File: ORTModule_Convergence_Notes.md

package info (click to toggle)
onnxruntime 1.21.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 333,732 kB
  • sloc: cpp: 3,153,079; python: 179,219; ansic: 109,131; asm: 37,791; cs: 34,424; perl: 13,070; java: 11,047; javascript: 6,330; pascal: 4,126; sh: 3,277; xml: 598; objc: 281; makefile: 59
file content (140 lines) | stat: -rw-r--r-- 5,005 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# ORTModule Training Convergence Investigation

## 1. Discovering

Convergence issues can be identified by:
- Large discrepancies in core training metrics including training loss, evaluation loss, model specific AUC metrics.
- Runtime failures (for example when the loss scaler reaches the minimum, triggering an exception).

Before looking into this further, we should clarify a few things (if possible):
- If we change the seed for the baseline run, whether the metric diff is big?
  (Make sure the discrepancy is not introduced by randomness)
- What are the very first steps we see obvious divergence?
- Still reproducible once randomness is removed?
- Set same seeds
- Set the dropout ratio to 0
- Set compute to be deterministic and torch-comparable (TODO(pengwa): need a flag for this).


## 2. Collect Activation Statistics


### 2.1 Use `GlobalSubscriberManager` to collect `nn.Module` forward() outputs

<table>
<tr>
<th>Baseline</th>
<th>ORTModule</th>
</tr>
<tr>
<td>
<sub>

```python
from onnxruntime.training.utils.hooks import GlobalSubscriberManager, StatisticsSubscriber
GlobalSubscriberManager.subscribe(
    model, [StatisticsSubscriber(output_dir="pt_out", override_output_dir=True)]
)
```

</sub>
</td>
<td>
<sub>

```python
model = ORTModule(model)
from onnxruntime.training.utils.hooks import GlobalSubscriberManager, StatisticsSubscriber
GlobalSubscriberManager.subscribe(
    model, [StatisticsSubscriber(output_dir="ort_out", override_output_dir=True)]
)
```

</sub>
</td>
</tr>

<tr>
<td>

- Run training script to the steps that trigger the divergence.
- A folder named `pt_out` is created in the current working directory.
- For each step, there is a folder containing summaries for every activation tensor.

</td>
<td>


- Run training script to the steps that trigger the divergence.
- Similarly, a folder named `ort_out` is created in the current working directory.
- `StatisticsSubscriber` can be subscribed before OR after wrapping ORTModule.

</td>
</tr>
</table>


Arguments:
- output_dir: the directory in all activation statistics files will be stored.
- `start_step` [optional]: the first step that runs subscriber actions.
- `end_step` [optional]: the end step (exclusively) that runs subscriber actions.
- `override_output_dir`: whether `output_dir` can be overridden if it already exists.
- `run_on_cpu`: whether to run the subscriber actions on CPU, this should be the last resort when inserted
    inspector node affects memory peak causing the original recipe run to fail with OOM.
- `bucket_size`: the size of the bucket to split the statistic calculation.

### 2.2 Use `inspect_activation` to collect intermediate tensors in a `nn.Module` forward()

The limitation of `GlobalSubscriberManager` is, only 'nn.Module's forward output tensors will be dumped, if you want to
dump the intermediate tensors in a `nn.Module`'s forward function, refer to the following example:

```diff
+   from onnxruntime.training.utils.hooks import inspect_activation
class BloomForCausalLM(BloomPreTrainedModel):
  def __init__(self, config: BloomConfig):
    ...

  def forward(self, input_ids, ...):
    ...
    transformer_outputs = self.transformer(...)
    hidden_states = transformer_outputs[0]
    lm_logits = self.lm_head(hidden_states)
+   lm_logits = inspect_activation("lm_logits", lm_logits)
    # Shift so that tokens < n predict n
    shift_logits = lm_logits[..., :-1, :].contiguous()
+   shift_logits = inspect_activation("shift_logits", shift_logits)
    shift_labels = labels[..., 1:].contiguous()
    batch_size, seq_length, vocab_size = shift_logits.shape
    # Flatten the tokens
    loss_fct = CrossEntropyLoss()
    loss = loss_fct(
        shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
    )

    return loss
```

Be noted, make sure the activation name (as the first argument of `inspect_activation`) is unique, otherwise
stat file using the activation name will be overwritten by the last write. The dumped data are stored in the `output_dir`.


### 2.3 Collect on multiple ranks

`GlobalSubscriberManager` does not explicitly handle the racing condition when multiple ranks write into the same file path,
here is the example if you want to collect statistics on multiple ranks:

```python
from onnxruntime.training.utils.hooks import GlobalSubscriberManager, StatisticsSubscriber
GlobalSubscriberManager.subscribe(model, [StatisticsSubscriber(output_dir="ort_out_" + str(torch.distributed.get_rank()),
                                          override_output_dir=True)])
```

Check [StatisticsSubscriber implementation](../orttraining/orttraining/python/training/utils/hooks/_statistics_subscriber.py) for more information.

### 2.4 Run command to generate per-step summary

```bash
python -m onnxruntime.training.utils.hooks.merge_activation_summary --pt_dir pt_out --ort_dir ort_out --output_dir /tmp/output
```

### 2.5 Manually compare the generated per-step summary to find the first big diff.