1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Buffers;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using Xunit;
namespace Microsoft.ML.OnnxRuntime.Tests
{
// Copy of the class that is internal in the main package
public class DisposableListTest<T> : List<T>, IDisposableReadOnlyCollection<T>
where T : IDisposable
{
public DisposableListTest()
{ }
public DisposableListTest(IEnumerable<T> enumerable) : base(enumerable)
{ }
public DisposableListTest(int count)
: base(count)
{ }
#region IDisposable Support
private bool disposedValue = false; // To detect redundant calls
protected virtual void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
// Dispose in the reverse order.
// Objects should typically be destroyed/disposed
// in the reverse order of its creation
// especially if the objects created later refer to the
// objects created earlier. For homogeneous collections of objects
// it would not matter.
for (int i = this.Count - 1; i >= 0; --i)
{
this[i]?.Dispose();
}
this.Clear();
}
disposedValue = true;
}
}
// This code added to correctly implement the disposable pattern.
public void Dispose()
{
// Do not change this code. Put cleanup code in Dispose(bool disposing) above.
Dispose(true);
GC.SuppressFinalize(this);
}
#endregion
}
internal struct DisposableTestPair<TValue> : IDisposable
where TValue : IDisposable
{
public string Key;
public TValue Value;
public DisposableTestPair(string key, TValue value)
{
Key = key;
Value = value;
}
public void Dispose()
{
Value?.Dispose();
}
}
internal static class TestDataLoader
{
internal static byte[] LoadModelFromEmbeddedResource(string path)
{
var assembly = typeof(TestDataLoader).Assembly;
byte[] model = null;
var resourceName = assembly.GetManifestResourceNames().Single(p => p.EndsWith("." + path));
using (Stream stream = assembly.GetManifestResourceStream(resourceName))
{
using (MemoryStream memoryStream = new MemoryStream())
{
stream.CopyTo(memoryStream);
model = memoryStream.ToArray();
}
}
return model;
}
internal static float[] LoadTensorFromEmbeddedResource(string path)
{
var tensorData = new List<float>();
var assembly = typeof(TestDataLoader).Assembly;
var resourceName = assembly.GetManifestResourceNames().Single(p => p.EndsWith("." + path));
using (StreamReader inputFile = new StreamReader(assembly.GetManifestResourceStream(resourceName)))
{
inputFile.ReadLine(); // skip the input name
string[] dataStr = inputFile.ReadLine().Split(new char[] { ',', '[', ']' }, StringSplitOptions.RemoveEmptyEntries);
for (int i = 0; i < dataStr.Length; i++)
{
tensorData.Add(Single.Parse(dataStr[i]));
}
}
return tensorData.ToArray();
}
static NamedOnnxValue LoadTensorPb(Onnx.TensorProto tensor, string nodeName, NodeMetadata nodeMeta)
{
if (nodeMeta.OnnxValueType != OnnxValueType.ONNX_TYPE_TENSOR)
{
throw new InvalidDataException($"Metadata for: '{nodeName}' has a type: '{nodeMeta.OnnxValueType}'" +
$" but loading as tensor: '{tensor.Name}'");
}
var protoDt = (Tensors.TensorElementType)tensor.DataType;
var metaElementType = nodeMeta.ElementDataType;
if (!((protoDt == metaElementType) ||
(protoDt == TensorElementType.UInt16 &&
(metaElementType == TensorElementType.BFloat16 || metaElementType == TensorElementType.Float16))))
throw new InvalidDataException($"For node: '{nodeName}' metadata expects: '{metaElementType}' but loaded loaded tensor type: '{protoDt}'");
