1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
# ONNX Runtime Training Guidelines
## 1. Installation and Configuration
Be noted: this mainly demonstrates set up steps for development, check [Torch-ORT](https://github.com/pytorch/ort) for end user set up experience.
Refer [https://onnxruntime.ai/](https://onnxruntime.ai/) to download training wheel. Or build from source:
```bash
export CUDA_HOME=/usr/local/cuda
export CUDNN_HOME=/usr/local/cuda
export CUDACXX=$CUDA_HOME/bin/nvcc
./build.sh --config RelWithDebInfo --use_cuda --enable_training --build_wheel --skip_tests --cuda_version=11.8 --parallel 8 --use_mpi
```
Install the Python wheel.
Configure ORTModule torch cpp extensions (**avoid** doing this in ORT code *repo root directory*):
```bash
python -m onnxruntime.training.ortmodule.torch_cpp_extensions.install
```
## 2. Use `ORTModule` to Accelerate Forward/Backward
Plug in your `torch.nn.Module` model with `ORTModule` to leverage ONNX Runtime fast training backend.
Sample usage as below:
```diff
model = build_model()
+ from onnxruntime.training.ortmodule import ORTModule
+ model = ORTModule(model)
```
> It is strongly recommended to wrap model with `ORTModule` before other module wrapper (for example, DeepSpeed, `torch.nn.parallel.DistributedDataParallel`, etc), which is validated in more scenarios.
> Be also noticed that, `ORTModule` is **NOT** compatible with `torch.nn.DataParallel` (not recommended to use in PyTorch usage). Please use `torch.nn.parallel.DistributedDataParallel` instead.
More options for **developers**.
```diff
model = build_model()
+ from onnxruntime.training.ortmodule import ORTModule, DebugOptions, LogLevel
+ model = ORTModule(model, DebugOptions(save_onnx=True, log_level=LogLevel.VERBOSE, onnx_prefix="model_name"))
```
Check [DebugOptions implementation](../orttraining/orttraining/python/training/ortmodule/options.py) for more details.
#### Log Level Explanations
<table>
<tr>
<th style="width:20%">Log Level</th>
<th style="width:80%">Description</th>
</tr>
<tr>
<td>
`FATAL` | `ERROR` | `WARNING` (For Users)
<sup>`WARNING` is the default and recommended level for
<br>users.</sup>
</td>
<td>
- ONNX Runtime backend log level - `FATAL` | `ERROR` | `WARNING`.
- ORTModule log level - `FATAL` | `ERROR` | `WARNING`.
- Rank-0 log filtering is `ON` (e.g. logging on rank-0-only).
- PyTorch exporter export logs filtering is `ON`.
- PyTorch exporter verbose logs (including tracing graph) filtering is `ON`.
</td>
</tr>
<tr>
<td>
`INFO` (For Users | ORT Developers)
<sup>`INFO` is used for collecting experimental
<br>feature stats, or a little bit more error messages.</sup>
</td>
<td>
- ONNX Runtime backend log level - `WARNING`.
- ORTModule log level - `INFO`.
- Rank-0 log filtering is `ON` (e.g. logging on rank-0-only).
- PyTorch exporter export logs filtering is `ON`.
- PyTorch exporter verbose logs (including tracing graph) filtering is `OFF`.
</td>
</tr>
<tr>
<td>
`DEVINFO` (For ORT Developers)
<sup>`DEVINFO` is the recommended level for
<br>debugging purposes.</sup>
</td>
<td>
- ONNX Runtime backend log level - `INFO`.
- ORTModule log level - `INFO`.
- Rank-0 log filtering is `OFF` (e.g. logging on all ranks).
- PyTorch exporter export logs filtering is `OFF`.
- PyTorch exporter verbose logs (including tracing graph) filtering is `OFF`.
</td>
</tr>
<tr>
<td>
`VERBOSE` (For ORT Developers)
<sup>`VERBOSE` is the last resort for debugging
<br>hard problems.</sup>
</td>
<td>
- ONNX Runtime backend log level - `VERBOSE`.
- ORTModule log level - `VERBOSE`.
- Rank-0 log filtering is `OFF` (e.g. logging on all ranks).
- PyTorch exporter export logs filtering is `OFF`.
- PyTorch exporter verbose logs (including tracing graph) filtering is `OFF`.
</td>
</tr>
</table>
### 2.1 Environment Variables
`ORTModule` provides environment variables targeting different use cases.
