1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
|
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text.RegularExpressions;
using Xunit;
#if NET8_0_OR_GREATER
using SystemNumericsTensors = System.Numerics.Tensors;
#endif
namespace Microsoft.ML.OnnxRuntime.Tests
{
/// <summary>
/// This is compensate for the absence of string.Contains() in .NET Standard 2.0
/// Contains(String, StringComparison)
/// </summary>
public static class StringExtensions
{
public static bool Contains(this String str, String substring,
StringComparison comp)
{
if (substring == null)
throw new ArgumentNullException("substring",
"substring cannot be null.");
else if (!Enum.IsDefined(typeof(StringComparison), comp))
throw new ArgumentException("comp is not a member of StringComparison",
"comp");
return str.IndexOf(substring, comp) >= 0;
}
}
public partial class InferenceTest
{
private const string module = "onnxruntime.dll";
private const string propertiesFile = "Properties.txt";
[Fact(DisplayName = "CanCreateAndDisposeSessionWithModelPath")]
public void CanCreateAndDisposeSessionWithModelPath()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
using (var session = new InferenceSession(modelPath))
{
Assert.NotNull(session);
Assert.NotNull(session.InputMetadata);
Assert.Single(session.InputMetadata); // 1 input nodeMeta
Assert.True(session.InputMetadata.ContainsKey("data_0")); // input nodeMeta name
Assert.Equal(typeof(float), session.InputMetadata["data_0"].ElementType);
Assert.True(session.InputMetadata["data_0"].IsTensor);
var expectedInputDimensions = new int[] { 1, 3, 224, 224 };
Assert.Equal(expectedInputDimensions.Length, session.InputMetadata["data_0"].Dimensions.Length);
for (int i = 0; i < expectedInputDimensions.Length; i++)
{
Assert.Equal(expectedInputDimensions[i], session.InputMetadata["data_0"].Dimensions[i]);
}
Assert.NotNull(session.OutputMetadata);
Assert.Single(session.OutputMetadata); // 1 output nodeMeta
Assert.True(session.OutputMetadata.ContainsKey("softmaxout_1")); // output nodeMeta name
Assert.Equal(typeof(float), session.OutputMetadata["softmaxout_1"].ElementType);
Assert.True(session.OutputMetadata["softmaxout_1"].IsTensor);
var expectedOutputDimensions = new int[] { 1, 1000, 1, 1 };
Assert.Equal(expectedOutputDimensions.Length, session.OutputMetadata["softmaxout_1"].Dimensions.Length);
for (int i = 0; i < expectedOutputDimensions.Length; i++)
{
Assert.Equal(expectedOutputDimensions[i], session.OutputMetadata["softmaxout_1"].Dimensions[i]);
}
}
}
#if NET8_0_OR_GREATER
#pragma warning disable SYSLIB5001 // System.Numerics.Tensors is only in preview so we can continue receiving API feedback
[Theory]
[InlineData(GraphOptimizationLevel.ORT_DISABLE_ALL, true)]
[InlineData(GraphOptimizationLevel.ORT_DISABLE_ALL, false)]
[InlineData(GraphOptimizationLevel.ORT_ENABLE_EXTENDED, true)]
[InlineData(GraphOptimizationLevel.ORT_ENABLE_EXTENDED, false)]
private void CanRunInferenceOnAModelDotnetTensors(GraphOptimizationLevel graphOptimizationLevel, bool enableParallelExecution)
{
var model = TestDataLoader.LoadModelFromEmbeddedResource("squeezenet.onnx");
using (var cleanUp = new DisposableListTest<IDisposable>())
{
// Set the graph optimization level for this session.
SessionOptions options = new SessionOptions();
cleanUp.Add(options);
options.GraphOptimizationLevel = graphOptimizationLevel;
var session = new InferenceSession(model, options);
cleanUp.Add(session);
using var runOptions = new RunOptions();
var inputMeta = session.InputMetadata;
var outputMeta = session.OutputMetadata;
float[] expectedOutput = TestDataLoader.LoadTensorFromEmbeddedResource("bench.expected_out");
long[] expectedDimensions = { 1, 1000, 1, 1 }; // hardcoded for now for the test data
ReadOnlySpan<long> expectedOutputDimensions = expectedDimensions;
float[] inputData = TestDataLoader.LoadTensorFromEmbeddedResource("bench.in"); // this is the data for only one input tensor for this model
using var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count);
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = SystemNumericsTensors.Tensor.Create<float>(inputData, inputMeta[name].Dimensions.Select(x => (nint)x).ToArray());
inputOrtValues.Add(new DisposableTestPair<OrtValue>(name, OrtValue.CreateTensorValueFromSystemNumericsTensorObject<float>(tensor)));
}
runOptions.LogId = "CsharpTest";
runOptions.Terminate = false; // TODO: Test terminate = true, it currently crashes
runOptions.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_ERROR;
// Run inference with named inputs and outputs created with in Run()
using (var results = session.Run(runOptions, inputOrtValues.Select(x => x.Key).ToList(), inputOrtValues.Select(x => x.Value).ToList(), new List<string>(["softmaxout_1"]))) // results is an IDisposableReadOnlyCollection<OrtValue> container
{
// validate the results
foreach (var r in results)
{
Assert.Single(results);
ValidateRunResult(r, expectedOutput, expectedDimensions);
}
}
}
}
[Fact]
public void InferenceSessionDisposedDotnetTensors()
{
var model = TestDataLoader.LoadModelFromEmbeddedResource("squeezenet.onnx");
// Set the graph optimization level for this session.
using (SessionOptions options = new SessionOptions())
{
options.ProfileOutputPathPrefix = "Ort_P_";
options.EnableProfiling = true;
using (var session = new InferenceSession(model, options))
{
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromEmbeddedResource("bench.in"); // this is the data for only one input tensor for this model
using (var runOptions = new RunOptions())
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = SystemNumericsTensors.Tensor.Create<float>(inputData, inputMeta[name].Dimensions.Select(x => (nint) x).ToArray());
inputOrtValues.Add(new DisposableTestPair<OrtValue>(name, OrtValue.CreateTensorValueFromSystemNumericsTensorObject<float>(tensor)));
}
// Run inference with named inputs and outputs created with in Run()
using (var results = session.Run(runOptions, inputOrtValues.Select(x => x.Key).ToList(), inputOrtValues.Select(x => x.Value).ToList(), new List<string>(["softmaxout_1"]))) // results is an IDisposableReadOnlyCollection<OrtValue> container
{
// validate the results
foreach (var r in results)
{
Assert.Single(results);
float[] expectedOutput = TestDataLoader.LoadTensorFromEmbeddedResource("bench.expected_out");
long[] expectedDimensions = { 1, 1000, 1, 1 }; // hardcoded for now for the test data
ValidateRunResult(r, expectedOutput, expectedDimensions);
}
}
}
string profile_file = session.EndProfiling();
// Profile file should have the output path prefix in it
Assert.Contains("Ort_P_", profile_file);
}
}
}
[Fact]
private void ThrowWrongOutputNameDotnetTensors()
{
var tuple = OpenSessionSqueezeNet();
var session = tuple.Item1;
var inputData = tuple.Item2;
var inputTensor = tuple.Item3;
using (var runOptions = new RunOptions())
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
var tensor = SystemNumericsTensors.Tensor.Create<float>(inputData, Array.ConvertAll<int, nint>(inputTensor.Dimensions.ToArray(), x => (nint)x));
inputOrtValues.Add(new DisposableTestPair<OrtValue>("data_0", OrtValue.CreateTensorValueFromSystemNumericsTensorObject<float>(tensor)));
outputOrtValues.Add(new DisposableTestPair<OrtValue>("bad_output_name", OrtValue.CreateTensorValueFromSystemNumericsTensorObject(tensor)));