// Tensors within Sequences may have no dimensions as the standard allows
// different dimensions for each tensor element of the sequence
if (nodeMeta.Dimensions.Length > 0 && nodeMeta.Dimensions.Length != tensor.Dims.Count)
{
throw new InvalidDataException($"node: '{nodeName}' nodeMeta.Dim.Length: {nodeMeta.Dimensions.Length} " +
$"is expected to be equal to tensor.Dims.Count {tensor.Dims.Count}");
}
var intDims = new int[tensor.Dims.Count];
for (int i = 0; i < tensor.Dims.Count; i++)
{
intDims[i] = (int)tensor.Dims[i];
}
for (int i = 0; i < nodeMeta.Dimensions.Length; i++)
{
if ((nodeMeta.Dimensions[i] != -1) && (nodeMeta.Dimensions[i] != tensor.Dims[i]))
throw new InvalidDataException($"Node: '{nodeName}' dimension at idx {i} is {nodeMeta.Dimensions}[{i}] " +
$"is expected to either be -1 or {tensor.Dims[i]}");
}
// element type for Float16 and BFloat16 in the loaded tensor would always be uint16, so
// we want to use element type from metadata
if (protoDt == TensorElementType.String)
return CreateNamedOnnxValueFromStringTensor(tensor.StringData, nodeName, intDims);
return CreateNamedOnnxValueFromTensorRawData(nodeName, tensor.RawData.Span, metaElementType, intDims);
}
internal static NamedOnnxValue CreateNamedOnnxValueFromTensorRawData(string nodeName, ReadOnlySpan<byte> rawData,
TensorElementType elementType, int[] intDims)
{
switch (elementType)
{
case TensorElementType.Float:
return CreateNamedOnnxValueFromRawData<float>(nodeName, rawData, intDims);
case TensorElementType.Double:
return CreateNamedOnnxValueFromRawData<double>(nodeName, rawData, intDims);
case TensorElementType.Int32:
return CreateNamedOnnxValueFromRawData<int>(nodeName, rawData, intDims);
case TensorElementType.UInt32:
return CreateNamedOnnxValueFromRawData<uint>(nodeName, rawData, intDims);
case TensorElementType.Int16:
return CreateNamedOnnxValueFromRawData<short>(nodeName, rawData, intDims);
case TensorElementType.UInt16:
return CreateNamedOnnxValueFromRawData<ushort>(nodeName, rawData, intDims);
case TensorElementType.Int64:
return CreateNamedOnnxValueFromRawData<long>(nodeName, rawData, intDims);
case TensorElementType.UInt64:
return CreateNamedOnnxValueFromRawData<ulong>(nodeName, rawData, intDims);
case TensorElementType.UInt8:
return CreateNamedOnnxValueFromRawData<byte>(nodeName, rawData, intDims);
case TensorElementType.Int8:
return CreateNamedOnnxValueFromRawData<sbyte>(nodeName, rawData, intDims);
case TensorElementType.Bool:
return CreateNamedOnnxValueFromRawData<bool>(nodeName, rawData, intDims);
case TensorElementType.Float16:
return CreateNamedOnnxValueFromRawData<Float16>(nodeName, rawData, intDims);
case TensorElementType.BFloat16:
return CreateNamedOnnxValueFromRawData<BFloat16>(nodeName, rawData, intDims);
case TensorElementType.String:
throw new ArgumentException("For string tensors of type use: CreateNamedOnnxValueFromStringTensor.");
default:
throw new NotImplementedException($"Tensors of type: {elementType} not currently supported by this function");
}
}
internal static NamedOnnxValue LoadTensorFromEmbeddedResourcePb(string path, string nodeName, NodeMetadata nodeMeta)
{
Onnx.TensorProto tensor = null;
var assembly = typeof(TestDataLoader).Assembly;
using (Stream stream = assembly.GetManifestResourceStream($"{assembly.GetName().Name}.TestData.{path}"))
