1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime.Tests;
using System.Reflection;
namespace MauiModelTester
{
internal class Utils
{
internal static async Task<byte[]> LoadResource(string name)
{
using Stream fileStream = await FileSystem.Current.OpenAppPackageFileAsync(name);
using MemoryStream memoryStream = new MemoryStream();
fileStream.CopyTo(memoryStream);
return memoryStream.ToArray();
}
internal static async Task<(Dictionary<string, OrtValue>, Dictionary<string, OrtValue>)> LoadTestData()
{
var loadData = async (string prefix) =>
{
var data = new Dictionary<string, OrtValue>();
int idx = 0;
do
{
var filename = "test_data/test_data_set_0/" + prefix + idx + ".pb";
var exists = await FileSystem.Current.AppPackageFileExistsAsync(filename);
if (!exists)
{
// we expect sequentially named files for all inputs so as soon as one is missing we're done
break;
}
var tensorProtoData = await LoadResource(filename);
// get name and tensor data and create OrtValue
Onnx.TensorProto tensorProto = null;
tensorProto = Onnx.TensorProto.Parser.ParseFrom(tensorProtoData);
var ortValue = CreateOrtValueFromTensorProto(tensorProto);
data[tensorProto.Name] = ortValue;
idx++;
}
while (true);
return data;
};
var inputData = await loadData("input_");
var outputData = await loadData("output_");
return (inputData, outputData);
}
internal static OrtValue CreateOrtValueFromTensorProto(Onnx.TensorProto tensorProto)
{
Type tensorElementType = GetElementType((TensorElementType)tensorProto.DataType);
OrtValue ortValue = null;
// special case for strings
if (tensorElementType == typeof(string))
{
var numElements = tensorProto.Dims.Aggregate(1L, (x, y) => x * y);
ortValue = OrtValue.CreateTensorWithEmptyStrings(OrtAllocator.DefaultInstance,
tensorProto.Dims.ToArray());
int idx = 0;
foreach (var str in tensorProto.StringData)
{
ortValue.StringTensorSetElementAt(str.Span, idx++);
}
}
else
{
// use reflection to call generic method
var func = typeof(Utils)
.GetMethod(nameof(TensorProtoToOrtValue), BindingFlags.Static | BindingFlags.NonPublic)
.MakeGenericMethod(tensorElementType);
ortValue = (OrtValue)func.Invoke(null, new[] { tensorProto });
}
return ortValue;
}
internal static Type GetElementType(TensorElementType elemType)
{
switch (elemType)
{
case TensorElementType.Float:
return typeof(float);
case TensorElementType.Double:
return typeof(double);
case TensorElementType.Int16:
return typeof(short);
case TensorElementType.UInt16:
return typeof(ushort);
case TensorElementType.Int32:
return typeof(int);
case TensorElementType.UInt32:
return typeof(uint);
case TensorElementType.Int64:
return typeof(long);
case TensorElementType.UInt64:
return typeof(ulong);
case TensorElementType.UInt8:
return typeof(byte);
case TensorElementType.Int8:
return typeof(sbyte);
case TensorElementType.String:
return typeof(string);
case TensorElementType.Bool:
return typeof(bool);
default:
throw new ArgumentException("Unexpected element type of " + elemType);
}
}
static OrtValue TensorProtoToOrtValue<T>(Onnx.TensorProto tensorProto)
where T : unmanaged
{
unsafe
{
var elementSize = sizeof(T);
T[] data = new T[tensorProto.RawData.Length / elementSize];
fixed(byte *bytes = tensorProto.RawData.Span) fixed(void *target = data)
{
Buffer.MemoryCopy(bytes, target, tensorProto.RawData.Length, tensorProto.RawData.Length);
}
return OrtValue.CreateTensorValueFromMemory(data, tensorProto.Dims.ToArray());
}
}
internal class TensorComparer
{
// we need to use a delegate in the checker func to handle string as well as numeric types
private delegate ReadOnlySpan<T> GetDataFn<T>(OrtValue ortValue);
private static ReadOnlySpan<T> GetData<T>(OrtValue ortValue)
where T : unmanaged
{
return ortValue.GetTensorDataAsSpan<T>();
}
private static ReadOnlySpan<string> GetStringData(OrtValue ortValue)
{
return ortValue.GetStringTensorAsArray();
}
private static void CheckEqual<T>(string name, OrtValue expected, OrtValue actual,
IEqualityComparer<T> comparer, GetDataFn<T> getDataFn)
{
var expectedTypeAndShape = expected.GetTypeInfo().TensorTypeAndShapeInfo;
var actualTypeAndShape = actual.GetTypeInfo().TensorTypeAndShapeInfo;
if (expectedTypeAndShape.ElementCount != actualTypeAndShape.ElementCount)
{
throw new ArithmeticException(
$"Element count mismatch for {name}. " +
$"Expected:{expectedTypeAndShape.ElementCount} Actual:{actualTypeAndShape.ElementCount}");
}
var expectedData = getDataFn(expected);
var actualData = getDataFn(actual);
List<string> mismatches = new List<string>();
for (int i = 0; i < expectedData.Length; i++)
{
if (!comparer.Equals(expectedData[i], actualData[i]))
{
mismatches.Add($"[{i}] {expectedData[i]} != {actualData[i]}");
}
}
if (mismatches.Count > 0)
{
throw new ArithmeticException(
$"Result mismatch for {name}. Mismatched entries:{string.Join(',', mismatches)}");
}
}
private static void CheckEqual<T>(string name, OrtValue expected, OrtValue actual,
IEqualityComparer<T> comparer)
where T : unmanaged
{
CheckEqual(name, expected, actual, comparer, GetData<T>);
}
internal static void VerifyTensorResults(string name, OrtValue expected, OrtValue actual)
{
var tensorElementType = expected.GetTypeInfo().TensorTypeAndShapeInfo.ElementDataType;
switch (tensorElementType)
{
case TensorElementType.Float:
CheckEqual(name, expected, actual, new FloatComparer());
break;
case TensorElementType.Double:
CheckEqual(name, expected, actual, new DoubleComparer());
break;
case TensorElementType.Int32:
CheckEqual(name, expected, actual, new ExactComparer<int>());
break;
case TensorElementType.UInt32:
CheckEqual(name, expected, actual, new ExactComparer<uint>());
break;
case TensorElementType.Int16:
CheckEqual(name, expected, actual, new ExactComparer<short>());
break;
case TensorElementType.UInt16:
CheckEqual(name, expected, actual, new ExactComparer<ushort>());
break;
case TensorElementType.Int64:
CheckEqual(name, expected, actual, new ExactComparer<long>());
break;
case TensorElementType.UInt64:
CheckEqual(name, expected, actual, new ExactComparer<ulong>());
break;
case TensorElementType.UInt8:
CheckEqual(name, expected, actual, new ExactComparer<byte>());
break;
case TensorElementType.Int8:
CheckEqual(name, expected, actual, new ExactComparer<sbyte>());
break;
case TensorElementType.Bool:
CheckEqual(name, expected, actual, new ExactComparer<bool>());
break;
case TensorElementType.Float16:
CheckEqual(name, expected, actual, new Float16Comparer { tolerance = 2 });
break;
case TensorElementType.BFloat16:
CheckEqual(name, expected, actual, new BFloat16Comparer { tolerance = 2 });
break;
case TensorElementType.String:
CheckEqual<string>(name, expected, actual, new ExactComparer<string>(), GetStringData);
break;
default:
throw new ArgumentException($"Unexpected data type of {tensorElementType}");
}
}
}
}
}
|