1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
import argparse
import shutil
import sys
from pathlib import Path
import numpy as np
# set to the directory the ONNX Runtime repo is in
# `git checkout https://github.com/microsoft/onnxruntime.git` if needed.
ORT_ROOT_DIR = Path(__file__).parents[3]
SOLUTION_DIR = Path(__file__).parent
# add path for test data/dir generation utils
sys.path.append(str(ORT_ROOT_DIR / "tools" / "python"))
def parse_args():
parser = argparse.ArgumentParser(
description="""Setup the model and test data for usage with the MAUI model tester app.
Input data will be randomly generated as needed.
The model will be run locally and the output saved as expected output.
Explicit input data or expected output data can be specified by providing .pb files with the input/output name
and tensor. These can be created with /tools/python/onnx_test_data_utils.py.
See https://github.com/microsoft/onnxruntime/blob/main/tools/python/PythonTools.md#creating-a-test-directory-for-a-model # noqa
for info on creating specific input or expected output""",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--symbolic_dims",
"-s",
help="Symbolic dimension values if the model inputs have symbolic dimensions and the input data is being "
"generated. Format is `name=value {name2=value2 ...}.",
type=str,
nargs="+",
required=False,
)
parser.add_argument(
"--input_data",
"-i",
help="Input data pb files created with onnx_test_data_utils.py. Multiple can be specified.",
type=Path,
nargs="+",
required=False,
)
parser.add_argument(
"--output_data",
"-o",
help="Expected output data pb files created with onnx_test_data_utils.py. Multiple can be specified.",
type=Path,
nargs="+",
required=False,
)
parser.add_argument(
"--model_path",
"-m",
help="Path to ONNX model to use. Model will be copied into the test app",
type=Path,
required=True,
)
args = parser.parse_args()
args.model_path.resolve(strict=True)
# convert symbolic dims to dictionary
symbolic_dims = None
if args.symbolic_dims:
symbolic_dims = {}
for value in args.symbolic_dims:
pieces = value.split("=")
assert len(pieces) == 2
name = pieces[0].strip()
dim_value = int(pieces[1].strip())
symbolic_dims[name] = dim_value
args.symbolic_dims = symbolic_dims
return args
def create_existing_data_map(pb_files: list[Path]):
import onnx_test_data_utils as data_utils
data_map = {}
for file in pb_files:
file.resolve(strict=True)
name, data = data_utils.read_tensorproto_pb_file(str(file))
data_map[name] = data
return data_map
def add_model_and_test_data_to_app(
model_path: Path,
symbolic_dims: dict[str, int] | None = None,
input_map: dict[str, np.ndarray] | None = None,
output_map: dict[str, np.ndarray] | None = None,
):
import ort_test_dir_utils as utils
output_path = SOLUTION_DIR / "Resources" / "Raw"
test_name = "test_data"
test_path = output_path / test_name
# remove existing data
if test_path.exists():
shutil.rmtree(test_path)
# If you want to directly create input data without using onnx_test_data_utils you can edit the input map here
# if not input_map:
# input_map = {}
#
# input_map['Input3'] = np.random.rand(1, 1, 28, 28).astype(np.float32)
utils.create_test_dir(
str(model_path),
str(output_path),
test_name,
# Explicit input data. Any missing required inputs will have data generated for them.
name_input_map=input_map,
# Optional map for any symbolic values.
symbolic_dim_values_map=symbolic_dims,
# Expected output can be provided if you want to validate model output against this.
name_output_map=output_map,
)
# create_test_dir will copy the model to the output directory.
# rename the copied model to the generic name the app expects.
copied_model = output_path / test_name / model_path.name
copied_model.rename(copied_model.with_name("model.onnx"))
# add a text file with the original model path just so there's some info on where it came from
with open(test_path / "model_info.txt", "w") as model_info_file:
model_info_file.write(str(model_path))
def create_test_data():
args = parse_args()
input_map = None
output_map = None
if args.input_data:
input_map = create_existing_data_map(args.input_data)
if args.output_data:
output_map = create_existing_data_map(args.output_data)
add_model_and_test_data_to_app(args.model_path, args.symbolic_dims, input_map, output_map)
if __name__ == "__main__":
create_test_data()
|