var ex = Assert.Throws<OnnxRuntimeException>(() => session.Run(runOptions, ["data_0"], [inputOrtValues[0].Value], ["bad_output_name"], [outputOrtValues[0].Value]));
Assert.Contains("Output name: 'bad_output_name' is not in the metadata", ex.Message);
}
session.Dispose();
}
[Fact]
private void ThrowWrongOutputDimensionDotnetTensors()
{
var tuple = OpenSessionSqueezeNet();
var session = tuple.Item1;
var inputData = tuple.Item2;
var inputTensor = tuple.Item3;
var outputTensor = SystemNumericsTensors.Tensor.Create<float>([1, 1001, 1, 1]);
using (var runOptions = new RunOptions())
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
var tensor = SystemNumericsTensors.Tensor.Create<float>(inputData, Array.ConvertAll<int, nint>(inputTensor.Dimensions.ToArray(), x => (nint)x));
inputOrtValues.Add(new DisposableTestPair<OrtValue>("data_0", OrtValue.CreateTensorValueFromSystemNumericsTensorObject<float>(tensor)));
outputOrtValues.Add(new DisposableTestPair<OrtValue>("softmaxout_1", OrtValue.CreateTensorValueFromSystemNumericsTensorObject(outputTensor)));
var ex = Assert.Throws<OnnxRuntimeException>(() => session.Run(runOptions, ["data_0"], [inputOrtValues[0].Value], ["softmaxout_1"], [outputOrtValues[0].Value]));
}
session.Dispose();
}
[Fact]
private void ThrowInconsistentPinnedOutputsDotnetTensors()
{
var tuple = OpenSessionSqueezeNet();
using var cleanUp = new DisposableListTest<IDisposable>();
cleanUp.Add(tuple.Item1);
var session = tuple.Item1;
var inputData = tuple.Item2;
var inputTensor = tuple.Item3;
var outputTensor = SystemNumericsTensors.Tensor.Create([1, 1001, 1, 1], [4]);
using (var runOptions = new RunOptions())
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
var tensor = SystemNumericsTensors.Tensor.Create<float>(inputData, Array.ConvertAll<int, nint>(inputTensor.Dimensions.ToArray(), x => (nint)x));
inputOrtValues.Add(new DisposableTestPair<OrtValue>("data_0", OrtValue.CreateTensorValueFromSystemNumericsTensorObject<float>(tensor)));
outputOrtValues.Add(new DisposableTestPair<OrtValue>("softmaxout_1", OrtValue.CreateTensorValueFromSystemNumericsTensorObject(outputTensor)));
OrtValue[] outputs = [];
var ex = Assert.Throws<ArgumentException>(() => session.Run(runOptions, ["data_0"], [inputOrtValues[0].Value], ["softmaxout_1"], outputs));
Assert.StartsWith("Length of outputNames (1) must match that of outputValues (0).", ex.Message);
}
}
#pragma warning restore SYSLIB5001 // System.Numerics.Tensors is only in preview so we can continue receiving API feedback
#endif
#if USE_CUDA
[Fact(DisplayName = "TestCUDAProviderOptions")]
private void TestCUDAProviderOptions()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
string defaultDeviceId = "0";
string deviceIdFromEnv = System.Environment.GetEnvironmentVariable("OnnxruntimeTestGpuDeviceId");
if (!string.IsNullOrEmpty(deviceIdFromEnv) && int.TryParse(deviceIdFromEnv, out int deviceId) && deviceId >= 0)
{
defaultDeviceId = deviceIdFromEnv;
output.WriteLine($"Parsed ID: {deviceIdFromEnv}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
var cudaProviderOptions = new OrtCUDAProviderOptions();
cleanUp.Add(cudaProviderOptions);
var providerOptionsDict = new Dictionary<string, string>();
providerOptionsDict["device_id"] = defaultDeviceId;
// 256MB
providerOptionsDict["gpu_mem_limit"] = "268435456";
providerOptionsDict["arena_extend_strategy"] = "kSameAsRequested";
providerOptionsDict["cudnn_conv_algo_search"] = "DEFAULT";
providerOptionsDict["do_copy_in_default_stream"] = "1";
providerOptionsDict["cudnn_conv_use_max_workspace"] = "1";
providerOptionsDict["cudnn_conv1d_pad_to_nc1d"] = "1";
cudaProviderOptions.UpdateOptions(providerOptionsDict);
var resultProviderOptionsDict = new Dictionary<string, string>();
ProviderOptionsValueHelper.StringToDict(cudaProviderOptions.GetOptions(), resultProviderOptionsDict);
// test provider options configuration
string value;
value = resultProviderOptionsDict["device_id"];
Assert.Equal("0", value);
value = resultProviderOptionsDict["gpu_mem_limit"];
Assert.Equal("268435456", value);
value = resultProviderOptionsDict["arena_extend_strategy"];
Assert.Equal("kSameAsRequested", value);
value = resultProviderOptionsDict["cudnn_conv_algo_search"];
Assert.Equal("DEFAULT", value);
value = resultProviderOptionsDict["do_copy_in_default_stream"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["cudnn_conv_use_max_workspace"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["cudnn_conv1d_pad_to_nc1d"];
Assert.Equal("1", value);
// test correctness of provider options
SessionOptions options = SessionOptions.MakeSessionOptionWithCudaProvider(cudaProviderOptions);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
session.Run(container);
}
}
#endif
#if USE_TENSORRT
[Fact(DisplayName = "CanRunInferenceOnAModelWithTensorRT")]
private void CanRunInferenceOnAModelWithTensorRT()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
int deviceId = 0;
string deviceIdStr = System.Environment.GetEnvironmentVariable("ONNXRUNTIME_TEST_GPU_DEVICE_ID");
if (!string.IsNullOrEmpty(deviceIdStr) && int.TryParse(deviceIdStr, out int parsedValue) && parsedValue >= 0)
{
deviceId = parsedValue;
output.WriteLine($"Parsed ID: {parsedValue}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
SessionOptions options = SessionOptions.MakeSessionOptionWithTensorrtProvider(deviceId);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
using (var results = session.Run(container))
{
ValidateRunResults(results);
}
}
}
[Fact(DisplayName = "TestTensorRTProviderOptions")]
private void TestTensorRTProviderOptions()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
string calTablePath = "squeezenet_calibration.flatbuffers";
string enginePath = "./";
string engineDecrptLibPath = "engine_decryp";
string defaultDeviceId = "0";
string deviceIdFromEnv = System.Environment.GetEnvironmentVariable("OnnxruntimeTestGpuDeviceId");
if (!string.IsNullOrEmpty(deviceIdFromEnv) && int.TryParse(deviceIdFromEnv, out int deviceId) && deviceId >= 0)
{
defaultDeviceId = deviceIdFromEnv;
output.WriteLine($"Parsed ID: {deviceIdFromEnv}");
}
using (var cleanUp = new DisposableListTest<IDisposable>())
{
var trtProviderOptions = new OrtTensorRTProviderOptions();
cleanUp.Add(trtProviderOptions);
var providerOptionsDict = new Dictionary<string, string>();
providerOptionsDict["device_id"] = defaultDeviceId;
providerOptionsDict["trt_fp16_enable"] = "1";
providerOptionsDict["trt_int8_enable"] = "1";
providerOptionsDict["trt_int8_calibration_table_name"] = calTablePath;
providerOptionsDict["trt_engine_cache_enable"] = "1";
providerOptionsDict["trt_engine_cache_path"] = enginePath;
providerOptionsDict["trt_engine_decryption_enable"] = "0";
providerOptionsDict["trt_engine_decryption_lib_path"] = engineDecrptLibPath;
trtProviderOptions.UpdateOptions(providerOptionsDict);
var resultProviderOptionsDict = new Dictionary<string, string>();
ProviderOptionsValueHelper.StringToDict(trtProviderOptions.GetOptions(), resultProviderOptionsDict);
// test provider options configuration
string value;
value = resultProviderOptionsDict["device_id"];
Assert.Equal(defaultDeviceId, value);
value = resultProviderOptionsDict["trt_fp16_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_int8_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_int8_calibration_table_name"];
Assert.Equal(calTablePath, value);
value = resultProviderOptionsDict["trt_engine_cache_enable"];
Assert.Equal("1", value);
