File: OrtValueTests.cs

package info (click to toggle)
onnxruntime 1.21.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 333,732 kB
  • sloc: cpp: 3,153,079; python: 179,219; ansic: 109,131; asm: 37,791; cs: 34,424; perl: 13,070; java: 11,047; javascript: 6,330; pascal: 4,126; sh: 3,277; xml: 598; objc: 281; makefile: 59
file content (345 lines) | stat: -rw-r--r-- 14,545 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Runtime.InteropServices;
using System.Text;
using Xunit;

namespace Microsoft.ML.OnnxRuntime.Tests
{
    [Collection("OrtValueTests")]
    public class OrtValueTests
    {
        public OrtValueTests()
        {
        }

        [Fact(DisplayName = "PopulateAndReadStringTensor")]
        public void PopulateAndReadStringTensor()
        {
            OrtEnv.Instance();

            string[] strsRom = { "HelloR", "OrtR", "WorldR" };
            string[] strs = { "Hello", "Ort", "World" };
            long[] shape = { 1, 1, 3 };
            var elementsNum = ShapeUtils.GetSizeForShape(shape);
            Assert.Equal(elementsNum, strs.Length);
            Assert.Equal(elementsNum, strsRom.Length);

            using (var strTensor = OrtValue.CreateTensorWithEmptyStrings(OrtAllocator.DefaultInstance, shape))
            {
                Assert.True(strTensor.IsTensor);
                Assert.False(strTensor.IsSparseTensor);
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, strTensor.OnnxType);
                var typeShape = strTensor.GetTensorTypeAndShape();
                {
                    Assert.True(typeShape.IsString);
                    Assert.Equal(shape.Length, typeShape.DimensionsCount);
                    var fetchedShape = typeShape.Shape;
                    Assert.Equal(shape.Length, fetchedShape.Length);
                    Assert.Equal(shape, fetchedShape);
                    Assert.Equal(elementsNum, typeShape.ElementCount);
                }

                using (var memInfo = strTensor.GetTensorMemoryInfo())
                {
                    Assert.Equal("Cpu", memInfo.Name);
                    Assert.Equal(OrtMemType.Default, memInfo.GetMemoryType());
                    Assert.Equal(OrtAllocatorType.DeviceAllocator, memInfo.GetAllocatorType());
                }

                // Verify that everything is empty now.
                for (int i = 0; i < elementsNum; ++i)
                {
                    var str = strTensor.GetStringElement(i);
                    Assert.Empty(str);

                    var rom = strTensor.GetStringElementAsMemory(i);
                    Assert.Equal(0, rom.Length);

                    var bytes = strTensor.GetStringElementAsSpan(i);
                    Assert.Equal(0, bytes.Length);
                }

                // Let's populate the tensor with strings.
                for (int i = 0; i < elementsNum; ++i)
                {
                    // First populate via ROM
                    strTensor.StringTensorSetElementAt(strsRom[i].AsMemory(), i);
                    Assert.Equal(strsRom[i], strTensor.GetStringElement(i));
                    Assert.Equal(strsRom[i], strTensor.GetStringElementAsMemory(i).ToString());
                    Assert.Equal(Encoding.UTF8.GetBytes(strsRom[i]), strTensor.GetStringElementAsSpan(i).ToArray());

                    // Fill via Span
                    strTensor.StringTensorSetElementAt(strs[i].AsSpan(), i);
                    Assert.Equal(strs[i], strTensor.GetStringElement(i));
                    Assert.Equal(strs[i], strTensor.GetStringElementAsMemory(i).ToString());
                    Assert.Equal(Encoding.UTF8.GetBytes(strs[i]), strTensor.GetStringElementAsSpan(i).ToArray());
                }
            }
        }

        [Fact(DisplayName = "PopulateAndReadStringTensorViaTensor")]
        public void PopulateAndReadStringTensorViaTensor()
        {
            OrtEnv.Instance();

            string[] strs = { "Hello", "Ort", "World" };
            int[] shape = { 1, 1, 3 };

            var tensor = new DenseTensor<string>(strs, shape);

            using (var strTensor = OrtValue.CreateFromStringTensor(tensor))
            {
                Assert.True(strTensor.IsTensor);
                Assert.False(strTensor.IsSparseTensor);
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, strTensor.OnnxType);
                var typeShape = strTensor.GetTensorTypeAndShape();
                {
                    Assert.True(typeShape.IsString);
                    Assert.Equal(shape.Length, typeShape.DimensionsCount);
                    var fetchedShape = typeShape.Shape;
                    Assert.Equal(shape.Length, fetchedShape.Length);
                    Assert.Equal(strs.Length, typeShape.ElementCount);
                }

                using (var memInfo = strTensor.GetTensorMemoryInfo())
                {
                    Assert.Equal("Cpu", memInfo.Name);
                    Assert.Equal(OrtMemType.Default, memInfo.GetMemoryType());
                    Assert.Equal(OrtAllocatorType.DeviceAllocator, memInfo.GetAllocatorType());
                }

