EnableLds>
+    struct AThreadCopySelector;
+
+    template <>
+    struct AThreadCopySelector<true>
+    {
+        using type =
+            ThreadwiseTensorSliceTransfer_v4<FloatA,
+                                             FloatA,
+                                             decltype(a_block_desc_k0_m0_m1_m2_k1),
+                                             decltype(a_thread_desc_),
+                                             Sequence<KPack / A_K1 / A_KRow, 1, 1, 1, 1, A_K1>,
+                                             Sequence<0, 1, 2, 3, 4, 5>,
+                                             5,
+                                             A_K1,
+                                             A_K1>;
+    };
+
+    template <>
+    struct AThreadCopySelector<false>
+    {
+        using type = ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow<
+            FloatA,
+            FloatA,
+            decltype(a_block_desc_k0_m0_m1_m2_k1),
+            decltype(a_thread_desc_),
+            tensor_operation::element_wise::PassThrough,
+            Sequence<KPack / A_K1 / A_KRow, 1, 1, 1, 1, A_K1>,
+            Sequence<0, 1, 2, 3, 4, 5>,
+            5,
+            A_K1,
+            false>;
+    };
+
+    template <bool EnableLds>
+    struct BThreadCopySelector;
+
+    template <>
+    struct BThreadCopySelector<true>
+    {
+        using type =
+            ThreadwiseTensorSliceTransfer_v4<FloatB,
+                                             FloatB,
+                                             decltype(b_block_desc_k0_n0_n1_n2_k1),
+                                             decltype(b_thread_desc_),
+                                             Sequence<KPack / B_K1 / B_KRow, 1, 1, 1, 1, B_K1>,
+                                             Sequence<0, 1, 2, 3, 4, 5>,
+                                             5,
+                                             B_K1,
+                                             B_K1>;
+    };
+
+    template <>
+    struct BThreadCopySelector<false>
+    {
+        using type = ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow<
+            FloatB,
+            FloatB,
+            decltype(b_block_desc_k0_n0_n1_n2_k1),
+            decltype(b_thread_desc_),
+            tensor_operation::element_wise::PassThrough,
+            Sequence<KPack / B_K1 / B_KRow, 1, 1, 1, 1, B_K1>,
+            Sequence<0, 1, 2, 3, 4, 5>,
+            5,
+            B_K1,
+            false>;
+    };
+
+    typename AThreadCopySelector<AEnableLds>::type a_thread_copy_;
+    typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
+};
+#else
 template <index_t BlockSize,
           typename FloatA,
           typename FloatB,
@@ -529,5 +1027,6 @@ struct BlockwiseGemmWMMA
     typename AThreadCopySelector<AEnableLds>::type a_thread_copy_;
     typename BThreadCopySelector<BEnableLds>::type b_thread_copy_;
 };
+#endif

 } // namespace ck
diff --git a/include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp b/include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
index e5e6245cb..1f7d50429 100644
--- a/include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
+++ b/include/ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp
@@ -488,7 +488,14 @@ struct BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
             // sync point.
             if constexpr(k.value != 0 || KPerInnerLoop == KPerThread)
             {
+#ifdef __gfx12__
+                asm volatile("\
+	        s_barrier_signal -1 \n \
+		s_barrier_wait -1 \
+		" ::);
+#else
                 asm volatile("s_barrier" ::);
+#endif
                 __builtin_amdgcn_sched_barrier(0);
             }
             static_for<0, KPerInnerLoop, KPack>{}([&](auto k_) {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
index a15759559..ab3f3856a 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
@@ -133,8 +133,13 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
     static constexpr auto NWaves = NPerBlock / (NRepeat * NPerWmma);
     static constexpr auto WmmaK  = K1 == 16 ? 32 : 16;

-    static constexpr auto AEnableLds_auto = NWaves == 1 ? false : true;
-    static constexpr auto BEnableLds_auto = MWaves == 1 ? false : true;
+    static constexpr auto MaxVectorLoadA = K1 * sizeof(ADataType) == 16 ? true : false;
+    static constexpr auto MaxVectorLoadB = K1 * sizeof(BDataType) == 16 ? true : false;
+
+    static constexpr auto AEnableLds_auto =
+        (NWaves == 1 && (MaxVectorLoadA || MRepeat == 1)) ? false : true;
+    static constexpr auto BEnableLds_auto =
+        (MWaves == 1 && (MaxVectorLoadB || NRepeat == 1)) ? false : true;

     // If true, LDS is used unconditionally
     static constexpr auto AEnableLds_manu = false;
@@ -829,7 +834,7 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle

     static bool IsSupportedArgument(const Argument& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
             {
@@ -869,11 +874,15 @@ struct DeviceBatchedContractionMultipleD_Wmma_CShuffle
         }
         else
         {
-            if(!(arg.a_kz_stride_ == 1 &&
-                 arg.a_grid_desc_.GetLength(I2) % ABlockTransferSrcScalarPerVector == 0))
+            if(!(arg.a_kz_stride_ == 1))
             {
-                printf("DeviceOp: Vector Access A-k check failure\n");
-                return false;
+                index_t LastK =
+                    AEnableLds ? arg.a_grid_desc_.GetLength(I2) : arg.a_grid_desc_.GetLength(I6);
+                if(LastK % ABlockTransferSrcScalarPerVector == 0)
+                {
+                    printf("DeviceOp: Vector Access A-k check failure\n");
+                    return false;
+                }
             }
         }

diff --git a/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
index 8fd14afc0..1b487502f 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_multiple_d_dl.hpp
@@ -70,8 +70,9 @@ __global__ void
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
             const Block2CTileMap block_2_ctile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
-    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) ||         \
+    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
+    defined(__gfx12__))

     const index_t num_blocks_per_batch =
         __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
@@ -648,7 +649,7 @@ struct DeviceBatchedGemmMultipleD_Dl : public DeviceBatchedGemmMultiD<ALayout,
     static bool IsSupportedArgument(const Argument& arg)
     {
         if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
-           ck::is_gfx103_supported() || ck::is_gfx11_supported())
+           ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             bool pass = true;
             pass      = pass && arg.K_ % K1 == 0;
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
index f6b701ab1..102611838 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_wmma_cshuffle.hpp
@@ -56,7 +56,7 @@ __global__ void
                                                        bool input_permute,
                                                        bool output_permute)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))

     // clang-format off
 // ***************************************************
@@ -159,6 +159,7 @@ __global__ void
     ignore = O;
     ignore = G0;
     ignore = G1;
+    ignore = alpha;
     ignore = input_permute;
     ignore = output_permute;
 #endif // end of if (defined(__gfx11__))
@@ -187,7 +188,7 @@ __global__ void
                                            index_t head_size,
                                            float alpha)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))

     // clang-format off
 // ***************************************************
@@ -321,7 +322,7 @@ __global__ void
                                             index_t head_size,
                                             float alpha)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))