#### ORTMODULE_ONNX_OPSET_VERSION
- **Feature Area**: *ORTMODULE/ONNXOPSET*
- **Description**: By default, as ONNX Runtime released, the ONNX OPSET version to use will be updated periodically. For some customers, they want to stick to fixed OPSET where both performance and accuracy are well validated, this env variable can be used to control that.
```bash
export ORTMODULE_ONNX_OPSET_VERSION=14
```
#### ORTMODULE_FALLBACK_POLICY
- **Feature Area**: *ORTMODULE/FallbackToPytorch*
- **Description**: By default, if `ORTModule` fails to run the model using ONNX Runtime backend, it will fallback to use PyTorch to continue the training. At some point developers are optimizing the models and doing benchmarking, we want explicitly let ORT backend to run the model. The way we disable the retry:
```bash
export ORTMODULE_FALLBACK_POLICY="FALLBACK_DISABLE"
```
#### ORTMODULE_LOG_LEVEL
- **Feature Area**: *ORTMODULE/DebugOptions*
- **Description**: Configure `ORTModule` log level. Defaults to LogLevel.WARNING, can be set one of "VERBOSE", "INFO", "WARNING", "ERROR", "FATAL". The environment variable takes precedence if DebugOptions also sets log_level.
#### ORTMODULE_SAVE_ONNX_PATH
- **Feature Area**: *ORTMODULE/DebugOptions*
- **Description**: Configure `ORTModule` to save onnx models. Defaults to False.
The output directory of the onnx models by default is set to the current working directory. To change the output directory, the environment variable "ORTMODULE_SAVE_ONNX_PATH" can be set to the destination directory path.
#### ORTMODULE_ALLOW_AUTOGRAD_CHECKPOINT
- **Feature Area**: *ORTMODULE/PythonOp (torch.autograd.Function)*
- **Description**: By default `ORTModule` will fail with exception when handling PythonOp export for some `'autograd.Function'`s (One example is torch CheckpointFunction). Set
this env variable to be `1` to explicitly allow it.
```bash
export ORTMODULE_ALLOW_AUTOGRAD_CHECKPOINT=1
```
> Take the example of torch.utils.checkpoint.CheckpointFunction, if it is exported as PythonOp, the checkpointed computation may be computed by PyTorch, not ORT. This situation is especially important for big models such as GPT-2 where every few layers are wrapped to do re-computation, large number of computations are done by PyTorch. Currently a failure is reported to notify users it is possible `ORTModule` has less opportunities to optimize further.
> On the other hand, if the wrapped computation graph is small, it is reasonable to allow it.
> Overall users should be aware that ORT performance boost might be trivial when they explicitly allow it.
#### ORTMODULE_ENABLE_CUSTOM_AUTOGRAD
- **Feature Area**: *ORTMODULE/PythonOp (torch.autograd.Function)*
- **Description**: By default, all torch.autograd.Function classes will be exported to ORT PythonOp. There are some cases where you might consider disable it. For example, if you confirmed those torch.autograd.Function classes defined computations that could be inline exported by PyTorch, and it is safe to use the inline exported ONNX graph to train, then you can disable it, as a result, ORT has more opportunities to optimize more.
```bash
export ORTMODULE_ENABLE_CUSTOM_AUTOGRAD=1 # Enable
export ORTMODULE_ENABLE_CUSTOM_AUTOGRAD=0 # Disable
```
An alternative to disable without using environment variable:
```python
from onnxruntime.training.ortmodule._custom_autograd_function import enable_custom_autograd_support
enable_custom_autograd_support(False)
```
#### ORTMODULE_ENABLE_COMPUTE_OPTIMIZER
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is enabled then some computation can be saved. This env var can be used for disabling
the optimization to guarantee exactly same compute with baseline (for example PyTorch, when doing convergence parity
debugging).
```bash
export ORTMODULE_ENABLE_COMPUTE_OPTIMIZER=1 # Enable
export ORTMODULE_ENABLE_COMPUTE_OPTIMIZER=0 # Disable
```
#### ORTMODULE_PRINT_INPUT_DENSITY
- **Feature Area**: *ORTMODULE/RuntimeInspector*
- **Description**: By default, this is disabled. This env var can be used for printing the input data sparsity
inspection results to standard outputs.