{
tensor = Onnx.TensorProto.Parser.ParseFrom(stream);
}
return LoadTensorPb(tensor, nodeName, nodeMeta);
}
internal static NamedOnnxValue LoadOnnxValueFromFilePb(string fullFilename, string nodeName, NodeMetadata nodeMeta)
{
// No sparse tensor support yet
// Set buffer size to 4MB
const int readBufferSize = 4194304;
using (var file = new FileStream(fullFilename, FileMode.Open, FileAccess.Read, FileShare.Read, readBufferSize))
{
switch (nodeMeta.OnnxValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
{
var tensor = Onnx.TensorProto.Parser.ParseFrom(file);
return LoadTensorPb(tensor, nodeName, nodeMeta);
}
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
var sequence = Onnx.SequenceProto.Parser.ParseFrom(file);
return CreateNamedOnnxValueFromSequence(sequence, nodeName, nodeMeta);
}
case OnnxValueType.ONNX_TYPE_MAP:
{
throw new NotImplementedException(
"Map test data format requires clarification: https://github.com/onnx/onnx/issues/5072");
}
case OnnxValueType.ONNX_TYPE_OPTIONAL:
{
var opt = Onnx.OptionalProto.Parser.ParseFrom(file);
return CreateNamedOnnxValueFromOptional(opt, nodeName, nodeMeta);
}
default:
throw new NotImplementedException($"Unable to load value type: {nodeMeta.OnnxValueType} not implemented");
}
}
}
internal static DisposableTestPair<OrtValue> LoadOrtValueFromFilePb(string fullFilename, string nodeName, NodeMetadata nodeMeta)
{
// No sparse tensor support yet
// Set buffer size to 4MB
const int readBufferSize = 4194304;
using (var file = new FileStream(fullFilename, FileMode.Open, FileAccess.Read, FileShare.Read, readBufferSize))
{
switch (nodeMeta.OnnxValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
{
var tensor = Onnx.TensorProto.Parser.ParseFrom(file);
return new DisposableTestPair<OrtValue>(nodeName, LoadOrValueTensorPb(tensor, nodeName, nodeMeta));
}
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
var sequence = Onnx.SequenceProto.Parser.ParseFrom(file);
return new DisposableTestPair<OrtValue>(nodeName, CreateOrtValueFromSequence(sequence, nodeName, nodeMeta));
}
case OnnxValueType.ONNX_TYPE_MAP:
{
throw new NotImplementedException(
"Map test data format requires clarification: https://github.com/onnx/onnx/issues/5072");
}
case OnnxValueType.ONNX_TYPE_OPTIONAL:
{
var opt = Onnx.OptionalProto.Parser.ParseFrom(file);
return new DisposableTestPair<OrtValue>(nodeName, CreateOrtValueFromOptional(opt, nodeName, nodeMeta));
}
default:
throw new NotImplementedException($"Unable to load value type: {nodeMeta.OnnxValueType} not implemented");
}
}
}
private static void SequenceCheckMatchOnnxType(string nodeName, SequenceMetadata meta,
OnnxValueType onnxType)
{
if (meta.ElementMeta.OnnxValueType == onnxType)
return;
throw new InvalidDataException($"Sequence node: '{nodeName}' " +
$"has element type: '{onnxType}'" +
$" expected: '{meta.ElementMeta.OnnxValueType}'");
}
private static string MakeSequenceElementName(string nodeName, string seqName, int seqNum)
{
if (seqName.Length > 0)
return $"seq.{nodeName}.data.{seqName}.{seqNum}";
else
return $"seq.{nodeName}.data._.{seqNum}";
}
internal static NamedOnnxValue CreateNamedOnnxValueFromSequence(Onnx.SequenceProto sequence, string nodeName, NodeMetadata nodeMeta)
{
var sequenceMeta = nodeMeta.AsSequenceMetadata();
var elemMeta = sequenceMeta.ElementMeta;
int seqNum = 0;
