1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
using CommandLine;
using Microsoft.ML.OnnxRuntime.Tensors;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
namespace Microsoft.ML.OnnxRuntime.PerfTool
{
public enum TimingPoint
{
Start = 0,
ModelLoaded = 1,
InputLoaded = 2,
WarmUp = 3,
RunComplete = 4,
TotalCount = 5
}
class CommandOptions
{
[Option('m', "model_file", Required = true, HelpText = "Model Path.")]
public string ModelFile { get; set; }
[Option('c', "iteration_count", Required = true, HelpText = "Iteration to run.")]
public int IterationCount { get; set; }
[Option('i', "input_file", Required = false, HelpText = "Input file.")]
public string InputFile { get; set; }
[Option('p', Required = false, HelpText = "Run with parallel execution. Default is false")]
public bool ParallelExecution { get; set; } = false;
[Option('o', "optimization_level", Required = false, HelpText = "Optimization Level. Default is 99, all optimization.")]
public GraphOptimizationLevel OptimizationLevel { get; set; } = GraphOptimizationLevel.ORT_ENABLE_ALL;
}
class Program
{
public static void Main(string[] args)
{
var cmdOptions = Parser.Default.ParseArguments<CommandOptions>(args);
cmdOptions.WithParsed(
options =>
{
Run(options);
});
}
static void Run(CommandOptions options)
{
string modelPath = options.ModelFile;
string inputPath = options.InputFile;
int iteration = options.IterationCount;
bool parallelExecution = options.ParallelExecution;
GraphOptimizationLevel optLevel = options.OptimizationLevel;
Console.WriteLine("Running model {0} in OnnxRuntime:", modelPath);
Console.WriteLine("iteration count:{0}", iteration);
Console.WriteLine("input:{0}", inputPath);
Console.WriteLine("parallel execution:{0}", parallelExecution);
Console.WriteLine("optimization level:{0}", optLevel);
DateTime[] timestamps = new DateTime[(int)TimingPoint.TotalCount];
double[] timecosts = new double[iteration];
RunModelOnnxRuntime(modelPath, inputPath, iteration, timestamps, timecosts, parallelExecution, optLevel);
PrintReport(timestamps, timecosts, iteration);
Console.WriteLine("Done");
}
static void RunModelOnnxRuntime(string modelPath, string inputPath, int iteration, DateTime[] timestamps,
double[] timecosts, bool parallelExecution, GraphOptimizationLevel optLevel)
{
if (timestamps.Length != (int)TimingPoint.TotalCount)
{
throw new ArgumentException("Timestamps array must have " + (int)TimingPoint.TotalCount + " size");
}
Random random = new Random();
timestamps[(int)TimingPoint.Start] = DateTime.Now;
SessionOptions options = new SessionOptions();
if (parallelExecution) options.ExecutionMode = ExecutionMode.ORT_PARALLEL;
options.GraphOptimizationLevel = optLevel;
using (var session = new InferenceSession(modelPath, options))
{
timestamps[(int)TimingPoint.ModelLoaded] = DateTime.Now;
var containers = LoadTestData(modelPath, inputPath, session.InputMetadata);
timestamps[(int)TimingPoint.InputLoaded] = DateTime.Now;
// Warm-up
{
var container = containers[random.Next(0, containers.Count)];
session.Run(container);
}
timestamps[(int)TimingPoint.WarmUp] = DateTime.Now;
// Run the inference
for (int i = 0; i < iteration; i++)
{
var next = random.Next(0, containers.Count);
var container = containers[next];
var startTime = DateTime.Now;
var results = session.Run(container); // results is an IReadOnlyList<NamedOnnxValue> container
timecosts[i] = (DateTime.Now - startTime).TotalMilliseconds;
Debug.Assert(results != null);
Debug.Assert(results.Count == 1);
}
timestamps[(int)TimingPoint.RunComplete] = DateTime.Now;
}
}
// If inputPath is give, create a tensor from text format of data.
// Otherwise, create a tensor from proto files. Multiple input directories can be given at the same path as a model file.
// Each input directory must have the same number of input as a model.