```bash
export ORTMODULE_PRINT_INPUT_DENSITY=1 # Enable
export ORTMODULE_PRINT_INPUT_DENSITY=0 # Disable
```
#### ORTMODULE_PRINT_MEMORY_STATS
- **Feature Area**: *ORTMODULE/RuntimeInspector*
- **Description**: By default, this is disabled. This env var can be used for printing the memory inspection results
to standard outputs.
```bash
export ORTMODULE_PRINT_MEMORY_STATS=1 # Enable
export ORTMODULE_PRINT_MEMORY_STATS=0 # Disable
```
#### ORTMODULE_ENABLE_EMBEDDING_SPARSE_OPTIMIZER
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is enabled. This env var can be used for enabling or disabling the embedding input
data sparsity based performance optimizations.
```bash
export ORTMODULE_ENABLE_EMBEDDING_SPARSE_OPTIMIZER=1 # Enable
export ORTMODULE_ENABLE_EMBEDDING_SPARSE_OPTIMIZER=0 # Disable
```
#### ORTMODULE_ENABLE_LABEL_SPARSE_OPTIMIZER
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is enabled. This env var can be used for enabling or disabling the label input
data sparsity based performance optimizations.
```bash
export ORTMODULE_ENABLE_LABEL_SPARSE_OPTIMIZER=1 # Enable
export ORTMODULE_ENABLE_LABEL_SPARSE_OPTIMIZER=0 # Disable
```
#### ORTMODULE_CACHE_DIR
- **Feature Area**: *ORTMODULE/RuntimeOptions*
- **Description**: By default, this is disabled. This env vars can be used to cache the exported model for future runs. This optimization is intended to reduce experimentation time by re-using the PyTorch->ONNX exported model architecture when available.
```bash
export ORTMODULE_CACHE_DIR="/path/to/cache_dir" # Enable
unset ORTMODULE_CACHE_DIR # Disable
```
#### ORTMODULE_USE_EFFICIENT_ATTENTION
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is disabled. This env var can be used for enabling attention fusion and falling back to PyTorch's efficient_attention ATen kernel for execution. NOTE that it requires torch's version is 2.1.1 or above. There are some build-in patterns for attention fusion, if none of the patterns works for your model, you can add a custom one in your user script manually.
```bash
export ORTMODULE_USE_EFFICIENT_ATTENTION=1
```
#### ORTMODULE_DEEPCOPY_BEFORE_MODEL_EXPORT
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is enabled. This env var can be used for enabling or disabling the module deep copy when preparing output data which will be used by ONNX export.
A classical usage of disabling the deep copy: when the deep copy before module export bring the memory peak, then we should disable it and have a try.
```bash
export ORTMODULE_DEEPCOPY_BEFORE_MODEL_EXPORT=1 # Enable
export ORTMODULE_DEEPCOPY_BEFORE_MODEL_EXPORT=0 # Disable
```
#### ORTMODULE_MEMORY_OPT_LEVEL
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, the level is 0. This env var can be used for enabling recomputation for reducing memory peak requirement.
- Setting the level to be 1 means all detected recomputable subgraphs (NOT including compromised recomputable graphs) with each transformer-based model layer generating stashed activations will be recomputed. This is conceptually equivalent to PyTorch's gradient checkpoint.
- Setting the level to be 2 means all detected recomputable subgraphs (including compromised recomputable graphs) with each transformer-based model layer generating stashed activations will be recomputed. This is conceptually equivalent to PyTorch's gradient checkpoint.
- When the level is 0, check Check [Memory Optimizer for ONNX Runtime Training](Memory_Optimizer.md) for more details.
```bash
export ORTMODULE_MEMORY_OPT_LEVEL=0
```
#### ORTMODULE_ENABLE_MEM_EFFICIENT_GRAD_MGMT
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, the memory-efficient gradient management is turned off. The gradient after it is computed in ONNX Runtime, will trigger the corresponding parameter's backward function through `PythonOpGrad` operator. This would help release the gradient buffer managed in ONNX Runtime, which originally is released once all backward computation finishes.
```bash
export ORTMODULE_ENABLE_MEM_EFFICIENT_GRAD_MGMT=1 # Enable
export ORTMODULE_ENABLE_MEM_EFFICIENT_GRAD_MGMT=0 # Disable
```
#### ORTMODULE_ATEN_SDPA_FALLBACK
- **Feature Area**: *ORTMODULE/Optimizations*
- **Description**: By default, this is disabled. This env var can be used for enabling pre-export attention fall back to PyTorch's [_scaled_dot_product_efficient_attention](https://github.com/pytorch/pytorch/blob/c12a4f2e65ad41b739aab1a261e2336b4a79fcfb/aten/src/ATen/native/native_functions.yaml#L14778) ATen kernel for execution when calling torch.nn.functional.scaled_dot_product_attention. NOTE: only use this feature if user model leverages memory efficient attention WITHOUT masking (ie. attn_mask=None). Utilize GPU profiling looks like NVIDIA Nsight Systems to identify if user model leverages memory efficient attention.