var seqElemType = (Onnx.SequenceProto.Types.DataType)sequence.ElemType;
switch (seqElemType)
{
case Onnx.SequenceProto.Types.DataType.Tensor:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_TENSOR);
var sequenceOfTensors = new List<NamedOnnxValue>(sequence.TensorValues.Count);
foreach (var tensor in sequence.TensorValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
var namedOnnxValue = LoadTensorPb(tensor, elemName, elemMeta);
sequenceOfTensors.Add(namedOnnxValue);
}
return NamedOnnxValue.CreateFromSequence(nodeName, sequenceOfTensors);
}
case Onnx.SequenceProto.Types.DataType.Sequence:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_SEQUENCE);
var seqOfSequences = new List<NamedOnnxValue>(sequence.SequenceValues.Count);
foreach (var s in sequence.SequenceValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
seqOfSequences.Add(CreateNamedOnnxValueFromSequence(s, elemName, elemMeta));
}
return NamedOnnxValue.CreateFromSequence(nodeName, seqOfSequences);
}
case Onnx.SequenceProto.Types.DataType.Map:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_MAP);
var seqOfMaps = new List<NamedOnnxValue>(sequence.MapValues.Count);
foreach (var m in sequence.MapValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
seqOfMaps.Add(CreateNamedOnnxValueFromMap(m, elemName, elemMeta));
}
return NamedOnnxValue.CreateFromSequence(nodeName, seqOfMaps);
}
case Onnx.SequenceProto.Types.DataType.Optional:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_OPTIONAL);
var seqOfOpts = new List<NamedOnnxValue>(sequence.OptionalValues.Count);
foreach (var opt in sequence.OptionalValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
seqOfOpts.Add(CreateNamedOnnxValueFromOptional(opt, elemName, elemMeta));
}
return NamedOnnxValue.CreateFromSequence(nodeName, seqOfOpts);
}
default:
throw new NotImplementedException($"Sequence test data loading does not support element type: " +
$"'{seqElemType}'");
}
}
internal static NamedOnnxValue CreateNamedOnnxValueFromMap(Onnx.MapProto map, string nodeName, NodeMetadata nodeMetadata)
{
// See GH issue https://github.com/onnx/onnx/issues/5072
throw new NotImplementedException($"Loading map node: '{nodeName}' not implemented yet");
}
internal static NamedOnnxValue CreateNamedOnnxValueFromOptional(Onnx.OptionalProto optional, string nodeName, NodeMetadata nodeMetadata)
{
var meta = nodeMetadata.AsOptionalMetadata().ElementMeta;
switch ((Onnx.OptionalProto.Types.DataType)optional.ElemType)
{
case Onnx.OptionalProto.Types.DataType.Tensor:
{
var tensor = optional.TensorValue;
return LoadTensorPb(tensor, nodeName, meta);
}
case Onnx.OptionalProto.Types.DataType.Sequence:
{
var sequence = optional.SequenceValue;
return CreateNamedOnnxValueFromSequence(sequence, nodeName, meta);
}
case Onnx.OptionalProto.Types.DataType.Map:
{
var map = optional.MapValue;
return CreateNamedOnnxValueFromMap(map, nodeName, meta);
}
case Onnx.OptionalProto.Types.DataType.Optional:
throw new NotImplementedException($"Unable to load '{nodeName}' optional contained within optional");
default:
// Test data contains OptionalProto with the contained element type undefined.
// the premise is, if the element is not fed as an input, we should not care
// what Onnx type it is. However, we do not need to support AFAIK such inputs
// since the value for them could never be supplied.