value = resultProviderOptionsDict["trt_engine_cache_path"];
Assert.Equal(enginePath, value);
value = resultProviderOptionsDict["trt_engine_decryption_enable"];
Assert.Equal("0", value);
value = resultProviderOptionsDict["trt_engine_decryption_lib_path"];
Assert.Equal(engineDecrptLibPath, value);
// test correctness of provider options
SessionOptions options = SessionOptions.MakeSessionOptionWithTensorrtProvider(trtProviderOptions);
cleanUp.Add(options);
var session = new InferenceSession(modelPath, options);
cleanUp.Add(session);
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
float[] inputData = TestDataLoader.LoadTensorFromFile(@"bench.in"); // this is the data for only one input tensor for this model
foreach (var name in inputMeta.Keys)
{
Assert.Equal(typeof(float), inputMeta[name].ElementType);
Assert.True(inputMeta[name].IsTensor);
var tensor = new DenseTensor<float>(inputData, inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
session.Run(container);
}
}
#endif
private static Func<DirectoryInfo, IEnumerable<DirectoryInfo>> getOpsetDirectories = delegate (DirectoryInfo modelsDirInfo)
{
return modelsDirInfo.EnumerateDirectories("opset*", SearchOption.AllDirectories);
};
private static Dictionary<string, string> GetSkippedModels(DirectoryInfo modelsDirInfo)
{
var skipModels = new Dictionary<string, string>() {
{ "mxnet_arcface", "Model is an invalid ONNX model"},
{ "tf_inception_v2", "TODO: Debug failing model, skipping for now" },
{ "fp16_tiny_yolov2", "Tolerance level for float16 is not known. We now support fp16." },
{ "fp16_test_tiny_yolov2", "ImageScaler is not a registered function/op"},
{ "fp16_coreml_FNS-Candy", "ImageScaler is not a registered function/op" },
{ "fp16_coreml_LinearRegression_NYCTaxi", "Error in Node:featureVectorizer : No Op registered for FeatureVectorizer with domain_version of 1"},
{ "test_mnist", "Does not run in opset9, runs in other opsets. The model runs but I don't have a data set to debug output locally. Tensors of type ElementType not currently supported in the LoadTensorFromFile" },
{ "BERT_Squad", "Could not find an implementation for the nodeMeta bert / embeddings / one_hot:OneHot(9)" },
{ "mlperf_ssd_mobilenet_300", "Could not find file output_0.pb" },
{ "tf_resnet_v1_50", "result mismatch when Conv BN Fusion is applied" },
{ "tf_resnet_v1_101", "result mismatch when Conv BN Fusion is applied" },
{ "tf_resnet_v1_152", "result mismatch when Conv BN Fusion is applied" },
{ "cntk_simple_seg", "Bad onnx test output caused by wrong SAME_UPPER/SAME_LOWER for ConvTranspose" },
{ "coreml_Imputer-LogisticRegression_sklearn_load_breast_cancer", "Can't determine model file name" },
{ "mask_rcnn_keras", "Model should be edited to remove the extra outputs" },
{ "test_maxunpool_export_with_output_shape", "results mismatch"},
{ "test_min_int8", "Could not find an implementation for Min(13) node with name"},
{ "test_min_uint8", "Could not find an implementation for Min(13) node with name"},
{ "test_min_int16", "Could not find an implementation for Min(13) node with name"},
{ "test_min_uint16", "Could not find an implementation for Min(13) node with name"},
{ "test_max_int8", "Could not find an implementation for Max(13) node with name"},
{ "test_max_uint8", "Could not find an implementation for Max(13) node with name"},
{ "test_max_int16", "Could not find an implementation for Max(13) node with name"},
{ "test_max_uint16", "Could not find an implementation for Max(13) nodeMeta with name '"},
{ "test_mul_uint8", "Could not find an implementation for Mul(14) node with name" },
{ "test_bitshift_right_uint16", "Could not find an implementation for BitShift(11) nodeMeta with name ''"},
{ "test_bitshift_left_uint16", "Could not find an implementation for BitShift(11)"},
{ "test_pow_types_float32_uint64", "Could not find an implementation for Pow(15) node with name ''"},
{ "test_pow_types_float32_uint32", "Could not find an implementation for Pow(15) node with name ''"},
{ "test_resize_downsample_scales_cubic_align_corners", "Results mismatch"},
{ "test_resize_downsample_scales_linear_align_corners", "Results mismatch"},
{ "test_gru_batchwise", "batchwise operations not supported"},
{ "test_lstm_batchwise", "Batchwise recurrent operations(layout == 1) are not supported.If you need support create a github issue with justification."},
{ "test_simple_rnn_batchwise", "batchwise operations not supported"},
{ "test_batchnorm_example_training_mode", "opset14 version not implemented yet"},
{ "test_bernoulli", "random generator, results mismatch"},
{ "test_bernoulli_seed", "random generator, results mismatch"},
{ "test_bernoulli_double", "random generator, results mismatch"},
{ "test_bernoulli_expanded", "random generator, results mismatch"},
{ "test_bernoulli_seed_expanded", "random generator, results mismatch"},
{ "test_bernoulli_double_expanded", "random generator, results mismatch"},
// the expansion of Softplus uses Exp(1). ORT has a Softplus kernel, so testing the expansion is
// unnecessary and fails as ORT support for Exp started at opset 6 (as ORT didn't exist until opset 7).
{ "test_clip_default_int8_max_expanded", "Could not find an implementation for Less(13) nodeMeta with name ''" },
{ "test_softplus_expanded", "Could not find an implementation for Exp(1) node with name ''"},
{ "test_softplus_example_expanded", "Could not find an implementation for Exp(1) node with name ''"},
{ "test_div_uint8", "Could not find an implementation for Div(14) nodeMeta with name ''"},
{ "test_add_uint8", "Opset18 Could not find an implementation for Add(14) nodeMeta with name ''"},
{ "test_col2im_pads", "Results mismatch due to a typo in test data"},
{ "test_optional_has_element_empty_optional_input", "OptionalProto test metadata. Unable to load 'optional_input' optional element type of: Undefined type"},
{ "test_loop13_seq", "3rd input is an empty sequence. Ort API does not tolerate empty seq: Number of values should be at least 1" },
// Training tests
{ "BERT-Squad-int8", "training domain"},
{ "YOLOv3-12-int8", "training_domain"},
{ "test_training_dropout_default", "results mismatch"},
{ "test_training_dropout_default_mask", "Results mismatch"},
{ "test_training_dropout", "results mismatch"},
{ "test_training_dropout_mask", "results mismatch."},
{ "test_momentum", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_momentum_multiple", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_nesterov_momentum", "ai.onnx.preview.training:Momentum(-1) is not a registered function/op"},
{ "test_adam", "ai.onnx.preview.training:Adam(-1) is not a registered function/op"},
{ "test_adam_multiple", "ai.onnx.preview.training:Adam(-1) is not a registered function/op"},
{ "test_adagrad", "ai.onnx.preview.training:Adagrad(-1) is not a registered function/op"},
{ "test_adagrad_multiple", "ai.onnx.preview.training:Adagrad(-1) is not a registered function/op"},
{ "test_zfnet512", "skip it as ZFNET-512"},
};
// The following models fails on nocontribops win CI
var disableContribOpsEnvVar = Environment.GetEnvironmentVariable("DisableContribOps");
var isContribOpsDisabled = (disableContribOpsEnvVar != null) ? disableContribOpsEnvVar.Equals("ON") : false;
if (isContribOpsDisabled)
{
skipModels["test_tiny_yolov2"] = "Fails when ContribOps is disabled";
skipModels["mask_rcnn_keras"] = "Pad is not a registered function/op";
}
// Skip traditional ML models