     // clang-format off
 // ***************************************************
@@ -858,7 +859,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Wmma_CShuffle

     static bool IsSupportedArgument(const RawArg& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
index 9d5b74be6..017d28641 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
@@ -601,9 +601,7 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
             return false;
         }

-        if(ck::get_device_name() != "gfx90a" && ck::get_device_name() != "gfx940" &&
-           ck::get_device_name() != "gfx941" && ck::get_device_name() != "gfx942" &&
-           std::is_same<ADataType, double>::value)
+        if(!ck::is_lds_direct_load_supported() && std::is_same<ADataType, double>::value)
         {
             return false;
         }
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
index b84e18130..1edae33be 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
@@ -1393,7 +1393,7 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Dl
     {
         // check device
         if(!(ck::get_device_name() == "gfx906" || ck::is_gfx103_supported() ||
-             ck::is_gfx11_supported()))
+             ck::is_gfx11_supported() || ck::is_gfx12_supported()))
         {
             return false;
         }
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp b/include/ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp
index bf96324d0..553143e28 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_fpAintB_gemm_wmma.hpp
@@ -509,7 +509,7 @@ struct DeviceFpAintBGemm_Wmma_CShuffle : public DeviceGemm_dequantB<ALayout,

     static bool IsSupportedArgument(const Argument& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, ck::half_t> ||
                            is_same_v<AccDataType, int32_t>))
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
index b1784b385..eb0fb55f5 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
@@ -536,7 +536,7 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
         }

         if(ck::get_device_name() == "gfx906" || ck::is_gfx103_supported() ||
-           ck::is_gfx11_supported())
+           ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             return GridwiseGemm::CheckValidity(
                 arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.c_grid_desc_m_n_);
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
index 23858096d..811f1ae93 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_dl.hpp
@@ -50,8 +50,9 @@ __global__ void
             const CGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11,
             const Block2CTileMap block_2_ctile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
-    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) ||         \
+    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
+    defined(__gfx12__))

     constexpr index_t shared_block_size =
         GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(ABDataType);
@@ -552,7 +553,7 @@ struct DeviceGemmMultipleD_Dl : public DeviceGemmMultipleD<ALayout,
     static bool IsSupportedArgument(const Argument& arg)
     {
         if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
-           ck::is_gfx103_supported() || ck::is_gfx11_supported())
+           ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             return GridwiseGemm::CheckValidity(
                 arg.a_grid_desc_k0_m_k1_, arg.b_grid_desc_k0_n_k1_, arg.e_grid_desc_m_n_);
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
index a1ef37cc8..35f1c77f8 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
@@ -515,7 +515,7 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,

     static bool IsSupportedArgument(const Argument& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp b/include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
index 93ab8a7e1..a7cc546f5 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
@@ -84,14 +84,21 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
     // K1 = Max Vector Access Pixels
     static constexpr auto K1Number = Number<K1>{};

-    static constexpr auto MWaves = MPerBlock / (MRepeat * MPerWmma);
-    static constexpr auto NWaves = NPerBlock / (NRepeat * NPerWmma);
-    static constexpr auto WmmaK  = K1 == 16 ? 32 : 16;
-
-    static constexpr auto AEnableLds_auto =
-        (NWaves == 1 && is_same<tensor_layout::gemm::RowMajor, ALayout>::value) ? false : true;
+    static constexpr auto MWaves         = MPerBlock / (MRepeat * MPerWmma);
+    static constexpr auto NWaves         = NPerBlock / (NRepeat * NPerWmma);
+    static constexpr auto WmmaK          = K1 == 16 ? 32 : 16;
+    static constexpr auto MaxVectorLoadA = K1 * sizeof(ADataType) == 16 ? true : false;
+    static constexpr auto MaxVectorLoadB = K1 * sizeof(BDataType) == 16 ? true : false;
+
+    static constexpr auto AEnableLds_auto = (NWaves == 1 && (MaxVectorLoadA || MRepeat == 1) &&
+                                             is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
+                                                ? false
+                                                : true;
     static constexpr auto BEnableLds_auto =
-        (MWaves == 1 && is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value) ? false : true;
+        (MWaves == 1 && (MaxVectorLoadB || NRepeat == 1) &&
+         is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
+            ? false
+            : true;

     // If true, LDS is used unconditionally
     static constexpr auto AEnableLds_manu = false;
@@ -443,7 +450,7 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,

     static bool IsSupportedArgument(const Argument& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, ck::half_t> ||
                            is_same_v<AccDataType, int32_t>))
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp
index 6f74838fb..6bb5d431c 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_wmma_cshuffle.hpp
@@ -629,7 +629,7 @@ struct DeviceGroupedConvBwdDataMultipleD_Wmma_CShuffle
     static bool IsSupportedArgument(const Argument& arg)
     {
         // check device
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
index bd264a3c8..7047e1bda 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp
@@ -48,8 +48,9 @@ __global__ void
             const Block2CTileMap block_2_ctile_map,
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) || \
-    defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) ||         \
+    defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__) || \
+    defined(__gfx12__))
     const index_t num_blocks_per_batch =
         __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
     const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
index 211185dfb..5738be0fb 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_wmma_cshuffle.hpp
@@ -692,7 +692,7 @@ struct DeviceGroupedConvBwdWeight_Wmma_CShuffle
     static bool IsSupportedArgument(const Argument& arg)
     {
         // check device
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
index 7cfbd8a8f..5d5a9de7d 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
@@ -90,8 +90,9 @@ __global__ void
             const Block2CTileMap block_2_ctile_map,
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) || \
-    defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) ||         \
+    defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx94__) || defined(__gfx11__) || \
+    defined(__gfx12__))
     // offset base pointer for each work-group
     const index_t num_blocks_per_batch =
         __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
@@ -666,7 +667,7 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK

         // check device
         if(!(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
-             ck::is_gfx103_supported() || ck::is_gfx11_supported()))
+             ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported()))
         {
             return false;
         }
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
index 6a4d97d7d..c65370b51 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
@@ -107,7 +107,7 @@ __global__ void
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
 {
 #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx103__) || \
-    defined(__gfx11__))
+    defined(__gfx11__) || defined(__gfx12__))
     // offset base pointer for each work-group
     const index_t num_blocks_per_batch =
         __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
@@ -602,7 +602,7 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS

         // check device
         if(!(ck::get_device_name() == "gfx906" || ck::is_gfx103_supported() ||
-             ck::is_gfx11_supported()))
+             ck::is_gfx11_supported() || ck::is_gfx12_supported()))
         {
             return false;
         }
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
index 24bd0f242..cfb64e0ee 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
@@ -581,7 +581,7 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
         namespace ctc = tensor_layout::convolution;