throw new NotImplementedException($"Unable to load '{nodeName}' optional element type of: {(Onnx.OptionalProto.Types.DataType)optional.ElemType} type");
}
}
internal static NamedOnnxValue CreateNamedOnnxValueFromRawData<T>(string name, ReadOnlySpan<byte> rawData,
int[] dimensions)
where T : struct
{
var typedSrcSpan = MemoryMarshal.Cast<byte, T>(rawData);
var dt = new DenseTensor<T>(typedSrcSpan.ToArray(), dimensions);
return NamedOnnxValue.CreateFromTensor<T>(name, dt);
}
static OrtValue LoadOrValueTensorPb(Onnx.TensorProto tensor, string nodeName, NodeMetadata nodeMeta)
{
if (nodeMeta.OnnxValueType != OnnxValueType.ONNX_TYPE_TENSOR)
{
throw new InvalidDataException($"Metadata for: '{nodeName}' has a type: '{nodeMeta.OnnxValueType}'" +
$" but loading as tensor: {tensor.Name}");
}
var protoDt = (Tensors.TensorElementType)tensor.DataType;
var metaElementType = nodeMeta.ElementDataType;
if (!((protoDt == metaElementType) ||
(protoDt == TensorElementType.UInt16 &&
(metaElementType == TensorElementType.BFloat16 || metaElementType == TensorElementType.Float16))))
throw new InvalidDataException($"For node: '{nodeName}' metadata expects: '{metaElementType}' but loaded loaded tensor type: '{protoDt}'");
// Tensors within Sequences may have no dimensions as the standard allows
// different dimensions for each tensor element of the sequence
if (nodeMeta.Dimensions.Length > 0 && nodeMeta.Dimensions.Length != tensor.Dims.Count)
{
throw new InvalidDataException($"node: '{nodeName}' nodeMeta.Dim.Length: {nodeMeta.Dimensions.Length} " +
$"is expected to be equal to tensor.Dims.Count {tensor.Dims.Count}");
}
var shape = tensor.Dims.ToArray();
for (int i = 0; i < nodeMeta.Dimensions.Length; i++)
{
if ((nodeMeta.Dimensions[i] != -1) && (nodeMeta.Dimensions[i] != shape[i]))
throw new InvalidDataException($"Node: '{nodeName}' dimension at idx {i} is {nodeMeta.Dimensions}[{i}] " +
$"is expected to either be -1 or {shape[i]}");
}
// element type for Float16 and BFloat16 in the loaded tensor would always be uint16, so
// we want to use element type from metadata
if (protoDt == TensorElementType.String)
return CreateOrtValueFromStringTensor(tensor.StringData, shape);
return CreateOrtValueFromRawData(OrtAllocator.DefaultInstance, tensor.RawData.Span, metaElementType, shape);
}
internal static OrtValue CreateOrtValueFromSequence(Onnx.SequenceProto sequence, string nodeName, NodeMetadata nodeMeta)
{
var sequenceMeta = nodeMeta.AsSequenceMetadata();
var elemMeta = sequenceMeta.ElementMeta;
int seqNum = 0;
var seqElemType = (Onnx.SequenceProto.Types.DataType)sequence.ElemType;
switch (seqElemType)
{
case Onnx.SequenceProto.Types.DataType.Tensor:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_TENSOR);
using DisposableListTest<OrtValue> sequenceOfTensors = new(sequence.TensorValues.Count);
foreach (var tensor in sequence.TensorValues)
{
var element = LoadOrValueTensorPb(tensor, sequence.Name, elemMeta);
sequenceOfTensors.Add(element);
}
// Will take possession of ortValues in the sequence and will clear this container
return OrtValue.CreateSequence(sequenceOfTensors);
}
case Onnx.SequenceProto.Types.DataType.Sequence: // Sequence of sequences
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_SEQUENCE);
using DisposableListTest<OrtValue> seqOfSequences = new(sequence.TensorValues.Count);
foreach (var s in sequence.SequenceValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
var ortValue = CreateOrtValueFromSequence(s, elemName, elemMeta);
seqOfSequences.Add(ortValue);
}
return OrtValue.CreateSequence(seqOfSequences);
}
case Onnx.SequenceProto.Types.DataType.Map:
{
throw new NotImplementedException(
"Test data format for maps is under investigation");
}
case Onnx.SequenceProto.Types.DataType.Optional:
{
SequenceCheckMatchOnnxType(nodeName, sequenceMeta, OnnxValueType.ONNX_TYPE_OPTIONAL);
using DisposableListTest<OrtValue> seqOfSequences = new(sequence.TensorValues.Count);
foreach (var opt in sequence.OptionalValues)
{
var elemName = MakeSequenceElementName(nodeName, sequence.Name, seqNum++);
var ortValue = CreateOrtValueFromOptional(opt, elemName, elemMeta);
seqOfSequences.Add(ortValue);
}
return OrtValue.CreateSequence(seqOfSequences);
}
default:
throw new NotImplementedException($"Sequence test data loading does not support element type: " +
$"'{seqElemType}'");
}
}
internal static OrtValue CreateOrtValueFromOptional(Onnx.OptionalProto optional, string nodeName, NodeMetadata nodeMetadata)
{
var meta = nodeMetadata.AsOptionalMetadata().ElementMeta;
switch ((Onnx.OptionalProto.Types.DataType)optional.ElemType)
{
case Onnx.OptionalProto.Types.DataType.Tensor:
{
var tensor = optional.TensorValue;
return LoadOrValueTensorPb(tensor, nodeName, meta);
}
case Onnx.OptionalProto.Types.DataType.Sequence:
{
var sequence = optional.SequenceValue;
return CreateOrtValueFromSequence(sequence, nodeName, meta);
}
case Onnx.OptionalProto.Types.DataType.Map:
{
throw new NotImplementedException(
"Test data format for maps is under investigation");
}
case Onnx.OptionalProto.Types.DataType.Optional:
throw new NotImplementedException($"Unable to load '{nodeName}' optional contained within optional");
default:
// Test data contains OptionalProto with the contained element type undefined.