```bash
export ORTMODULE_ATEN_SDPA_FALLBACK=1 # ENABLE
unset ORTMODULE_ATEN_SDPA_FALLBACK # DISABLE
```
### 2.2 Memory Optimization
Q: *Want to run a bigger batch size?*
Q: *The model training hits OOM, even with minimum required batch size?*
Check [Memory Optimizer for ONNX Runtime Training](Memory_Optimizer.md) for how to leverage ORT's recomputation techniques.
## 3. Use `FusedAdam` to Accelerate Parameter Update
Parameter update is done by optimizers (for example AdamW) with many elementwise operations. `FusedAdam` launches the elementwise update kernels with multi-tensor apply, allowing batches of gradients applied to corresponding parameters for each time kernel launch.
Here is a sample switch from torch `AdamW` optimizer to `FusedAdam`.
```diff
model = build_model()
- optimizer = AdamW(model.parameters(), lr=1)
+ from onnxruntime.training.optim import FusedAdam
+ optimizer = FusedAdam(model.parameters(), lr=1)
```
Check [FusedAdam implementation](../orttraining/orttraining/python/training/optim/fused_adam.py) for more details.
## 4. Use `FP16_Optimizer` to Complement DeepSpeed/APEX
If user models utilize DeepSpeed or Apex libraries, ORT's `FP16_Optimizer` can be used to complement some inefficiencies introduced by them.
Use `FP16_Optimizer` with DeepSpeed ZeRO Optimizer:
```diff
optimizer = AdamW(model.parameters(), lr=1)
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
optimizer=optimizer,
args=args,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=False)
+ from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer
+ optimizer = FP16_Optimizer(optimizer)
```
Use `FP16_Optimizer` with Apex Optimizer:
```diff
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt_level="O2")
+ from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer as ORT_FP16_Optimizer
+ optimizer = ORT_FP16_Optimizer(optimizer)
```
Check [FP16_Optimizer implementation](../orttraining/orttraining/python/training/optim/fp16_optimizer.py) for more details.
## 5. Putting All Together `ORTModule` + `FusedAdam` + `FP16_Optimizer`
```diff
model = build_model()
+ from onnxruntime.training.ortmodule import ORTModule
+ model = ORTModule(model)
- optimizer = AdamW(model.parameters(), lr=1)
+ from onnxruntime.training.optim import FusedAdam
+ optimizer = FusedAdam(model.parameters(), lr=1)
model, optimizer, _, lr_scheduler = deepspeed.initialize(
model=model,
optimizer=optimizer,
args=args,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=False)
+ from onnxruntime.training.optim.fp16_optimizer import FP16_Optimizer
+ optimizer = FP16_Optimizer(optimizer)
```
## 6. Use OpenAI Triton to Compute ONNX Sub-graph
`ORTModule` provides a way to switch to OpenAI Triton for executing some Ops to further accelerate training.
### 6.1 Environment Variables
#### ORTMODULE_USE_TRITON
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: By default, this is disabled. This env var can be used for enabling Triton optimization.
```bash
export ORTMODULE_USE_TRITON=1
```
#### ORTMODULE_TRITON_CONFIG_FILE
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: Triton codegen currently supported some Ops such as some elementwise Ops and some reduction Ops. If Triton optimization is enabled, all these supported Ops will be optimized by default if possible. User can provide a customized JSON config file to control which Ops to optimize and how to optimize them. Below is a sample of config JSON. For each Op, Opset version list and domain is needed. Currently "conditions" field can be used to control axis/axes attribute or input, by specify the real value, or "single" means it contains only one dimension, or "constant" means it must be constant tensor. Save the JSON as a file somewhere and assign its path to below env variable to enable the customized config.