                for (int i = 0; i < strs.Length; ++i)
                {
                    // Fill via Span
                    Assert.Equal(strs[i], strTensor.GetStringElement(i));
                    Assert.Equal(strs[i], strTensor.GetStringElementAsMemory(i).ToString());
                    Assert.Equal(Encoding.UTF8.GetBytes(strs[i]), strTensor.GetStringElementAsSpan(i).ToArray());
                }
            }
        }
        static void VerifyTensorCreateWithData<T>(OrtValue tensor, TensorElementType dataType, long[] shape,
            ReadOnlySpan<T> originalData) where T : unmanaged
        {
            // Verify invocation
            var dataTypeInfo = TensorBase.GetTypeInfo(typeof(T));
            Assert.NotNull(dataTypeInfo);
            Assert.Equal(dataType, dataTypeInfo.ElementType);

            var elementsNum = ShapeUtils.GetSizeForShape(shape);

            Assert.True(tensor.IsTensor);
            Assert.False(tensor.IsSparseTensor);
            Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, tensor.OnnxType);

            var typeInfo = tensor.GetTypeInfo();
            {
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, typeInfo.OnnxType);
                var typeShape = typeInfo.TensorTypeAndShapeInfo;
                Assert.Equal(shape.Length, typeShape.DimensionsCount);

                var fetchedShape = typeShape.Shape;
                Assert.Equal(shape.Length, fetchedShape.Length);
                Assert.Equal(shape, fetchedShape);
                Assert.Equal(elementsNum, typeShape.ElementCount);
            }

            using (var memInfo = tensor.GetTensorMemoryInfo())
            {
                Assert.Equal("Cpu", memInfo.Name);
                Assert.Equal(OrtMemType.CpuOutput, memInfo.GetMemoryType());
                Assert.Equal(OrtAllocatorType.DeviceAllocator, memInfo.GetAllocatorType());
            }

            // Verify contained data
            Assert.Equal(originalData.ToArray(), tensor.GetTensorDataAsSpan<T>().ToArray());
        }

        [Fact(DisplayName = "CreateTensorOverManagedBuffer")]
        public void CreateTensorOverManagedBuffer()
        {
            int[] data = { 1, 2, 3 };
            var mem = new Memory<int>(data);
            long[] shape = { 1, 1, 3 };
            var elementsNum = ShapeUtils.GetSizeForShape(shape);
            Assert.Equal(elementsNum, data.Length);


            var typeInfo = TensorBase.GetElementTypeInfo(TensorElementType.Int32);
            Assert.NotNull(typeInfo);

            // The tensor will be created on top of the managed memory. No copy is made.
            // The memory should stay pinned until the OrtValue instance is disposed. This means
            // stayed pinned until the end of Run() method when you are actually running inference.
            using (var tensor = OrtValue.CreateTensorValueFromMemory(data, shape))
            {
                VerifyTensorCreateWithData<int>(tensor, TensorElementType.Int32, shape, data);
            }
        }

        // One can do create an OrtValue over a device memory and used as input.
        // Just make sure that OrtMemoryInfo is created for GPU.
        [Fact(DisplayName = "CreateTensorOverUnManagedBuffer")]
        public void CreateTensorOverUnmangedBuffer()
        {
            const int Elements = 3;
            // One can use stackalloc as well
            var bufferLen = Elements * sizeof(int);
            var dataPtr = Marshal.AllocHGlobal(bufferLen);
            try
            {
                // Use span to populate chunk of native memory
                Span<int> data;
                unsafe
                {
                    data = new Span<int>(dataPtr.ToPointer(), Elements);
                }
                data[0] = 1;
                data[1] = 2;
                data[2] = 3;

                long[] shape = { 1, 1, 3 };
                var elementsNum = ShapeUtils.GetSizeForShape(shape);
                Assert.Equal(Elements, elementsNum);

                using (var tensor = OrtValue.CreateTensorValueWithData(OrtMemoryInfo.DefaultInstance, TensorElementType.Int32,
                        shape, dataPtr, bufferLen))
                {
                    VerifyTensorCreateWithData<int>(tensor, TensorElementType.Int32, shape, data);
                }
            }
            finally
            {
                Marshal.FreeHGlobal(dataPtr);
            }
        }

        private static void PopulateAndCheck<T>(T[] data) where T : unmanaged
        {
            var typeInfo = TensorBase.GetTypeInfo(typeof(T));
            Assert.NotNull(typeInfo);

            long[] shape = { data.LongLength };

            using (var ortValue = OrtValue.CreateAllocatedTensorValue(OrtAllocator.DefaultInstance,
                typeInfo.ElementType, shape))
            {
                var dst = ortValue.GetTensorMutableDataAsSpan<T>();
                Assert.Equal(data.Length, dst.Length);

                var src = new Span<T>(data);
                src.CopyTo(dst);
                Assert.Equal(data, ortValue.GetTensorDataAsSpan<T>().ToArray());
            }
        }