// the premise is, if the element is not fed as an input, we should not care
// what Onnx type it is. However, we do not need to support AFAIK such inputs
// since the value for them could never be supplied.
throw new NotImplementedException($"Unable to load '{nodeName}' optional element type of: {(Onnx.OptionalProto.Types.DataType)optional.ElemType} type");
}
}
internal static OrtValue CreateOrtValueFromRawData(OrtAllocator allocator, ReadOnlySpan<byte> rawData, TensorElementType elementType, long[] shape)
{
Debug.Assert(elementType != TensorElementType.String, "Does not support strings");
var typeInfo = TensorBase.GetElementTypeInfo(elementType);
Assert.NotNull(typeInfo);
// ArrayUtilities not accessible in all builds
var shapeSize = ShapeUtils.GetSizeForShape(shape);
var inferredSize = rawData.Length / typeInfo.TypeSize;
Assert.Equal(shapeSize, inferredSize);
Assert.Equal(0, rawData.Length % typeInfo.TypeSize);
var ortValue = OrtValue.CreateAllocatedTensorValue(allocator, elementType, shape);
try
{
// The endianess data in protobuf is little endian.
// We simply copy raw memory into the tensor raw data.
var span = ortValue.GetTensorMutableRawData();
Assert.Equal(rawData.Length, span.Length);
rawData.CopyTo(span);
return ortValue;
}
catch (Exception)
{
ortValue.Dispose();
throw;
}
}
internal static NamedOnnxValue CreateNamedOnnxValueFromStringTensor(IList<Google.Protobuf.ByteString> strings,
string nodeName, int[] dimensions)
{
string[] strArray = new string[strings.Count];
for (int i = 0; i < strings.Count; ++i)
{
#if NET6_0_OR_GREATER
strArray[i] = Encoding.UTF8.GetString(strings[i].Span);
#else
strArray[i] = Encoding.UTF8.GetString(strings[i].ToByteArray());
#endif
}
var dt = new DenseTensor<string>(strArray, dimensions);
return NamedOnnxValue.CreateFromTensor<string>(nodeName, dt);
}
internal static OrtValue CreateOrtValueFromStringTensor(IList<Google.Protobuf.ByteString> strings,
long[] shape)
{
var ortValue = OrtValue.CreateTensorWithEmptyStrings(OrtAllocator.DefaultInstance, shape);
try
{
for (int i = 0; i < strings.Count; ++i)
{
ortValue.StringTensorSetElementAt(strings[i].Span, i);
}
return ortValue;
}
catch (Exception)
{
ortValue.Dispose();
throw;
}
}
internal static float[] LoadTensorFromFile(string filename, bool skipheader = true)
{
var tensorData = new List<float>();
// read data from file
using (var inputFile = new System.IO.StreamReader(filename))
{
if (skipheader)
inputFile.ReadLine(); // skip the input name
string[] dataStr = inputFile.ReadLine().Split(new char[] { ',', '[', ']', ' ' }, StringSplitOptions.RemoveEmptyEntries);
for (int i = 0; i < dataStr.Length; i++)
{
tensorData.Add(Single.Parse(dataStr[i]));
}
}
return tensorData.ToArray();
}
}
}
|