```json
{
"ops": {
"Add": {"versions": [13, 14]},
"Sub": {"versions": [13, 14]},
"Identity": {"versions": [13], "is_no_op": True},
"ReduceSum": {"versions": [13], "conditions": {"axes": "[-1]"}},
"Softmax": {"versions": [13]},
"SoftmaxGrad_13": {"domain": "com.microsoft", "versions": [1]}
},
"initializer": "scalar",
"min_nodes": 2
}
```
```bash
export ORTMODULE_TRITON_CONFIG_FILE=triton_config.json
```
#### ORTMODULE_ENABLE_TUNING
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: By default, this is disabled. This env var can be used for enabling online Op tuning for those Ops that have multiple implementations on target EP.
```bash
export ORTMODULE_ENABLE_TUNING=1
```
#### ORTMODULE_MAX_TUNING_DURATION_MS
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: When `ORTMODULE_ENABLE_TUNING` is enabled, this env var can be used to set max tuning duration in ms to avoid long tuning time.
```bash
export ORTMODULE_MAX_TUNING_DURATION_MS=9999
```
#### ORTMODULE_TUNING_RESULTS_PATH
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: When `ORTMODULE_ENABLE_TUNING` is enabled, this env var can be used to specify where the online Op tuning results be saved for later use. By default the results will not be saved. When `ORTMODULE_ENABLE_TUNING` is NOT enabled, this env var can be used to specify where Op tuning results can be fetched as offline tuning results.
```bash
export ORTMODULE_TUNING_RESULTS_PATH=/tmp/tuning_results
```
#### ORTMODULE_USE_FLASH_ATTENTION
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: By default, this is disabled. This env var can be used for enabling attention fusion and using Flash Attention's Triton version as the kernel. NOTE that it requires ORTMODULE_USE_TRITON to be enabled, and CUDA device capability is 8.0 or above. There are some build-in patterns for attention fusion, if none of the patterns works for your model, you can add a custom one in your user script manually.
```bash
export ORTMODULE_USE_FLASH_ATTENTION=1
```
#### ORTMODULE_TRITON_DEBUG
- **Feature Area**: *ORTMODULE/TritonOp*
- **Description**: By default, this is disabled. This env var can be used for enabling Triton debug mode. All original and processed sub-graphs and corresponding generated Triton codes will be saved into a triton_debug folder under working directory.
```bash
export ORTMODULE_TRITON_DEBUG=1
```
## 7. One More Thing - `LoadBalancingDistributedBatchSampler`
`LoadBalancingDistributedBatchSampler` balances the data load across workers based on the sample's complexity.
This is useful in scenarios like speech and NLP, where each batch has variable length and distributed training suffers from **straggler problem**. In such scenarios, the complexity function could be defined to return the length of the input sample sequence. The usage is similar to `torch.utils.data.DistributedSampler`, where each process loads a subset of the original dataset that is exclusive to it.
A sample shown below:
```python
from onnxruntime.training.utils.data import LoadBalancingDistributedSampler, \
LoadBalancingDistributedBatchSampler
sampler = LoadBalancingDistributedSampler(dataset, complexity_fn=complexity_fn)
batch_sampler = LoadBalancingDistributedBatchSampler(sampler, batch_fn=batch_fn)
loader = torch.utils.data.DataLoader(dataset, batch_sampler=batch_sampler)
for epoch in range(start_epoch, n_epochs):
batch_sampler.set_epoch(epoch)
train(loader)
```
Check [LoadBalancingDistributedBatchSampler implementation](../orttraining/orttraining/python/training/utils/data/sampler.py) for more details.
## 8 Using ORTPipelineModule for Deepspeed Pipeline Parallel
You can use `ORTPipelineModule` to support Deepspeed Pipeline Parallelism. Here's how you can integrate it into your pipeline:
```python
from onnxruntime.training.ortmodule import DebugOptions
from onnxruntime.training.ortmodule.experimental.pipe import ORTPipelineModule
# Create a debug configuration if needed
# Since we're exporting multiple graphs here, this will generate multiple graphs with their index added as a prefix to differentiate them.
debug_options = DebugOptions(save_onnx=True, log_level=LogLevel.VERBOSE, onnx_prefix="model_name")
# Keep your deepspeed script the same and use ORTPipelineModule instead of PipelineModule
# Initialize the ORTPipelineModule
pipeline_module = ORTPipelineModule(
layers,
num_stages=2, # Set your number of stages
base_seed=1234,
partition_method="parameters",
debug_options=debug_options # Pass the debug configuration if needed
)
# Keep the rest of the script as it is.
```
Check [ORTPipelineModule implementation](../orttraining/orttraining/python/training/ortmodule/experimental/pipe/_ort_pipeline_module.py) for more details.
|