var disableMlOpsEnvVar = Environment.GetEnvironmentVariable("DisableMlOps");
var isMlOpsDisabled = (disableMlOpsEnvVar != null) ? disableMlOpsEnvVar.Equals("ON") : false;
if (isMlOpsDisabled)
{
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
var modelDirName = modelDir.Name;
if (modelDirName.StartsWith("scikit_") ||
modelDirName.StartsWith("libsvm_") ||
modelDirName.StartsWith("coreml_") ||
modelDirName.StartsWith("keras2coreml_") ||
modelDirName.StartsWith("XGBoost_"))
{
skipModels[modelDirName] = "Fails when ML ops are disabled";
}
} //model
} //opset
}
// This model fails on x86 Win CI
if (System.Environment.Is64BitProcess == false)
{
skipModels["test_vgg19"] = "Get preallocated buffer for initializer conv4_4_b_0 failed";
skipModels["GPT2_LM_HEAD"] = "System out of memory";
skipModels["GPT2"] = "System out of memory";
skipModels["test_GPT2"] = "System out of memory";
skipModels["tf_pnasnet_large"] = "Get preallocated buffer for initializer ConvBnFusion_BN_B_cell_5/comb_iter_1/left/bn_sep_7x7_1/beta:0_203 failed";
skipModels["tf_nasnet_large"] = "Get preallocated buffer for initializer ConvBnFusion_BN_B_cell_11/beginning_bn/beta:0_331 failed";
skipModels["ZFNet-512"] = "System out of memory";
skipModels["test_bvlc_reference_caffenet"] = "System out of memory";
skipModels["coreml_VGG16_ImageNet"] = "System out of memory";
skipModels["test_ssd"] = "System out of memory";
skipModels["roberta_sequence_classification"] = "System out of memory";
// models from model zoo
skipModels["VGG 19"] = "bad allocation";
skipModels["VGG 19-caffe2"] = "bad allocation";
skipModels["VGG 19-bn"] = "bad allocation";
skipModels["VGG 16"] = "bad allocation";
skipModels["VGG 16-bn"] = "bad allocation";
skipModels["VGG 16-fp32"] = "bad allocation";
}
return skipModels;
}
public static IEnumerable<object[]> GetModelsForTest()
{
var modelsDir = GetTestModelsDir();
var modelsDirInfo = new DirectoryInfo(modelsDir);
var skipModels = GetSkippedModels(modelsDirInfo);
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
//var modelRoot = new DirectoryInfo(Path.Combine(modelsDir, opsetDir.Name));
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
if (!(skipModels.ContainsKey(modelDir.Name) ||
modelDir.Name.Contains("int8", StringComparison.OrdinalIgnoreCase) ||
modelDir.Name.Contains("qdq", StringComparison.OrdinalIgnoreCase)))
{
yield return new object[] { modelDir.Parent.FullName, modelDir.Name };
}
} //model
} //opset
}
public static IEnumerable<object[]> GetSkippedModelForTest()
{
var modelsDir = GetTestModelsDir();
var modelsDirInfo = new DirectoryInfo(modelsDir);
var skipModels = GetSkippedModels(modelsDirInfo);
foreach (var opsetDir in getOpsetDirectories(modelsDirInfo))
{
foreach (var modelDir in opsetDir.EnumerateDirectories())
{
if (skipModels.ContainsKey(modelDir.Name) ||
modelDir.Name.Contains("int8", StringComparison.OrdinalIgnoreCase) ||
modelDir.Name.Contains("qdq", StringComparison.OrdinalIgnoreCase))
{
//Console.WriteLine("Model {0} is skipped due to the error: {1}", modelDir.FullName, skipModels[modelDir.Name]);
yield return new object[] { modelDir.Parent.FullName, modelDir.Name };
}
}
}
}
private string MatchInputOutputWithFile(string fileName, InferenceSession session, bool input, out NodeMetadata result)
{
string nodeName = string.Empty;
result = null;
var names = (input) ? session.InputNames : session.OutputNames;
var metadata = (input) ? session.InputMetadata : session.OutputMetadata;
string regEx = (input) ? @"input_(\d{1,}).pb" : @"output_(\d{1,}).pb";
var inpOut = (input) ? "input" : "output";
// Extract the number from the file name, if not try to match the input/output name with the name of the file.
try
{
// captures start at index 1
var group = Regex.Matches(fileName, regEx).Single().Groups[1];
var num = int.Parse(group.Value);
if (num >= 0 && num < names.Count)
{
nodeName = names[num];
result = metadata[nodeName];
}
else
{
throw new InvalidDataException($"Filename '{fileName}' {inpOut} number '{num}' is out of range for '{names.Count}' {inpOut}(s)");
}
}
catch (Exception)
{
// Either does not match or can not parse the number
}
if (result is null)
{
throw new InvalidDataException($"Unable to match file: {fileName} to input/output metadata");
}
return nodeName;
}
// The numbering of the input files does not match the order of outputs
// listed in the metadata of test_BERT_Squad. Model metadata order:
// "unique_ids_raw_output___9:0", "segment_ids:0", "input_mask:0", "input_ids:0"
// The corr input files are: input_0.pb, input_3.pb, input_2.pb, input_1.pb
// Everything in reverse, but the 0.
// Previously, it worked because our test data has matching
// tensor names that we could match to metadata after we load the tensor.
// But now, we need to know ahead of time what Onnx type we load, and thus match
// metadata with the test data file before loading. Protobuf can happily load whatever
// and give you garbage.
private string MatchBertSquadInputs(string fileName)
{
string nodeName = string.Empty;
switch (fileName)
{
case "input_0.pb":
nodeName = "unique_ids_raw_output___9:0";
break;
case "input_1.pb":
nodeName = "input_ids:0";
break;
case "input_2.pb":
nodeName = "input_mask:0";
break;
case "input_3.pb":
nodeName = "segment_ids:0";
break;
default:
throw new InvalidDataException($"Unhandled input file name: '{fileName}' for test_BERT_Squad");
}
return nodeName;
}
// The model actually has only 3 outputs, but the Zoo version has 4 files are supplied.
// The numbering of the output files does not match the order of outputs
// listed in the metadata.
// Previously, it worked because our CI test data version has matching
// tensor names that we could match to metadata after we load the tensor.
// But now, we need to know ahead of time what Onnx type we load, and thus match
// metadata with the test data file before loading. Protobuf can happily load whatever
// and give you garbage.
// Order in the metadata: unstack:1, unstack:0, unique_ids:0
// The files are in reverse order
private string MatchBertSquadOutputs(string fileName)
{
string nodeName = string.Empty;
switch (fileName)
{
case "output_0.pb": // Int64
nodeName = "unique_ids:0";
break;
case "output_1.pb":
nodeName = "unstack:0";
break;
case "output_2.pb":
nodeName = "unstack:1";
break;
default:
throw new InvalidDataException($"Unhandled output file name: '{fileName}' for test_BERT_Squad");
}
return nodeName;
}
private const string keras_prelu_ImageNet_small_nodeName_Input = "p_re_lu_3_input";
private const string keras_prelu_ImageNet_small_nodeName_Output = "p_re_lu_3/add:0";
private void LoadInputData<T>(string opset, string modelName,
DirectoryInfo testDataDir,
InferenceSession session,
IList<T> inputContainer,
Func<string, string, NodeMetadata, T> loader)
{
var inMeta = session.InputMetadata;
foreach (var f in testDataDir.EnumerateFiles("input_*.pb"))
{
if (modelName == "keras_prelu_ImageNet_small" && opset == "opset9")
{
// The model has 1 input, match all file names (they are different in each data set)
// to the same input
var nodeName = keras_prelu_ImageNet_small_nodeName_Input;
var nodeMeta = inMeta[nodeName];
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else if (modelName == "test_BERT_Squad" && opset == "opset8")
{
string nodeName = MatchBertSquadInputs(f.Name);
var nodeMeta = inMeta[nodeName];
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else