         // check device
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_dl.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_dl.hpp
index ac392cddc..060a16d1e 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_dl.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multiple_d_dl.hpp
@@ -39,8 +39,9 @@ __global__ void
                                           const BElementwiseOperation b_element_op,
                                           const CDEElementwiseOperation cde_element_op)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
-    defined(__gfx90a__) || defined(__gfx103__) || defined(__gfx11__) || defined(__gfx94__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) ||         \
+    defined(__gfx90a__) || defined(__gfx103__) || defined(__gfx11__) || defined(__gfx94__) || \
+    defined(__gfx12__))
     __shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];

     const index_t block_id = get_block_1d_id();
@@ -673,7 +674,7 @@ struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
         }

         if(ck::get_device_name() == "gfx906" || ck::is_xdl_supported() ||
-           ck::is_gfx103_supported() || ck::is_gfx11_supported())
+           ck::is_gfx103_supported() || ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp b/include/ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp
index 71f7ac04c..67a100a11 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_grouped_query_attention_forward_wmma.hpp
@@ -61,7 +61,7 @@ __global__ void
                                             bool input_permute,
                                             bool output_permute)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))

     // clang-format off
 // ***************************************************
@@ -166,6 +166,7 @@ __global__ void
     ignore = O;
     ignore = G0;
     ignore = G1;
+    ignore = alpha;
     ignore = input_permute;
     ignore = output_permute;
 #endif // end of if (defined(__gfx11__))
@@ -596,7 +597,7 @@ struct DeviceGroupedQueryAttentionForward_Wmma

     static bool IsSupportedArgument(const RawArg& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp b/include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp
index 4e14ed3a5..cc88c1a10 100644
--- a/include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/device/impl/device_multi_query_attention_forward_wmma.hpp
@@ -60,7 +60,7 @@ __global__ void
                                           bool input_permute,
                                           bool output_permute)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))

     // clang-format off
 // ***************************************************
@@ -165,6 +165,7 @@ __global__ void
     ignore = O;
     ignore = G0;
     ignore = G1;
+    ignore = alpha;
     ignore = input_permute;
     ignore = output_permute;
 #endif // end of if (defined(__gfx11__))
@@ -594,7 +595,7 @@ struct DeviceMultiQueryAttentionForward_Wmma

     static bool IsSupportedArgument(const RawArg& arg)
     {
-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             if constexpr(!(is_same_v<Acc0DataType, float> || is_same_v<Acc0DataType, int32_t>))
             {
diff --git a/include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
index 16717ff81..1754e07e6 100644
--- a/include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_wmma_cshuffle.hpp
@@ -371,12 +371,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
             if constexpr(B0EnableLds)
             {
                 // BK0_L_BK1 -> BK0_LRepeat_Lwaves_LPerWmma_BK1
-                constexpr auto B_K0   = B0BlockDesc_{}.GetLength(I0);
-                constexpr auto B_K1   = B0BlockDesc_{}.GetLength(I2);
+                constexpr auto B_K0 = B0BlockDesc_{}.GetLength(I0);
+                constexpr auto B_K1 = B0BlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto B_KRow = I2;
+#else
                 constexpr auto B_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     B0BlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<LRepeat>{}, Number<LWaves>{}, Number<LPerWmma>{})),
                                make_pass_through_transform(Number<B_K1>{})),
@@ -428,12 +432,16 @@ struct GridwiseBatchedGemmSoftmaxGemm_Wmma
             if constexpr(B1EnableLds)
             {
                 // BL0_N_BL1 -> BL0_NRepeat_Nwaves_NPerWmma_BL1
-                constexpr auto B_L0   = B1BlockDesc_{}.GetLength(I0);
-                constexpr auto B_L1   = B1BlockDesc_{}.GetLength(I2);
+                constexpr auto B_L0 = B1BlockDesc_{}.GetLength(I0);
+                constexpr auto B_L1 = B1BlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto B_LRow = I2;
+#else
                 constexpr auto B_LRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     B1BlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<B_L0>{}, B_LRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<B_L0 / B_LRow>{}, B_LRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
                                make_pass_through_transform(Number<B_L1>{})),
diff --git a/include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp b/include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
index 499eb7eb0..21dac6f9e 100644
--- a/include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/grid/gridwise_fpAintB_gemm_wmma.hpp
@@ -50,7 +50,7 @@ __global__ void
                                  const CElementwiseOperation c_element_op,
                                  const Block2CTileMap block_2_ctile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
     __shared__ char p_shared[GridwiseGemm::SharedMemTrait::lds_size];

     GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
@@ -302,12 +302,16 @@ struct GridwiseFpAintBGemm_Wmma
             if constexpr(AEnableLds)
             {
                 // AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
-                constexpr auto A_K0   = ABlockDesc_{}.GetLength(I0);
-                constexpr auto A_K1   = ABlockDesc_{}.GetLength(I2);
+                constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
+                constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto A_KRow = I2;
+#else
                 constexpr auto A_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     ABlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
                                make_pass_through_transform(Number<A_K1>{})),
@@ -360,12 +364,16 @@ struct GridwiseFpAintBGemm_Wmma
             if constexpr(BEnableLds)
             {
                 // BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
-                constexpr auto B_K0   = BBlockDesc_{}.GetLength(I0);
-                constexpr auto B_K1   = BBlockDesc_{}.GetLength(I2);
+                constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
+                constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto B_KRow = I2;
+#else
                 constexpr auto B_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     BBlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
                                make_pass_through_transform(Number<B_K1>{})),
diff --git a/include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp b/include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
index 82d010a99..fdda649ef 100644
--- a/include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
+++ b/include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp
@@ -54,7 +54,7 @@ __global__ void
             const Block2CTileMap block_2_ctile_map,
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
     // offset base pointer for each work-group
     const index_t num_blocks_per_batch =
         __builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
@@ -147,7 +147,7 @@ __global__ void
             const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
             const Block2CTileMap block_2_etile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
     // printf("entry kernel launch");
     __shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];

@@ -237,7 +237,7 @@ __global__ void
             const CDEElementwiseOperation cde_element_op,
             const Block2CTileMap block_2_ctile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
     __shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];

     GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid,
@@ -375,8 +375,9 @@ struct GridwiseGemmMultipleD_Wmma
             }
             else
             {
+                constexpr auto A_KRow        = I2;
                 constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
-                constexpr auto K0PerWmma     = WmmaK / 2 / K1;
+                constexpr auto K0PerWmma     = WmmaK / A_KRow / K1;
                 // KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
                 return make_naive_tensor_descriptor(
                     make_tuple(Number<KWmmaPerblock>{},
@@ -422,8 +423,9 @@ struct GridwiseGemmMultipleD_Wmma
             }
             else
             {
+                constexpr auto B_KRow        = I2;
                 constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
-                constexpr auto K0PerWmma     = WmmaK / 2 / K1;
+                constexpr auto K0PerWmma     = WmmaK / B_KRow / K1;
                 // KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
                 return make_naive_tensor_descriptor(
                     make_tuple(Number<KWmmaPerblock>{},
@@ -495,12 +497,16 @@ struct GridwiseGemmMultipleD_Wmma
             if constexpr(AEnableLds)
             {
                 // AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
-                constexpr auto A_K0   = ABlockDesc_{}.GetLength(I0);
-                constexpr auto A_K1   = ABlockDesc_{}.GetLength(I2);
+                constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
+                constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto A_KRow = I2;
+#else
                 constexpr auto A_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     ABlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
                                make_pass_through_transform(Number<A_K1>{})),
@@ -534,12 +540,16 @@ struct GridwiseGemmMultipleD_Wmma
             if constexpr(BEnableLds)
             {
                 // BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
-                constexpr auto B_K0   = BBlockDesc_{}.GetLength(I0);
-                constexpr auto B_K1   = BBlockDesc_{}.GetLength(I2);
+                constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
+                constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto B_KRow = I2;
+#else
                 constexpr auto B_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     BBlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
                                make_pass_through_transform(Number<B_K1>{})),
@@ -571,15 +581,12 @@ struct GridwiseGemmMultipleD_Wmma
     // *Caution Here repeat is shuffle repeat
     GetCShuffleBlockDescriptor_MShRepeat_MPerShRepeat_NShRepeat_NPerShRepeat()
     {
-        constexpr index_t MWave = MPerBlock / (MRepeat * MPerWmma);
-        constexpr index_t NWave = NPerBlock / (NRepeat * NPerWmma);
-
         constexpr auto c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat =
             make_naive_tensor_descriptor_packed(
                 make_tuple(I1,
-                           Number<CShuffleMRepeatPerShuffle * MWave * MPerWmma>{},
+                           Number<CShuffleMRepeatPerShuffle * MWaves * MPerWmma>{},
                            I1,
-                           Number<CShuffleNRepeatPerShuffle * NWave * NPerWmma>{}));
+                           Number<CShuffleNRepeatPerShuffle * NWaves * NPerWmma>{}));

         return c_shuffle_block_desc_mshrepeat_mpershrepeat_nshrepeat_npershrepeat;
     }
@@ -799,8 +806,9 @@ struct GridwiseGemmMultipleD_Wmma
         const auto M = e_grid_desc_m_n.GetLength(I0);
         const auto N = e_grid_desc_m_n.GetLength(I1);

-        const auto MBlock                                        = M / MPerBlock;
-        const auto NBlock                                        = N / NPerBlock;
+        const auto MBlock = M / MPerBlock;
+        const auto NBlock = N / NPerBlock;
+
         const auto e_grid_desc_mblock_mperblock_nblock_nperblock = transform_tensor_descriptor(
             e_grid_desc_m_n,
             make_tuple(make_unmerge_transform(make_tuple(MBlock, Number<MPerBlock>{})),
diff --git a/include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp b/include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
index 8e4117593..4458b9356 100644
--- a/include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
+++ b/include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp
@@ -45,7 +45,7 @@ __global__ void
                          const CElementwiseOperation c_element_op,
                          const Block2CTileMap block_2_ctile_map)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx11__) || defined(__gfx12__))
     __shared__ char p_shared[GridwiseGemm::SharedMemTrait::lds_size];

     GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
@@ -170,8 +170,9 @@ struct GridwiseGemm_Wmma
             }
             else
             {
+                constexpr auto A_KRow        = I2;
                 constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
-                constexpr auto K0PerWmma     = WmmaK / 2 / K1;
+                constexpr auto K0PerWmma     = WmmaK / A_KRow / K1;
                 // KWmma->MRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
                 return make_naive_tensor_descriptor(
                     make_tuple(Number<KWmmaPerblock>{},
@@ -217,8 +218,10 @@ struct GridwiseGemm_Wmma
             }
             else
             {
+
+                constexpr auto B_KRow        = I2;
                 constexpr auto KWmmaPerblock = KPerBlock / WmmaK;
-                constexpr auto K0PerWmma     = WmmaK / 2 / K1;
+                constexpr auto K0PerWmma     = WmmaK / B_KRow / K1;
                 // KWmma->NRepeat->MWave->K0PerWmma->KRow->MPerWmma->K1 Per Thread
                 return make_naive_tensor_descriptor(
                     make_tuple(Number<KWmmaPerblock>{},
@@ -290,12 +293,17 @@ struct GridwiseGemm_Wmma
             if constexpr(AEnableLds)
             {
                 // AK0_M_AK1 -> AK0_MRepeat_Mwaves_AKRow_MPerWmma_AK1
-                constexpr auto A_K0   = ABlockDesc_{}.GetLength(I0);
-                constexpr auto A_K1   = ABlockDesc_{}.GetLength(I2);
+                constexpr auto A_K0 = ABlockDesc_{}.GetLength(I0);
+                constexpr auto A_K1 = ABlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto A_KRow = I2;
+#else
                 constexpr auto A_KRow = I1;
+#endif
+
                 return transform_tensor_descriptor(
                     ABlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0>{}, A_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<A_K0 / A_KRow>{}, A_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<MRepeat>{}, Number<MWaves>{}, Number<MPerWmma>{})),
                                make_pass_through_transform(Number<A_K1>{})),
@@ -348,12 +356,16 @@ struct GridwiseGemm_Wmma
             if constexpr(BEnableLds)
             {
                 // BK0_N_BK1 -> BK0_NRepeat_Nwaves_NPerWmma_BK1
-                constexpr auto B_K0   = BBlockDesc_{}.GetLength(I0);
-                constexpr auto B_K1   = BBlockDesc_{}.GetLength(I2);
+                constexpr auto B_K0 = BBlockDesc_{}.GetLength(I0);
+                constexpr auto B_K1 = BBlockDesc_{}.GetLength(I2);
+#ifdef __gfx12__
+                constexpr auto B_KRow = I2;
+#else
                 constexpr auto B_KRow = I1;
+#endif
                 return transform_tensor_descriptor(
                     BBlockDesc_{},
-                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0>{}, B_KRow)),
+                    make_tuple(make_unmerge_transform(make_tuple(Number<B_K0 / B_KRow>{}, B_KRow)),
                                make_unmerge_transform(make_tuple(
                                    Number<NRepeat>{}, Number<NWaves>{}, Number<NPerWmma>{})),
                                make_pass_through_transform(Number<B_K1>{})),
@@ -522,12 +534,6 @@ struct GridwiseGemm_Wmma
             c_grid_desc_m_n);
     }

-    using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock =
-        remove_cvref_t<decltype(MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
-            CGridDesc_M_N{}))>;
-    using DefaultBlock2CTileMap =
-        remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
-
     struct SharedMemTrait
     {
         // LDS allocation for A and B: be careful of alignment
@@ -559,6 +565,12 @@ struct GridwiseGemm_Wmma
                           b_block_space_size_aligned * sizeof(BDataType));
     };