// In example, if a model has 3 input data, a layout for a model file and two set of input data are as follows,
// |-- model.onnx
// |-- test_data_0
// | |-- input_0.pb
// | |-- input_1.pb
// | |-- input_3.pb
// |-- test_data_1
// | |-- input_0.pb
// | |-- input_1.pb
// | |-- input_3.pb
static List<List<NamedOnnxValue>> LoadTestData(string modelPath, string inputPath, IReadOnlyDictionary<string, NodeMetadata> inputMeta)
{
var containers = new List<List<NamedOnnxValue>>();
// If inputPath is given, give priority to it
if (!String.IsNullOrEmpty(inputPath) && File.Exists(inputPath))
{
var container = LoadTensorFromText(inputPath, inputMeta);
containers.Add(container);
}
else
{
var dirs = from dir in Directory.EnumerateDirectories(Path.GetDirectoryName(modelPath)) select dir;
foreach (var dir in dirs)
{
var container = LoadTestDataFromProtobuf(dir, inputMeta);
containers.Add(container);
}
}
return containers;
}
static List<NamedOnnxValue> LoadTensorFromText(string filename, IReadOnlyDictionary<string, NodeMetadata> inputMeta)
{
var container = new List<NamedOnnxValue>();
foreach (var name in inputMeta.Keys)
{
var tensorData = new List<float>();
// read data from file
using (var inputFile = new System.IO.StreamReader(filename))
{
inputFile.ReadLine(); //skip the input name
string[] dataStr = inputFile.ReadLine().Split(new char[] { ',', '[', ']' }, StringSplitOptions.RemoveEmptyEntries);
for (int i = 0; i < dataStr.Length; i++)
{
tensorData.Add(Single.Parse(dataStr[i]));
}
}
var tensor = new DenseTensor<float>(tensorData.ToArray(), inputMeta[name].Dimensions);
container.Add(NamedOnnxValue.CreateFromTensor<float>(name, tensor));
}
return container;
}
static List<NamedOnnxValue> LoadTestDataFromProtobuf(string testDataPath, IReadOnlyDictionary<string, NodeMetadata> inputMeta)
{
var container = new List<NamedOnnxValue>();
var filenames = from filename in Directory.EnumerateFiles(testDataPath, "input_*.pb") select filename;
foreach (var filename in filenames)
{
Onnx.TensorProto tensorProto = null;
using (var inputFile = File.OpenRead(filename))
{
tensorProto = Onnx.TensorProto.Parser.ParseFrom(inputFile);
}
var namedOnnxValue = CreateNamedOnnxValueFromTensorProto(tensorProto, inputMeta);
container.Add(namedOnnxValue);
}
return container;
}
static NamedOnnxValue CreateNamedOnnxValueFromTensorProto(Onnx.TensorProto tensorProto, IReadOnlyDictionary<string, NodeMetadata> inputMeta)
{
Type tensorElemType = null;
int elemWidth = 0;
GetElementTypeAndWidth((TensorElementType)tensorProto.DataType, out tensorElemType, out elemWidth);
var dims = tensorProto.Dims.ToList().ConvertAll(x => (int)x);
NodeMetadata nodeMeta = null;
if (!inputMeta.TryGetValue(tensorProto.Name, out nodeMeta) ||
nodeMeta.ElementType != tensorElemType)
{
throw new Exception("No Matching Tensor found from serialized tensor");
}
if (nodeMeta.ElementType == typeof(float))
{
return CreateNamedOnnxValueFromRawData<float>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(float), dims);
}
else if (nodeMeta.ElementType == typeof(double))
{
return CreateNamedOnnxValueFromRawData<double>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(double), dims);
}
else if (nodeMeta.ElementType == typeof(int))
{
return CreateNamedOnnxValueFromRawData<int>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(int), dims);
}
else if (nodeMeta.ElementType == typeof(uint))
{
return CreateNamedOnnxValueFromRawData<uint>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(uint), dims);
}
else if (nodeMeta.ElementType == typeof(long))
{
return CreateNamedOnnxValueFromRawData<long>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(long), dims);
}
else if (nodeMeta.ElementType == typeof(ulong))
{
return CreateNamedOnnxValueFromRawData<ulong>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(ulong), dims);
}