{
var nodeName = MatchInputOutputWithFile(f.Name, session, true, out NodeMetadata nodeMeta);
inputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
}
}
private void LoadOutputData<T>(string opset, string modelName,
DirectoryInfo testDataDir,
InferenceSession session,
IList<T> outputContainer,
Func<string, string, NodeMetadata, T> loader)
{
var outMeta = session.OutputMetadata;
foreach (var f in testDataDir.EnumerateFiles("output_*.pb"))
{
if (modelName == "keras_prelu_ImageNet_small" && opset == "opset9")
{
// The model has 1 output, match all file names (they are different in each data set)
// to the same output
var nodeName = keras_prelu_ImageNet_small_nodeName_Output;
var nodeMeta = outMeta[nodeName];
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else if (modelName == "test_BERT_Squad" && opset == "opset8")
{
string nodeName = MatchBertSquadOutputs(f.Name);
var nodeMeta = outMeta[nodeName];
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
else
{
// Otherwise, just match trailing filename number to the input name -> metadata
var nodeName = MatchInputOutputWithFile(f.Name, session, false, out NodeMetadata nodeMeta);
outputContainer.Add(loader(f.FullName, nodeName, nodeMeta));
}
}
}
private void RunPretrainedModel(InferenceSession session,
IReadOnlyList<NamedOnnxValue> inputContainer, IReadOnlyList<NamedOnnxValue> outputContainer)
{
var outMeta = session.OutputMetadata;
var orderedOutputNames = new List<string>(outputContainer.Count);
foreach (var output in outputContainer)
{
orderedOutputNames.Add(output.Name);
}
using (var resultCollection = session.Run(inputContainer, orderedOutputNames))
{
Assert.Equal(outputContainer.Count, resultCollection.Count);
for (int i = 0; i < resultCollection.Count; ++i)
{
var result = resultCollection[i];
var outputValue = outputContainer[i];
Assert.NotNull(outputValue);
Assert.Equal(result.Name, outputValue.Name);
var outputMeta = outMeta[outputValue.Name];
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_OPTIONAL)
{
outputMeta = outputMeta.AsOptionalMetadata().ElementMeta;
}
Assert.Equal(outputValue.ValueType, outputMeta.OnnxValueType);
switch (outputValue.ValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR: // Only Dense tensors now
{
VerifyTensorResults(outputMeta.ElementDataType, result, outputValue);
}
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(result, outputValue, outputMeta);
}
break;
default:
Assert.Fail($"TestPreTrainedModels cannot handle Onnxtype: {outputValue.ValueType}");
break;
}
}
}
}
private void RunPretrainedModel(InferenceSession session, RunOptions runOptions,
IReadOnlyList<DisposableTestPair<OrtValue>> inputContainer,
IReadOnlyList<DisposableTestPair<OrtValue>> outputContainer)
{
var outMeta = session.OutputMetadata;
var orderedInputNames = new List<string>(inputContainer.Count);
var orderdedInputs = new List<OrtValue>(inputContainer.Count);
foreach (var pair in inputContainer)
{
orderedInputNames.Add(pair.Key);
orderdedInputs.Add(pair.Value);
}
var orderedOutputNames = new List<string>(outputContainer.Count);
var orderedOutputs = new List<OrtValue>(outputContainer.Count);
foreach (var pair in outputContainer)
{
orderedOutputNames.Add(pair.Key);
orderedOutputs.Add(pair.Value);
}
using (var results = session.Run(runOptions, orderedInputNames, orderdedInputs, orderedOutputNames))
{
Assert.Equal(outMeta.Count, results.Count);
Assert.Equal(outputContainer.Count, results.Count);
for (int i = 0; i < outputContainer.Count; ++i)
{
var resultValue = results[i];
var expectedValue = outputContainer[i].Value;
var outputMeta = outMeta[orderedOutputNames[i]];
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_OPTIONAL)
{
outputMeta = outputMeta.AsOptionalMetadata().ElementMeta;
}
if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_TENSOR)
{
VerifyTensorResults(outputMeta.ElementDataType, resultValue, expectedValue);
}
else if (outputMeta.OnnxValueType == OnnxValueType.ONNX_TYPE_SEQUENCE)
{
VerifySequenceResults(resultValue, expectedValue, outputMeta);
}
else
{
Assert.Fail($"TestPreTrainedModels cannot handle Onnxtype: {outputMeta.OnnxValueType}");
}
}
}
}
[Theory(DisplayName = "TestPretrainedModelsWithOrtValue")]
[MemberData(nameof(GetModelsForTest))]
[MemberData(nameof(GetSkippedModelForTest), Skip = "Skipped due to Error, please fix the error and enable the test")]
public void TestPretrainedModelsWithOrtValue(string opsetDir, string modelName)
{
TestPreTrainedModels(opsetDir, modelName, true);
}
[Theory(DisplayName = "TestPreTrainedModels")]
[MemberData(nameof(GetModelsForTest))]
[MemberData(nameof(GetSkippedModelForTest), Skip = "Skipped due to Error, please fix the error and enable the test")]
private void TestPreTrainedModels(string opsetDir, string modelName, bool useOrtValueAPIs = false)
{
var opsetDirInfo = new DirectoryInfo(opsetDir);
var opset = opsetDirInfo.Name;
string onnxModelFileName = null;
var modelDir = new DirectoryInfo(Path.Combine(opsetDir, modelName));
try
{
var onnxModelNames = modelDir.GetFiles("*.onnx");
bool validModelFound = false;
if (onnxModelNames.Length > 0)
{
// TODO remove file "._resnet34v2.onnx" from test set
for (int i = 0; i < onnxModelNames.Length; i++)
{
if (onnxModelNames[i].Name != "._resnet34v2.onnx")
{
onnxModelNames[0] = onnxModelNames[i];
validModelFound = true;
}
}
}
if (validModelFound)
{
onnxModelFileName = Path.Combine(modelDir.FullName, onnxModelNames[0].Name);
}
else
{
var modelNamesList = string.Join(",", onnxModelNames.Select(x => x.ToString()));
throw new Exception($"Opset {opset} Model {modelName}. Can't determine model file name. Found these :{modelNamesList}");
}
using (var runOptions = new RunOptions())
using (var session = new InferenceSession(onnxModelFileName))
{
string testDataDirNamePattern = "test_data*";
if (opset == "opset9" && modelName == "LSTM_Seq_lens_unpacked")
{
testDataDirNamePattern = "seq_lens*"; // discrepancy in data directory
}
foreach (var testDataDir in modelDir.EnumerateDirectories(testDataDirNamePattern))
{
if (useOrtValueAPIs)
{
using (var inputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.InputMetadata.Count))
using (var outputOrtValues = new DisposableListTest<DisposableTestPair<OrtValue>>(session.OutputMetadata.Count))
{
LoadInputData(opset, modelName, testDataDir, session, inputOrtValues, TestDataLoader.LoadOrtValueFromFilePb);
LoadOutputData(opset, modelName, testDataDir, session, outputOrtValues, TestDataLoader.LoadOrtValueFromFilePb);
RunPretrainedModel(session, runOptions, inputOrtValues, outputOrtValues);
}
}
else
{
var inputContainer = new List<NamedOnnxValue>(session.InputMetadata.Count);
LoadInputData(opset, modelName, testDataDir, session, inputContainer, TestDataLoader.LoadOnnxValueFromFilePb);
var outputContainer = new List<NamedOnnxValue>(session.OutputMetadata.Count);
LoadOutputData(opset, modelName, testDataDir, session, outputContainer, TestDataLoader.LoadOnnxValueFromFilePb);
RunPretrainedModel(session, inputContainer, outputContainer);
}
}
}
}
catch (Exception ex)
{
var msg = $"Opset {opset}, Model {modelName}: ModelFile = {onnxModelFileName} error = {ex.Message}";
if (ex.Message.Contains("ONNX Runtime only *guarantees* support for models stamped with official released onnx opset versions"))
{
// If the exception is thrown because the opset version of the test model is
// not supported by ONNXRuntime yet, then ignore the test and proceed.