+    using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock =
+        remove_cvref_t<decltype(MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
+            CGridDesc_M_N{}))>;
+    using DefaultBlock2CTileMap =
+        remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
+
     template <bool HasMainKBlockLoop, typename Block2CTileMap = DefaultBlock2CTileMap>
     __device__ static void Run(const ADataType* __restrict__ p_a_grid,
                                const BDataType* __restrict__ p_b_grid,
diff --git a/include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp b/include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
index 6772524e0..174074990 100644
--- a/include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
+++ b/include/ck/tensor_operation/gpu/grid/gridwise_tensor_rearrange.hpp
@@ -35,8 +35,9 @@ __global__ void
                                 const Block2ETileMap block_2_tile_map,
                                 const ComputePtrOffsetOfStridedBatch compute_ptr_offset_of_batch)
 {
-#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
-    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__))
+#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) ||         \
+    defined(__gfx90a__) || defined(__gfx94__) || defined(__gfx103__) || defined(__gfx11__) || \
+    defined(__gfx12__))
     GridwiseTensorRearrangeKernel::Run(in_grid_desc,
                                        p_in_global,
                                        out_grid_desc,
diff --git a/include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp b/include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
index bcce930fc..d7a6a3624 100644
--- a/include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
+++ b/include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp
@@ -1304,7 +1304,7 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic
     ElementwiseOperation element_op_;
 };

-// Specilized for WMMA
+// Specilized for WMMA-Navi3
 // A single Wave32 is composed by double row
 // Data exchange allowed between these two rows
 // This RowLane Dst buf will be filled from two Src buf
@@ -1439,4 +1439,111 @@ struct ThreadwiseTensorSliceTransfer_StaticToStatic_InterRow
     ElementwiseOperation element_op_{};
 };

+// Specilized for WMMA-Navi4
+template <typename SrcData,
+          typename DstData,
+          typename SrcDesc,
+          typename DstDesc,
+          typename ElementwiseOperation,
+          typename SliceLengths,
+          typename DimAccessOrder,
+          index_t DstVectorDim,
+          index_t DstScalarPerVector,
+          bool IntraRowSwizzlePerm,
+          typename enable_if<SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
+                             bool>::type = false>
+struct ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow
+{
+    static constexpr index_t nDim = SliceLengths::Size();
+
+    using Index = MultiIndex<nDim>;
+
+    __device__ constexpr ThreadwiseTensorSliceTransfer_StaticToStatic_IntraRow(const Index& src_idx)
+    {
+        static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
+                      "wrong! Desc need to known at compile-time");
+
+        static_assert(SliceLengths::At(Number<DstVectorDim>{}) % DstScalarPerVector == 0,
+                      "wrong! Not divisible");
+        ignore = src_idx;
+    }
+
+    template <typename SrcSliceOriginIdx,
+              typename DstSliceOriginIdx,
+              typename SrcBuffer,
+              typename DstBuffer>
+    __device__ void Run(const SrcDesc&,
+                        const SrcSliceOriginIdx&,
+                        const SrcBuffer& src_buf,
+                        const DstDesc&,
+                        const DstSliceOriginIdx&,
+                        DstBuffer& dst_buf) const
+    {
+        static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
+                      "wrong! Desc need to known at compile-time");
+
+        static_assert(is_known_at_compile_time<remove_cvref_t<SrcSliceOriginIdx>>::value &&
+                          is_known_at_compile_time<remove_cvref_t<DstSliceOriginIdx>>::value,
+                      "wrong! SliceOrigin need to known at compile-time");
+
+        static_assert(SrcBuffer::IsStaticBuffer() && DstBuffer::IsStaticBuffer(),
+                      "wrong! Buffer need to be StaticBuffer");
+
+        // SrcDesc and src_slice_origin_idx are known at compile-time
+        constexpr auto src_desc             = remove_cvref_t<SrcDesc>{};
+        constexpr auto dst_desc             = remove_cvref_t<DstDesc>{};
+        constexpr auto src_slice_origin_idx = to_multi_index(SrcSliceOriginIdx{});
+        constexpr auto dst_slice_origin_idx = to_multi_index(DstSliceOriginIdx{});
+
+        // scalar per access on each dim
+        constexpr auto dst_scalar_per_access = generate_sequence(
+            detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
+
+        constexpr auto dst_scalar_step_in_vector =
+            generate_sequence(detail::lambda_scalar_step_in_vector<DstVectorDim>{}, Number<nDim>{});
+
+        using SpaceFillingCurve = SpaceFillingCurve<SliceLengths,
+                                                    DimAccessOrder,
+                                                    remove_cv_t<decltype(dst_scalar_per_access)>>;
+
+        static_assert(DstScalarPerVector == SpaceFillingCurve::ScalarPerVector,
+                      "wrong!DstScalarPerVector != SpaceFillingCurve::ScalarPerVector");
+
+        constexpr auto num_access = SpaceFillingCurve::GetNumOfAccess();
+
+        static_for<0, num_access, 1>{}([&](auto idx_1d) {
+            constexpr auto idx_md = SpaceFillingCurve::GetIndex(idx_1d);
+
+            // copy data from src_buf into dst_vector
+            static_for<0, DstScalarPerVector, 1>{}([&](auto i) {
+                // src_desc error, non constexpr, caused by merge transform
+                constexpr index_t src_offset = src_desc.CalculateOffset(
+                    src_slice_origin_idx + idx_md + i * dst_scalar_step_in_vector);
+
+                constexpr index_t dst_offset = dst_desc.CalculateOffset(
+                    dst_slice_origin_idx + idx_md + i * dst_scalar_step_in_vector);
+
+                SrcData v_this_row;
+                // int type temp value due to intrinsic requirement
+                int temp = 0;
+
+                // apply element-wise operation
+                element_op_(v_this_row, src_buf[Number<src_offset>{}]);
+
+                // apply intra-row permute.
+                if constexpr(IntraRowSwizzlePerm)
+                {
+                    temp = __builtin_amdgcn_permlane16(
+                        temp, type_convert_sp<int>(v_this_row), 0xb3a29180, 0xf7e6d5c4, 1, 0);
+                    v_this_row = type_convert_sp<SrcData>(temp);
+                }
+
+                // apply type convert
+                dst_buf(Number<dst_offset>{}) = type_convert_sp<DstData>(v_this_row);
+            });
+        });
+    }
+    ElementwiseOperation element_op_{};
+};
+
 } // namespace ck
diff --git a/include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp b/include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
index 565195f53..9a9ebf559 100644
--- a/include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
+++ b/include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
@@ -11,12 +11,17 @@ namespace ck {

 enum struct WmmaInstr
 {
+    // gfx11
     wmma_f32_16x16x16_f16 = 0,
     wmma_f32_16x16x16_bf16,
     wmma_f16_16x16x16_f16,
     wmma_bf16_16x16x16_bf16,
     wmma_i32_16x16x16_iu8,
-    wmma_i32_16x16x16_iu4
+    wmma_i32_16x16x16_iu4,
+    // gfx12
+    wmma_f32_16x16x16_f16_gfx12,
+    wmma_f32_16x16x16_bf16_gfx12,
+    wmma_i32_16x16x16_iu8_gfx12,
 };