else if (nodeMeta.ElementType == typeof(short))
{
return CreateNamedOnnxValueFromRawData<short>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(short), dims);
}
else if (nodeMeta.ElementType == typeof(ushort))
{
return CreateNamedOnnxValueFromRawData<ushort>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(ushort), dims);
}
else if (nodeMeta.ElementType == typeof(byte))
{
return CreateNamedOnnxValueFromRawData<byte>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(byte), dims);
}
else if (nodeMeta.ElementType == typeof(bool))
{
return CreateNamedOnnxValueFromRawData<bool>(tensorProto.Name, tensorProto.RawData.ToArray(), sizeof(bool), dims);
}
else
{
throw new Exception("Tensors of type " + nameof(nodeMeta.ElementType) + " not currently supported in this tool");
}
}
static void GetElementTypeAndWidth(TensorElementType elemType, out Type type, out int width)
{
switch (elemType)
{
case TensorElementType.Float:
type = typeof(float);
width = sizeof(float);
break;
case TensorElementType.Double:
type = typeof(double);
width = sizeof(double);
break;
case TensorElementType.Int16:
type = typeof(short);
width = sizeof(short);
break;
case TensorElementType.UInt16:
type = typeof(ushort);
width = sizeof(ushort);
break;
case TensorElementType.Int32:
type = typeof(int);
width = sizeof(int);
break;
case TensorElementType.UInt32:
type = typeof(uint);
width = sizeof(uint);
break;
case TensorElementType.Int64:
type = typeof(long);
width = sizeof(long);
break;
case TensorElementType.UInt64:
type = typeof(ulong);
width = sizeof(ulong);
break;
case TensorElementType.UInt8:
type = typeof(byte);
width = sizeof(byte);
break;
case TensorElementType.Int8:
type = typeof(sbyte);
width = sizeof(sbyte);
break;
case TensorElementType.String:
type = typeof(byte);
width = sizeof(byte);
break;
case TensorElementType.Bool:
type = typeof(bool);
width = sizeof(bool);
break;
default:
type = null;
width = 0;
break;
}
}
static NamedOnnxValue CreateNamedOnnxValueFromRawData<T>(string name, byte[] rawData, int elemWidth, List<int> dimensions)
{
T[] data = new T[rawData.Length / elemWidth];
Buffer.BlockCopy(rawData, 0, data, 0, rawData.Length);
var denseTensor = new DenseTensor<T>(data, dimensions.ToArray());
return NamedOnnxValue.CreateFromTensor<T>(name, denseTensor);
}
static void PrintUsage()
{
Console.WriteLine("Usage:\n"
+ "dotnet Microsoft.ML.OnnxRuntime.PerfTool -m <onnx-model-path> -i <input-file-path> -c <iteration-count>"
);
}
static void PrintReport(DateTime[] timestamps, double[] timecosts, int iterations)
{
Console.WriteLine("Model Load Time = " + (timestamps[(int)TimingPoint.ModelLoaded] - timestamps[(int)TimingPoint.Start]).TotalMilliseconds);
Console.WriteLine("Input Load Time = " + (timestamps[(int)TimingPoint.InputLoaded] - timestamps[(int)TimingPoint.ModelLoaded]).TotalMilliseconds);
Console.WriteLine("Warm-up Time = " + (timestamps[(int)TimingPoint.WarmUp] - timestamps[(int)TimingPoint.InputLoaded]).TotalMilliseconds);
double totalRuntime = (timestamps[(int)TimingPoint.RunComplete] - timestamps[(int)TimingPoint.WarmUp]).TotalMilliseconds;
double perIterationTime = totalRuntime / iterations;
Console.WriteLine("Total Run time for {0} iterations = {1}", iterations, totalRuntime);
Console.WriteLine("Per iteration time = {0}", perIterationTime);
Array.Sort(timecosts);
Console.WriteLine("Min Latency: {0}", timecosts[0]);
Console.WriteLine("Max Latency: {0}", timecosts[timecosts.Length - 1]);
Console.WriteLine("P50 Latency: {0}", timecosts[(int)(timecosts.Length * 0.5)]);
Console.WriteLine("P90 Latency: {0}", timecosts[(int)(timecosts.Length * 0.9)]);
Console.WriteLine("P95 Latency: {0}", timecosts[(int)(timecosts.Length * 0.95)]);
Console.WriteLine("P99 Latency: {0}", timecosts[(int)(timecosts.Length * 0.99)]);
Console.WriteLine("P999 Latency: {0}", timecosts[(int)(timecosts.Length * 0.999)]);
}
}
}
|