// ORT allows commits from ONNX master and in such cases we do come across new opsets which are
// not supported in ORT yet. In order to force these tests to run set env var ALLOW_RELEASED_ONNX_OPSET_ONLY=0
output.WriteLine("Skipping the model test as the latest ONNX opset is not supported yet. Error Message: " + msg);
}
else
{
throw new Exception(msg + "\n" + ex.StackTrace);
}
}
}
private static void VerifySequenceResults(NamedOnnxValue result, NamedOnnxValue expectedValue, NodeMetadata metaData)
{
var meta = metaData.AsSequenceMetadata();
var resultSequence = result.AsEnumerable<NamedOnnxValue>();
var expectedSequence = expectedValue.AsEnumerable<NamedOnnxValue>();
Assert.Equal(resultSequence.Count(), expectedSequence.Count());
foreach (var (resultItem, expectedItem) in resultSequence.Zip(expectedSequence, (r, e) => (r, e)))
{
Assert.Equal(resultItem.ValueType, expectedItem.ValueType);
Assert.Equal(resultItem.ValueType, meta.ElementMeta.OnnxValueType);
switch (resultItem.ValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
VerifyTensorResults(meta.ElementMeta.ElementDataType, resultItem, expectedItem);
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(resultItem, expectedItem, meta.ElementMeta);
}
break;
default:
Assert.Fail("VerifySequenceResults cannot handle Onnxtype: " + resultItem.ValueType.ToString());
break;
}
Assert.Equal(resultItem.AsTensor<float>(), expectedItem.AsTensor<float>(), new FloatComparer());
}
}
private static void VerifyTensorResults(TensorElementType elementType, NamedOnnxValue result, NamedOnnxValue expectedValue)
{
switch (elementType)
{
case TensorElementType.Float:
Assert.Equal(expectedValue.AsTensor<float>(), result.AsTensor<float>(), new FloatComparer());
break;
case TensorElementType.Double:
Assert.Equal(expectedValue.AsTensor<double>(), result.AsTensor<double>(), new DoubleComparer());
break;
case TensorElementType.Int32:
Assert.Equal(expectedValue.AsTensor<int>(), result.AsTensor<int>(), new ExactComparer<int>());
break;
case TensorElementType.UInt32:
Assert.Equal(expectedValue.AsTensor<uint>(), result.AsTensor<uint>(), new ExactComparer<uint>());
break;
case TensorElementType.Int16:
Assert.Equal(expectedValue.AsTensor<short>(), result.AsTensor<short>(), new ExactComparer<short>());
break;
case TensorElementType.UInt16:
Assert.Equal(expectedValue.AsTensor<ushort>(), result.AsTensor<ushort>(), new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
Assert.Equal(expectedValue.AsTensor<long>(), result.AsTensor<long>(), new ExactComparer<long>());
break;
case TensorElementType.UInt64:
Assert.Equal(expectedValue.AsTensor<ulong>(), result.AsTensor<ulong>(), new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
Assert.Equal(expectedValue.AsTensor<byte>(), result.AsTensor<byte>(), new ExactComparer<byte>());
break;
case TensorElementType.Int8:
Assert.Equal(result.AsTensor<sbyte>(), result.AsTensor<sbyte>(), new ExactComparer<sbyte>());
break;
case TensorElementType.Bool:
Assert.Equal(expectedValue.AsTensor<bool>(), result.AsTensor<bool>(), new ExactComparer<bool>());
break;
case TensorElementType.Float16:
Assert.Equal(expectedValue.AsTensor<Float16>(), result.AsTensor<Float16>(), new Float16Comparer { tolerance = 2 });
break;
case TensorElementType.BFloat16:
Assert.Equal(expectedValue.AsTensor<BFloat16>(), result.AsTensor<BFloat16>(), new BFloat16Comparer { tolerance = 2 });
break;
case TensorElementType.String:
Assert.Equal(expectedValue.AsTensor<string>(), result.AsTensor<string>(), new ExactComparer<string>());
break;
default:
Assert.Fail("TestPreTrainedModels does not yet support output of type: " + elementType.ToString());
break;
}
}
private static void VerifySequenceResults(OrtValue resultSequence, OrtValue expectedSequence, NodeMetadata metaData)
{
var allocator = OrtAllocator.DefaultInstance;
Assert.Equal(OnnxValueType.ONNX_TYPE_SEQUENCE, resultSequence.OnnxType);
Assert.Equal(OnnxValueType.ONNX_TYPE_SEQUENCE, expectedSequence.OnnxType);
var elementMeta = metaData.AsSequenceMetadata().ElementMeta;
var resultCount = resultSequence.GetValueCount();
Assert.Equal(expectedSequence.GetValueCount(), resultCount);
using (var cleanUp = new DisposableListTest<IDisposable>())
{
for (int i = 0; i < resultCount; ++i)
{
var resultItem = resultSequence.GetValue(i, allocator);
cleanUp.Add(resultItem);
var expectedItem = expectedSequence.GetValue(i, allocator);
cleanUp.Add(expectedItem);
Assert.Equal(elementMeta.OnnxValueType, expectedItem.OnnxType);
Assert.Equal(elementMeta.OnnxValueType, resultItem.OnnxType);
switch (elementMeta.OnnxValueType)
{
case OnnxValueType.ONNX_TYPE_TENSOR:
VerifyTensorResults(elementMeta.ElementDataType, resultItem, expectedItem);
break;
case OnnxValueType.ONNX_TYPE_SEQUENCE:
{
VerifySequenceResults(resultItem, expectedItem, elementMeta);
}
break;
default:
Assert.Fail($"VerifySequenceResults cannot handle Onnxtype: {elementMeta.OnnxValueType}");
break;
}
}
}
}
private static void VerifyTensorResults(TensorElementType expectedElementType, OrtValue result, OrtValue expectedValue)
{
Assert.True(result.IsTensor);
Assert.True(expectedValue.IsTensor);
var resultTypeShape = result.GetTensorTypeAndShape();
var expectedTypeShape = expectedValue.GetTensorTypeAndShape();
Assert.Equal(expectedElementType, resultTypeShape.ElementDataType);
Assert.Equal(expectedElementType, expectedTypeShape.ElementDataType);
Assert.Equal(expectedTypeShape.Shape, resultTypeShape.Shape);
if (expectedElementType == TensorElementType.String)
{
var resStrings = result.GetStringTensorAsArray();
var expStrings = expectedValue.GetStringTensorAsArray();
Assert.Equal(expStrings, resStrings);
return;
}
switch (expectedElementType)
{
case TensorElementType.Float:
Assert.Equal(expectedValue.GetTensorDataAsSpan<float>().ToArray(), result.GetTensorDataAsSpan<float>().ToArray(),
new FloatComparer());
break;
case TensorElementType.Double:
Assert.Equal(expectedValue.GetTensorDataAsSpan<double>().ToArray(), result.GetTensorDataAsSpan<double>().ToArray(),
new DoubleComparer());
break;
case TensorElementType.Int32:
Assert.Equal(expectedValue.GetTensorDataAsSpan<int>().ToArray(), result.GetTensorDataAsSpan<int>().ToArray(), new ExactComparer<int>());
break;
case TensorElementType.UInt32:
Assert.Equal(expectedValue.GetTensorDataAsSpan<uint>().ToArray(), result.GetTensorDataAsSpan<uint>().ToArray(), new ExactComparer<uint>());
break;
case TensorElementType.Int16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<short>().ToArray(), result.GetTensorDataAsSpan<short>().ToArray(), new ExactComparer<short>());
break;
case TensorElementType.UInt16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<ushort>().ToArray(), result.GetTensorDataAsSpan<ushort>().ToArray(), new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
Assert.Equal(expectedValue.GetTensorDataAsSpan<long>().ToArray(), result.GetTensorDataAsSpan<long>().ToArray(), new ExactComparer<long>());
break;
case TensorElementType.UInt64:
Assert.Equal(expectedValue.GetTensorDataAsSpan<ulong>().ToArray(), result.GetTensorDataAsSpan<ulong>().ToArray(), new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
Assert.Equal(expectedValue.GetTensorDataAsSpan<byte>().ToArray(), result.GetTensorDataAsSpan<byte>().ToArray(), new ExactComparer<byte>());
break;
case TensorElementType.Int8:
Assert.Equal(expectedValue.GetTensorDataAsSpan<sbyte>().ToArray(), result.GetTensorDataAsSpan<sbyte>().ToArray(), new ExactComparer<sbyte>());
break;
case TensorElementType.Bool:
Assert.Equal(expectedValue.GetTensorDataAsSpan<bool>().ToArray(), result.GetTensorDataAsSpan<bool>().ToArray(), new ExactComparer<bool>());
break;
case TensorElementType.Float16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<Float16>().ToArray(), result.GetTensorDataAsSpan<Float16>().ToArray(),
new Float16Comparer { tolerance = 2 });
break;
case TensorElementType.BFloat16:
Assert.Equal(expectedValue.GetTensorDataAsSpan<BFloat16>().ToArray(), result.GetTensorDataAsSpan<BFloat16>().ToArray(),
new BFloat16Comparer { tolerance = 2 });
break;
default:
Assert.Fail("VerifyTensorResults cannot handle ElementType: " + expectedElementType.ToString());
break;
}
}
private static void VerifyContainerContent(IReadOnlyList<OrtValue> results,
IReadOnlyList<NamedOnnxValue> expectedValues)
{
Assert.Equal(results.Count, expectedValues.Count);
for (int i = 0; i < expectedValues.Count; ++i)
{
var result = results[i];
var resultTypeShape = result.GetTensorTypeAndShape();
var expectedValue = expectedValues[i];
Assert.Equal(OnnxValueType.ONNX_TYPE_TENSOR, expectedValue.ValueType);
switch (resultTypeShape.ElementDataType)
{
case TensorElementType.Float:
Assert.Equal(result.GetTensorDataAsSpan<float>().ToArray(), expectedValue.AsTensor<float>().ToArray(),
new ExactComparer<float>());
break;
case TensorElementType.Double:
Assert.Equal(result.GetTensorDataAsSpan<double>().ToArray(), expectedValue.AsTensor<double>().ToArray(),
new DoubleComparer());
break;
case TensorElementType.Int32:
Assert.Equal(result.GetTensorDataAsSpan<int>().ToArray(), expectedValue.AsTensor<int>().ToArray(), new ExactComparer<int>());
break;
case TensorElementType.UInt32:
Assert.Equal(result.GetTensorDataAsSpan<uint>().ToArray(), expectedValue.AsTensor<uint>().ToArray(), new ExactComparer<uint>());
break;
case TensorElementType.Int16:
Assert.Equal(result.GetTensorDataAsSpan<short>().ToArray(), expectedValue.AsTensor<short>().ToArray(), new ExactComparer<short>());
break;
case TensorElementType.UInt16:
Assert.Equal(result.GetTensorDataAsSpan<ushort>().ToArray(), expectedValue.AsTensor<ushort>().ToArray(), new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
Assert.Equal(result.GetTensorDataAsSpan<long>().ToArray(), expectedValue.AsTensor<long>().ToArray(), new ExactComparer<long>());
break;
case TensorElementType.UInt64:
Assert.Equal(result.GetTensorDataAsSpan<ulong>().ToArray(), expectedValue.AsTensor<ulong>().ToArray(), new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
Assert.Equal(result.GetTensorDataAsSpan<byte>().ToArray(), expectedValue.AsTensor<byte>().ToArray(), new ExactComparer<byte>());
break;
case TensorElementType.Int8:
Assert.Equal(result.GetTensorDataAsSpan<sbyte>().ToArray(), expectedValue.AsTensor<sbyte>().ToArray(), new ExactComparer<sbyte>());
break;
case TensorElementType.Bool:
Assert.Equal(result.GetTensorDataAsSpan<bool>().ToArray(), expectedValue.AsTensor<bool>().ToArray(), new ExactComparer<bool>());
break;
case TensorElementType.Float16:
Assert.Equal(result.GetTensorDataAsSpan<Float16>().ToArray(), expectedValue.AsTensor<Float16>().ToArray(),
new Float16Comparer { tolerance = 2 });
break;
case TensorElementType.BFloat16:
Assert.Equal(result.GetTensorDataAsSpan<BFloat16>().ToArray(), expectedValue.AsTensor<BFloat16>().ToArray(),
new BFloat16Comparer { tolerance = 2 });
break;
case TensorElementType.String:
Assert.Equal(result.GetStringTensorAsArray(), expectedValue.AsTensor<string>().ToArray(), new ExactComparer<string>());
break;
default:
Assert.Fail($"VerifyTensorResults cannot handle ElementType: {resultTypeShape.ElementDataType}");
break;
}
}
}
// Hint: .NET Core 3.1 has a 'NativeLibrary' class that can be used to free the library handle
private void UnloadLibrary(IntPtr libraryHandle)
{
if (libraryHandle != IntPtr.Zero)
{
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
{
if (!FreeLibrary(libraryHandle))
{
throw new Exception("Could not unload the provided shared library using its handle");
}
}
else
{
// TODO: Deal with non-Windows platforms for the .NET Core use-case
}
}
}
private string GetCustomOpLibFullPath()
{
string libName = "custom_op_library.dll";
if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
{
libName = "custom_op_library.dll";
}
else if (RuntimeInformation.IsOSPlatform(OSPlatform.Linux))
{
libName = "libcustom_op_library.so";
}
else if (RuntimeInformation.IsOSPlatform(OSPlatform.OSX))
{
libName = "libcustom_op_library.dylib";
}
string libFullPath = Path.Combine(Directory.GetCurrentDirectory(), libName);
Assert.True(File.Exists(libFullPath), $"Expected lib {libFullPath} does not exist.");
return libFullPath;
}
private void ValidateModelWithCustomOps(SessionOptions options)
{
string modelPath = "custom_op_test.onnx";
using (var session = new InferenceSession(modelPath, options))
{
var inputContainer = new List<NamedOnnxValue>();
inputContainer.Add(NamedOnnxValue.CreateFromTensor<float>("input_1",
new DenseTensor<float>(
new float[]
{
1.1f, 2.2f, 3.3f, 4.4f, 5.5f,
6.6f, 7.7f, 8.8f, 9.9f, 10.0f,
11.1f, 12.2f, 13.3f, 14.4f, 15.5f
},
new int[] { 3, 5 }
)));
inputContainer.Add(NamedOnnxValue.CreateFromTensor<float>("input_2",
new DenseTensor<float>(
new float[]
{
15.5f, 14.4f, 13.3f, 12.2f, 11.1f,
10.0f, 9.9f, 8.8f, 7.7f, 6.6f,
5.5f, 4.4f, 3.3f, 2.2f, 1.1f
},
new int[] { 3, 5 }
)));
using (var result = session.Run(inputContainer))
{
Assert.Equal("output", result.First().Name);
var tensorOut = result.First().AsTensor<int>();
var expectedOut = new DenseTensor<int>(
new int[]
{
17, 17, 17, 17, 17,
17, 18, 18, 18, 17,
17, 17, 17, 17, 17
},
new int[] { 3, 5 }
);
Assert.True(tensorOut.SequenceEqual(expectedOut));
}
}
}
[SkipNonPackageTests(DisplayName = "TestRegisterCustomOpLibrary")]
private void TestRegisterCustomOpLibrary()
{
using (var option = new SessionOptions())
{
string libFullPath = GetCustomOpLibFullPath();
try
{
option.RegisterCustomOpLibrary(libFullPath);
}
catch (Exception ex)
{
var msg = $"Failed to load custom op library {libFullPath}, error = {ex.Message}";
throw new Exception(msg + "\n" + ex.StackTrace);
}
var ortEnvInstance = OrtEnv.Instance();
string[] providers = ortEnvInstance.GetAvailableProviders();
if (Array.Exists(providers, provider => provider == "CUDAExecutionProvider"))
{
option.AppendExecutionProvider_CUDA(0);
}
ValidateModelWithCustomOps(option);
}
}
[SkipNonPackageTests(DisplayName = "TestRegisterCustomOpLibraryV2")]
private void TestRegisterCustomOpLibraryV2()
{
using (var option = new SessionOptions())
{
string libFullPath = GetCustomOpLibFullPath();
var ortEnvInstance = OrtEnv.Instance();
string[] providers = ortEnvInstance.GetAvailableProviders();
if (Array.Exists(providers, provider => provider == "CUDAExecutionProvider"))
{
option.AppendExecutionProvider_CUDA(0);
}
IntPtr libraryHandle = IntPtr.Zero;
try
{
option.RegisterCustomOpLibraryV2(libFullPath, out libraryHandle);
}
catch (Exception ex)
{
var msg = $"Failed to load custom op library {libFullPath}, error = {ex.Message}";
throw new Exception(msg + "\n" + ex.StackTrace);
}
ValidateModelWithCustomOps(option);
// Safe to unload the custom op shared library now
UnloadLibrary(libraryHandle);
}
}
[Fact(DisplayName = "TestModelSerialization")]
private void TestModelSerialization()
{
string modelPath = Path.Combine(Directory.GetCurrentDirectory(), "squeezenet.onnx");
string modelOutputPath = Path.Combine(Directory.GetCurrentDirectory(), "optimized-squeezenet.onnx");
// Set the optimized model file path to assert that no exception are thrown.