 /*
@@ -279,6 +284,122 @@ struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8,
     }
 };

+// gfx12
+
+// A-swizzled
+template <index_t WaveSize>
+struct wmma_type<WmmaInstr::wmma_f32_16x16x16_f16_gfx12,
+                 WaveSize,
+                 typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
+{
+    // Absolute fixing property
+    // * Data Pixel
+    static constexpr index_t m_per_wmma = 16;
+    static constexpr index_t n_per_wmma = 16;
+    static constexpr index_t k_per_wmma = 16;
+    // static constexpr index_t src_a_data_size = 2;
+    // static constexpr index_t src_b_data_size = 2;
+    // static constexpr index_t acc_data_size   = 4;
+    // * Thread mapping inside wave, num_thread_per_subgroups always alone N direction
+    static constexpr index_t acc_data_size            = 4;
+    static constexpr index_t acc_pack_number          = 1;
+    static constexpr index_t num_thread_per_subgroups = n_per_wmma;
+
+    // Wave mode dependent propety
+    static constexpr index_t wave_size = Number<WaveSize>{};
+    // * Fixed in Navi3x, Will be wave mode dependent on Navi4x
+    // static constexpr index_t num_src_a_vgprs_per_wave = k_per_wmma / 2 * src_a_data_size / 4;
+    // static constexpr index_t num_src_b_vgprs_per_wave = k_per_wmma / 2 * src_b_data_size / 4;
+    // * num_acc_vgprs_per_wave alone M direction
+    // * num_subgroups alone M direction
+    static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
+    static constexpr index_t num_subgroups          = wave_size / num_thread_per_subgroups;
+
+    template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
+    __device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
+    {
+        static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
+        if constexpr(wave_size == 32)
+        {
+            intrin_wmma_f32_16x16x16_f16_w32_gfx12<MPerWmma, NPerWmma>::Run(a, b, reg_c);
+        }
+    }
+};
+
+template <index_t WaveSize>
+struct wmma_type<WmmaInstr::wmma_f32_16x16x16_bf16_gfx12,
+                 WaveSize,
+                 typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
+{
+    // Absolute fixing property
+    static constexpr index_t m_per_wmma = 16;
+    static constexpr index_t n_per_wmma = 16;
+    static constexpr index_t k_per_wmma = 16;
+    // static constexpr index_t src_a_data_size          = 2;
+    // static constexpr index_t src_b_data_size          = 2;
+    static constexpr index_t acc_data_size            = 4;
+    static constexpr index_t acc_pack_number          = 1;
+    static constexpr index_t num_thread_per_subgroups = n_per_wmma;
+
+    // Wave mode dependent propety
+    static constexpr index_t wave_size = Number<WaveSize>{};
+    // static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
+    // static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
+    static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
+    static constexpr index_t num_subgroups          = wave_size / num_thread_per_subgroups;
+
+    template <index_t MPerWmma, index_t NPerWmma, class FloatA, class FloatB, class FloatC>
+    __device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
+    {
+        static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
+        if constexpr(wave_size == 32)
+        {
+            intrin_wmma_f32_16x16x16_bf16_w32_gfx12<MPerWmma, NPerWmma>::Run(a, b, reg_c);
+        }
+    }
+};
+
+template <index_t WaveSize>
+struct wmma_type<WmmaInstr::wmma_i32_16x16x16_iu8_gfx12,
+                 WaveSize,
+                 typename std::enable_if_t<WaveSize == 32 || WaveSize == 64>>
+{
+    // Absolute fixing property
+    static constexpr index_t m_per_wmma = 16;
+    static constexpr index_t n_per_wmma = 16;
+    static constexpr index_t k_per_wmma = 16;
+    // static constexpr index_t src_a_data_size          = 2;
+    // static constexpr index_t src_b_data_size          = 2;
+    static constexpr index_t acc_data_size            = 4;
+    static constexpr index_t acc_pack_number          = 1;
+    static constexpr index_t num_thread_per_subgroups = n_per_wmma;
+
+    // Wave mode dependent propety
+    static constexpr index_t wave_size = Number<WaveSize>{};
+    // static constexpr index_t num_src_a_vgprs_per_wave = m_per_wmma * src_a_data_size / 4;
+    // static constexpr index_t num_src_b_vgprs_per_wave = n_per_wmma * src_b_data_size / 4;
+    static constexpr index_t num_acc_vgprs_per_wave = m_per_wmma * n_per_wmma / wave_size;
+    static constexpr index_t num_subgroups          = wave_size / num_thread_per_subgroups;
+
+    template <index_t MPerWmma,
+              index_t NPerWmma,
+              class FloatA,
+              class FloatB,
+              class FloatC,
+              bool neg_a = false,
+              bool neg_b = false,
+              bool clamp = false>
+    __device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
+    {
+        static_assert(wave_size == 32, "only support wave32 for gfx12 wmma");
+        if constexpr(wave_size == 32)
+        {
+            intrin_wmma_i32_16x16x16_iu8_w32_gfx12<MPerWmma, NPerWmma, neg_a, neg_b, clamp>::Run(
+                a, b, reg_c);
+        }
+    }
+};
+
 template <typename src_type_a,
           typename src_type_b,
           typename dst_type,
@@ -296,13 +417,21 @@ struct WmmaSelector
     template <>
     static constexpr auto GetWmma<half_t, half_t, float, 16, 16>()
     {
+#ifdef __gfx12__
+        return WmmaInstr::wmma_f32_16x16x16_f16_gfx12;
+#else
         return WmmaInstr::wmma_f32_16x16x16_f16;
+#endif
     }

     template <>
     static constexpr auto GetWmma<bhalf_t, bhalf_t, float, 16, 16>()
     {
+#ifdef __gfx12__
+        return WmmaInstr::wmma_f32_16x16x16_bf16_gfx12;
+#else
         return WmmaInstr::wmma_f32_16x16x16_bf16;
+#endif
     }

     template <>
@@ -320,8 +449,13 @@ struct WmmaSelector
     template <>
     static constexpr auto GetWmma<int8_t, int8_t, int, 16, 16>()
     {
+#ifdef __gfx12__
+        return WmmaInstr::wmma_i32_16x16x16_iu8_gfx12;
+#else
         return WmmaInstr::wmma_i32_16x16x16_iu8;
+#endif
     }
+
 #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
     template <>
     static constexpr auto GetWmma<int4_t, int4_t, int, 16, 16>()
@@ -502,6 +636,9 @@ struct WmmaGemm

     __device__ static auto GetSubGroupId()
     {
+        static_assert(wmma_instr.num_thread_per_subgroups * wmma_instr.num_subgroups ==
+                          wmma_instr.wave_size,
+                      "");
         return (GetLaneId() / wmma_instr.num_thread_per_subgroups) % wmma_instr.num_subgroups;
     }