        // Create Tensor with allocated memory so we can test copying of the data
        [Fact(DisplayName = "CreateAllocatedTensor")]
        public void CreateAllocatedTensor()
        {
            float[] float_data = { 1, 2, 3, 4, 5, 6, 7, 8 };
            int[] int_data = { 1, 2, 3, 4, 5, 6, 7, 8 };
            ushort[] ushort_data = { 1, 2, 3, 4, 5, 6, 7, 8 };
            double[] dbl_data = { 1, 2, 3, 4, 5, 6, 7, 8 };
            var fp16_data = Array.ConvertAll(ushort_data, sh => new Float16(sh));

            PopulateAndCheck(float_data);
            PopulateAndCheck(int_data);
            PopulateAndCheck(ushort_data);
            PopulateAndCheck(dbl_data);
            PopulateAndCheck(fp16_data);
        }

        private static readonly long[] ml_data_1 = { 1, 2 };
        private static readonly long[] ml_data_2 = { 3, 4 };

        // Use this utility method to create two tensors for Map and Sequence tests
        private static void CreateTwoTensors(out OrtValue val1, out OrtValue val2)
        {
            const int ml_data_dim = 2;
            // For map tensors they must be single dimensional
            long[] shape = { ml_data_dim };

            val1 = OrtValue.CreateTensorValueFromMemory(ml_data_1, shape);
            val2 = OrtValue.CreateTensorValueFromMemory(ml_data_2, shape);
        }

        [Fact(DisplayName = "CreateMapFromValues")]
        public void CreateMapFromValues()
        {
            CreateTwoTensors(out OrtValue keys, out OrtValue values);
            using var map = OrtValue.CreateMap(ref keys, ref values);
            Assert.Equal(OnnxValueType.ONNX_TYPE_MAP, map.OnnxType);
            var typeInfo = map.GetTypeInfo();
            var mapInfo = typeInfo.MapTypeInfo;
            Assert.Equal(TensorElementType.Int64, mapInfo.KeyType);
            Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, mapInfo.ValueType.OnnxType);

            // Must return always 2 for map since we have two ort values
            Assert.Equal(2, map.GetValueCount());

            map.ProcessMap((keys, values) => {
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, keys.OnnxType);
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, values.OnnxType);
                Assert.Equal(ml_data_1, keys.GetTensorDataAsSpan<long>().ToArray());
                Assert.Equal(ml_data_2, values.GetTensorDataAsSpan<long>().ToArray());

            }, OrtAllocator.DefaultInstance);
        }

        [Fact(DisplayName = "CreateMapFromArraysUnmanaged")]
        public void CreateMapFromArraysUnmanaged()
        {
            long[] keys = { 1, 2, 3 };
            float[] vals = { 1, 2, 3 };
            using var map = OrtValue.CreateMap(keys, vals);
        }

        [Fact(DisplayName = "CreateMapWithStringKeys")]
        public void CreateMapWithStringKeys()
        {
            string[] keys = { "one", "two", "three" };
            float[] vals = { 1, 2, 3 };
            using var map = OrtValue.CreateMapWithStringKeys(keys, vals);
        }

        [Fact(DisplayName = "CreateMapWithStringValues")]
        public void CreateMapWithStringValues()
        {
            long[] keys = { 1, 2, 3 };
            string[] values = { "one", "two", "three" };
            using var map = OrtValue.CreateMapWithStringValues(keys, values);
        }

        [Fact(DisplayName = "CreateSequence")]
        public void CreateSequence()
        {
            CreateTwoTensors(out OrtValue val1, out OrtValue val2);
            using var seqVals = new DisposableListTest<OrtValue> { val1, val2 };
            using var seq = OrtValue.CreateSequence(seqVals);

            Assert.Equal(OnnxValueType.ONNX_TYPE_SEQUENCE, seq.OnnxType);
            var typeInfo = seq.GetTypeInfo();
            var seqInfo = typeInfo.SequenceTypeInfo;
            Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, seqInfo.ElementType.OnnxType);

            // Will return 2 because we put 2 values in the sequence
            Assert.Equal(2, seq.GetValueCount());

            // Visit each element in the sequence
            seq.ProcessSequence((ortValue, index) =>
            {
                // We know both elements are tensors of long
                Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, ortValue.OnnxType);
                if (index == 0)
                {
                    Assert.Equal(ml_data_1, ortValue.GetTensorDataAsSpan<long>().ToArray());
                }
                else
                {
                    Assert.Equal(ml_data_2, ortValue.GetTensorDataAsSpan<long>().ToArray());
                }
            }, OrtAllocator.DefaultInstance);
        }
    }
}