using (SessionOptions options = new SessionOptions())
{
options.OptimizedModelFilePath = modelOutputPath;
options.GraphOptimizationLevel = GraphOptimizationLevel.ORT_ENABLE_BASIC;
using (var session = new InferenceSession(modelPath, options))
{
Assert.NotNull(session);
Assert.True(File.Exists(modelOutputPath));
}
}
}
private static OrtLoraAdapter CreateLoraAdapterFromFile()
{
var adapterPath = Path.Combine(Directory.GetCurrentDirectory(), "two_params_lora_model.onnx_adapter");
return OrtLoraAdapter.Create(adapterPath, null);
}
private static OrtLoraAdapter CreateLoraAdapterFromArray()
{
var adapterPath = Path.Combine(Directory.GetCurrentDirectory(), "two_params_lora_model.onnx_adapter");
var adapterBytes = File.ReadAllBytes(adapterPath);
return OrtLoraAdapter.Create(adapterBytes, null);
}
// See tests below for running with Lora Adapters
[Fact(DisplayName = "TestInferenceWithBaseLoraModel")]
private void TestInferenceWithBaseLoraModel()
{
var modelPath = Path.Combine(Directory.GetCurrentDirectory(), "two_params_lora_model.onnx");
var inputShape = new long[] { 4, 4 };
var inputData = new float[16];
Array.Fill(inputData, 1);
using var inputOrtValue = OrtValue.CreateTensorValueFromMemory(inputData, inputShape);
var expectedOutput = new float[] {
28, 32, 36, 40,
28, 32, 36, 40,
28, 32, 36, 40,
28, 32, 36, 40 };
using var session = new InferenceSession(modelPath);
using var runOptions = new RunOptions();
using var outputs = session.Run(runOptions, ["input_x"], [inputOrtValue], ["output"]);
Assert.Single(outputs);
var output = outputs[0].GetTensorDataAsSpan<float>();
Assert.Equal(expectedOutput.Length, output.Length);
Assert.Equal(expectedOutput, output.ToArray(), new FloatComparer());
}
private static void TestInferenceWithLoraAdapter(OrtLoraAdapter ortLoraAdapter)
{
var modelPath = Path.Combine(Directory.GetCurrentDirectory(), "two_params_lora_model.onnx");
var adapterPath = Path.Combine(Directory.GetCurrentDirectory(), "two_params_lora_model.onnx_adapter");
var inputShape = new long[] { 4, 4 };
var inputData = new float[16];
Array.Fill(inputData, 1);
using var inputOrtValue = OrtValue.CreateTensorValueFromMemory(inputData, inputShape);
var expectedOutput = new float[] {
154, 176, 198, 220,
154, 176, 198, 220,
154, 176, 198, 220,
154, 176, 198, 220 };
using var session = new InferenceSession(modelPath);
using var runOptions = new RunOptions();
runOptions.AddActiveLoraAdapter(ortLoraAdapter);
using var outputs = session.Run(runOptions, ["input_x"], [inputOrtValue], ["output"]);
Assert.Single(outputs);
var output = outputs[0].GetTensorDataAsSpan<float>();
Assert.Equal(expectedOutput.Length, output.Length);
Assert.Equal(expectedOutput, output.ToArray(), new FloatComparer());
}
[Fact(DisplayName = "TestInferenceWithLoraAdapterFromFile")]
private void TestInferenceWithLoraAdapterFromFile()
{
using var ortAdapter = CreateLoraAdapterFromFile();
TestInferenceWithLoraAdapter(ortAdapter);
}
[Fact(DisplayName = "TestInferenceWithLoraAdapterFromArray")]
private void TestInferenceWithLoraAdapterFromArray()
{
using var ortAdapter = CreateLoraAdapterFromArray();
TestInferenceWithLoraAdapter(ortAdapter);
}
// TestGpu() will test
// - the CUDA EP on CUDA enabled builds
// - the DML EP on DML enabled builds
// - the ROCm EP on ROCm enabled builds
[GpuFact(DisplayName = "TestGpu")]
private void TestGpu()
{
var tuple = OpenSessionSqueezeNet(0); // run on deviceID 0
float[] expectedOutput = TestDataLoader.LoadTensorFromFile(@"bench.expected_out");
using (var session = tuple.Item1)
{
var inputData = tuple.Item2;
var tensor = tuple.Item3;
var inputMeta = session.InputMetadata;
var container = new List<NamedOnnxValue>();
container.Add(NamedOnnxValue.CreateFromTensor<float>("data_0", tensor));
var res = session.Run(container);
var resultArray = res.First().AsTensor<float>().ToArray();
Assert.Equal(expectedOutput, resultArray, new FloatComparer());
}
}
[DllImport("kernel32", SetLastError = true)]
static extern IntPtr LoadLibrary(string lpFileName);
[DllImport("kernel32", CharSet = CharSet.Ansi)]
static extern UIntPtr GetProcAddress(IntPtr hModule, string procName);
[DllImport("kernel32.dll", CharSet = CharSet.Ansi)]
private static extern bool FreeLibrary(IntPtr hModule);
[Fact(DisplayName = "VerifyNativeMethodsExist")]
private void VerifyNativeMethodsExist()
{
// Check for external API changes
if (!RuntimeInformation.IsOSPlatform(OSPlatform.Windows))
return;
var entryPointNames = new[]{
"OrtGetApiBase",
"OrtSessionOptionsAppendExecutionProvider_CPU"
#if USE_DNNL
,"OrtSessionOptionsAppendExecutionProvider_Dnnl"
#endif
#if USE_CUDA
,"OrtSessionOptionsAppendExecutionProvider_CUDA"
#endif
#if USE_ROCM
,"OrtSessionOptionsAppendExecutionProvider_ROCM"
#endif
#if USE_DML
,"OrtSessionOptionsAppendExecutionProvider_DML"
#endif
#if USE_OPENVINO
,"OrtSessionOptionsAppendExecutionProvider_OpenVINO"
#endif
#if USE_TENSORRT
,"OrtSessionOptionsAppendExecutionProvider_Tensorrt"
#endif
#if USE_MIGRAPHX
,"OrtSessionOptionsAppendExecutionProvider_MIGraphX"
#endif
#if USE_NNAPI
,"OrtSessionOptionsAppendExecutionProvider_Nnapi"
#endif
};
IntPtr libraryHandle = IntPtr.Zero;
try
{
libraryHandle = LoadLibrary(module);
foreach (var ep in entryPointNames)
{
var x = GetProcAddress(libraryHandle, ep);
Assert.False(x == UIntPtr.Zero, $"Entrypoint {ep} not found in module {module}");
}
}
finally
{
UnloadLibrary(libraryHandle);
}
}
#if NET8_0_OR_GREATER
#pragma warning disable SYSLIB5001 // Type is for evaluation purposes only and is subject to change or removal in future updates. Suppress this diagnostic to proceed.
private void ValidateRunResultData(SystemNumericsTensors.Tensor<float> resultTensor, float[] expectedOutput, int[] expectedDimensions)
{
Assert.Equal(expectedDimensions.Length, resultTensor.Rank);
var resultDimensions = resultTensor.Lengths;
for (int i = 0; i < expectedDimensions.Length; i++)
{
Assert.Equal(expectedDimensions[i], resultDimensions[i]);
}
var resultArray = resultTensor.ToArray();
Assert.Equal(expectedOutput.Length, resultArray.Length);
Assert.Equal(expectedOutput, resultArray, new FloatComparer());
}
#pragma warning restore SYSLIB5001 // Type is for evaluation purposes only and is subject to change or removal in future updates. Suppress this diagnostic to proceed.
#endif
static string GetTestModelsDir()
{
// get build directory, append downloaded models location
var cwd = Directory.GetCurrentDirectory();
var props = File.ReadAllLines(Path.Combine(cwd, propertiesFile));
var modelsRelDir = Path.Combine(props[0].Split('=')[1].Trim());
var modelsDir = Path.Combine(cwd, @"../../..", modelsRelDir, "models");
return modelsDir;
}
}
}
|