@@ -516,12 +653,20 @@ struct WmmaGemm

     __host__ __device__ static auto CalculateAThreadOriginDataIndex()
     {
+#ifdef __gfx12__
+        return GetLaneIdUnderSubGroup();
+#else
         return TransposeC ? GetLaneIdUnderSubGroup() : GetSwizzledLaneIdLow();
+#endif
     }

     __host__ __device__ static auto CalculateBThreadOriginDataIndex()
     {
+#ifdef __gfx12__
+        return GetLaneIdUnderSubGroup();
+#else
         return TransposeC ? GetSwizzledLaneIdLow() : GetLaneIdUnderSubGroup();
+#endif
     }

     __device__ static CIndex GetBeginOfThreadBlk()
diff --git a/include/ck/utility/amd_wmma.hpp b/include/ck/utility/amd_wmma.hpp
index 1bb0140f3..322a0f94b 100644
--- a/include/ck/utility/amd_wmma.hpp
+++ b/include/ck/utility/amd_wmma.hpp
@@ -257,5 +257,87 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
     }
 };

+// gfx12
+/********************************WAVE32 MODE***********************************************/
+
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define __gfx12__
+#endif
+
+// src: fp16, dst: fp32
+template <index_t MPerWave, index_t NPerWave>
+struct intrin_wmma_f32_16x16x16_f16_w32_gfx12;
+
+template <>
+struct intrin_wmma_f32_16x16x16_f16_w32_gfx12<16, 16>
+{
+    template <class FloatC>
+    __device__ static void Run(const half8_t& reg_a, const half8_t& reg_b, FloatC& reg_c)
+    {
+        // * Inline assembly need to elimate the duplicated data load, compiler won't help you
+        // delete them.
+        // amd_assembly_wmma_f32_16x16x16_f16_w32(
+        //     reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
+#if defined(__gfx12__)
+        reg_c.template AsType<float8_t>()(Number<0>{}) =
+            __builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(
+                reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
+#else
+        ignore = reg_a;
+        ignore = reg_b;
+        ignore = reg_c;
+#endif
+    }
+};
+
+// src: bf16, dst: fp32
+template <index_t MPerWave, index_t NPerWave>
+struct intrin_wmma_f32_16x16x16_bf16_w32_gfx12;
+
+template <>
+struct intrin_wmma_f32_16x16x16_bf16_w32_gfx12<16, 16>
+{
+    template <class FloatC>
+    __device__ static void Run(const bhalf8_t& reg_a, const bhalf8_t& reg_b, FloatC& reg_c)
+    {
+#if defined(__gfx12__)
+        reg_c.template AsType<float8_t>()(Number<0>{}) =
+            __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(
+                reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
+#else
+        ignore = reg_a;
+        ignore = reg_b;
+        ignore = reg_c;
+#endif
+    }
+};
+
+// src: iu8, dst: i32
+template <index_t MPerWave, index_t NPerWave, bool neg_a, bool neg_b, bool clamp>
+struct intrin_wmma_i32_16x16x16_iu8_w32_gfx12;
+
+template <bool neg_a, bool neg_b, bool clamp>
+struct intrin_wmma_i32_16x16x16_iu8_w32_gfx12<16, 16, neg_a, neg_b, clamp>
+{
+    template <class FloatC>
+    __device__ static void Run(const int8x8_t& reg_a, const int8x8_t& reg_b, FloatC& reg_c)
+    {
+#if defined(__gfx12__)
+        reg_c.template AsType<int32x8_t>()(Number<0>{}) =
+            __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
+                neg_a,
+                bit_cast<int32x2_t>(reg_a),
+                neg_b,
+                bit_cast<int32x2_t>(reg_b),
+                reg_c.template AsType<int32x8_t>()[Number<0>{}],
+                clamp);
+#else
+        ignore = reg_a;
+        ignore = reg_b;
+        ignore = reg_c;
+#endif
+    }
+};
+
 } // namespace ck
 #endif
diff --git a/include/ck/utility/data_type.hpp b/include/ck/utility/data_type.hpp
index 93a1edefb..4df14c621 100644
--- a/include/ck/utility/data_type.hpp
+++ b/include/ck/utility/data_type.hpp
@@ -203,7 +203,7 @@ struct vector_type<T, 1>
     }
 };

-int static err = 0;
+__device__ int static err = 0;
 template <typename T>
 struct vector_type<T, 2>
 {
diff --git a/include/ck/utility/synchronization.hpp b/include/ck/utility/synchronization.hpp
index 4fe5e3950..d6b6eac26 100644
--- a/include/ck/utility/synchronization.hpp
+++ b/include/ck/utility/synchronization.hpp
@@ -10,12 +10,20 @@ namespace ck {
 __device__ void block_sync_lds()
 {
 #if CK_EXPERIMENTAL_BLOCK_SYNC_LDS_WITHOUT_SYNC_VMEM
+#ifdef __gfx12__
+    asm volatile("\
+    s_wait_dscnt 0x0 \n \
+    s_barrier_signal -1 \n \
+    s_barrier_wait -1 \
+    " ::);
+#else
     // asm volatile("\
     // s_waitcnt lgkmcnt(0) \n \
     // s_barrier \
     // " ::);
     __builtin_amdgcn_s_waitcnt(0xc07f);
     __builtin_amdgcn_s_barrier();
+#endif
 #else
     __syncthreads();
 #endif
@@ -23,11 +31,20 @@ __device__ void block_sync_lds()

 __device__ void block_sync_lds_direct_load()
 {
+#ifdef __gfx12__
+    asm volatile("\
+    s_wait_vmcnt 0x0 \n \
+    s_wait_dscnt 0x0 \n \
+    s_barrier_signal -1 \n \
+    s_barrier_wait -1 \
+    " ::);
+#else
     asm volatile("\
     s_waitcnt vmcnt(0) \n \
     s_waitcnt lgkmcnt(0) \n \
     s_barrier \
     " ::);
+#endif
 }

 __device__ void s_nop()
diff --git a/include/ck_tile/core/config.hpp b/include/ck_tile/core/config.hpp
index 601aad19b..9dc2b072a 100644
--- a/include/ck_tile/core/config.hpp
+++ b/include/ck_tile/core/config.hpp
@@ -17,6 +17,9 @@
 #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__)
 #define __gfx11__
 #endif
+#if defined(__gfx1200__) || defined(__gfx1201__)
+#define __gfx12__
+#endif

 #ifndef CK_TILE_DONT_USE_HIP_RUNTIME_HEADERS
 #include "hip/hip_runtime.h"
@@ -155,7 +158,7 @@
 #define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x00020000
 #elif defined(__gfx103__) // for GPU code
 #define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x31014000
-#elif defined(__gfx11__) // for GPU code
+#elif defined(__gfx11__) || defined(__gfx12__) // for GPU code
 #define CK_TILE_BUFFER_RESOURCE_3RD_DWORD 0x31004000
 #endif

diff --git a/library/src/tensor_operation_instance/gpu/CMakeLists.txt b/library/src/tensor_operation_instance/gpu/CMakeLists.txt
index 8c5f36d2e..89c9d6dc6 100644
--- a/library/src/tensor_operation_instance/gpu/CMakeLists.txt
+++ b/library/src/tensor_operation_instance/gpu/CMakeLists.txt
@@ -52,7 +52,7 @@ function(add_instance_library INSTANCE_NAME)
     endforeach()
     # Do not build WMMA instances if gfx11 targets are not on the target list
     foreach(source IN LISTS ARGN)
-        if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "_wmma")
+	if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "_wmma")
             message("removing wmma instance ${source} ")
             list(REMOVE_ITEM ARGN "${source}")
         endif()
@@ -149,7 +149,7 @@ FOREACH(subdir_path ${dir_list})
             message("Found only xdl instances, but gfx9 is not on the targets list. Skipping.")
             set(add_inst 0)
         endif()
-        if(("${cmake_instance}" MATCHES "ONLY WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11"))
+	    if(("${cmake_instance}" MATCHES "ONLY WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11") AND (NOT GPU_TARGETS MATCHES "gfx12"))
             message("Found only wmma instances, but gfx11 is not on the targets list. Skipping.")
             set(add_inst 0)
         endif()
@@ -157,11 +157,11 @@ FOREACH(subdir_path ${dir_list})
             message("Found only xdl and dl instances, but gfx9 is not on the targets listand DL_KERNELS is not set. Skipping.")
             set(add_inst 0)
         endif()
-        if(("${cmake_instance}" MATCHES "ONLY XDL_AND_WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11") AND (NOT GPU_TARGETS MATCHES "gfx9"))
+	    if(("${cmake_instance}" MATCHES "ONLY XDL_AND_WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11") AND (NOT GPU_TARGETS MATCHES "gfx12") AND (NOT GPU_TARGETS MATCHES "gfx9"))
             message("Found only xdl and wmma instances, but gfx11 and gfx9 are not on the targets list. Skipping.")
             set(add_inst 0)
         endif()
-        if(("${cmake_instance}" MATCHES "XDL_DL_WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11") AND (NOT GPU_TARGETS MATCHES "gfx9") AND (NOT DEFINED DL_KERNELS))
+	    if(("${cmake_instance}" MATCHES "XDL_DL_WMMA_KERNELS") AND (NOT GPU_TARGETS MATCHES "gfx11") AND (NOT GPU_TARGETS MATCHES "gfx12") AND (NOT GPU_TARGETS MATCHES "gfx9") AND (NOT DEFINED DL_KERNELS))
             message("Found xdl, dl, and wmma instances, but none of those meet the target list. Skipping.")
             set(add_inst 0)
         endif()
diff --git a/profiler/src/CMakeLists.txt b/profiler/src/CMakeLists.txt
index 1cfcbfff6..a9557a9b9 100644
--- a/profiler/src/CMakeLists.txt
+++ b/profiler/src/CMakeLists.txt
@@ -58,7 +58,7 @@ if(GPU_TARGETS MATCHES "gfx9")

 endif()

-if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx9")
+if(GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12" OR GPU_TARGETS MATCHES "gfx9")
   if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
     list(APPEND PROFILER_SOURCES profile_gemm_bilinear.cpp)
   endif()
@@ -133,7 +133,7 @@ if(GPU_TARGETS MATCHES "gfx9")
   target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_grouped_conv2d_bwd_weight_instance)
 endif()

-if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11")
+if(GPU_TARGETS MATCHES "gfx9" OR GPU_TARGETS MATCHES "gfx11" OR GPU_TARGETS MATCHES "gfx12")
   if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
     target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bilinear_instance)
   endif()
diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt
index 25c63ac7f..2a7c52b58 100644
--- a/test/CMakeLists.txt
+++ b/test/CMakeLists.txt
@@ -53,7 +53,7 @@ function(add_test_executable TEST_NAME)
         endif()
     endforeach()
     foreach(source IN LISTS ARGN)
-        if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
+	if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "wmma")
             message("removing wmma test ${source} ")
             list(REMOVE_ITEM ARGN "${source}")
         endif()
@@ -118,7 +118,7 @@ function(add_gtest_executable TEST_NAME)
         endif()
     endforeach()
     foreach(source IN LISTS ARGN)
-        if(NOT GPU_TARGETS MATCHES "gfx11" AND source MATCHES "wmma")
+	if(NOT GPU_TARGETS MATCHES "gfx11" AND NOT GPU_TARGETS MATCHES "gfx12" AND source MATCHES "wmma")
             message("removing wmma test ${source} ")
             list(REMOVE_ITEM ARGN "${source}")
         endif()
diff --git a/test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp b/test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
index 1c8082645..21f49ec0f 100644
--- a/test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
+++ b/test/grouped_convnd_bwd_weight/test_grouped_convnd_bwd_weight.cpp
@@ -55,7 +55,7 @@ class TestGroupedConvndBwdWeight : public ::testing::Test
             }
         }

-        if(ck::is_gfx11_supported())
+        if(ck::is_gfx11_supported() || ck::is_gfx12_supported())
         {
             // on gfx11 only support for 3d is implemented
             if constexpr(NDimSpatial{} != 3)
diff --git a/test/wmma_op/wmma_op_util.hpp b/test/wmma_op/wmma_op_util.hpp
index 49782bce6..d9ec94771 100644
--- a/test/wmma_op/wmma_op_util.hpp
+++ b/test/wmma_op/wmma_op_util.hpp
@@ -140,10 +140,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
         p_shared[8 * 16 * lane_hi + 8 * lane_lo + ele + 16 * 16] = b_temp[ele];
     }

+#ifdef __gfx12__
+    asm volatile("\
+    s_wait_dscnt 0x0 \n \
+    s_barrier_signal -1 \n \
+    s_barrier_wait -1 \
+    " ::);
+#else
     asm volatile("\
     s_waitcnt lgkmcnt(0) \n \
     s_barrier \
     " ::);
+#endif

     for(int ele = 0; ele < 16; ++ele)
     {
@@ -155,10 +163,18 @@ __global__ void matmul(const src_t* a, const src_t* b, dst_t* c)
         a_frag[ele] = p_shared[(ele / 8) * 16 * 8 + 8 * lane + ele % 8];
     }

+#ifdef __gfx12__
+    asm volatile("\
+    s_wait_dscnt 0x0 \n \
+    s_barrier_signal -1 \n \
+    s_barrier_wait -1 \
+    " ::);
+#else
     asm volatile("\
     s_waitcnt lgkmcnt(0) \n \
     s_barrier \
     " ::);
+#endif

     // sync threads, similar to mma_sync
     // __syncthreads();