1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
# ONNXRuntime Extensions
ONNXRuntime Extensions is a comprehensive package to extend the capability of the ONNX conversion and inference. Please visit the documentation [onnxruntime-extensions](https://github.com/microsoft/onnxruntime-extensions) to learn more about ONNXRuntime Extensions.
## Custom Operators Supported
onnxruntime-extensions supports many useful custom operators to enhance the text processing capability of ONNXRuntime, which include some widely used **string operators** and popular **tokenizers**. For custom operators supported and how to use them, please check the documentation [custom operators](https://github.com/microsoft/onnxruntime-extensions/blob/main/docs/custom_text_ops.md).
## Build ONNXRuntime with Extensions
We have supported build onnxruntime-extensions as a static library and link it into ONNXRuntime. To enable custom operators from onnxruntime-extensions, you should add argument `--use_extensions`, which will fetch onnxruntime-extensions and build it as static library from https://github.com/microsoft/onnxruntime-extensions **by default**.
If you want to build ONNXRuntime with a pre-pulled onnxruntime-extensions, pass extra argument `--extensions_overridden_path <path-to-onnxruntime-extensions>`.
Note: Please remember to use `--minimal_build custom_ops` when you build minimal runtime with custom operators from onnxruntime-extensions.
### Build with Operators Config
Also, you could pass the **required operators config** file by argument `--include_ops_by_config` to customize the operators you want to build in both onnxruntime and onnxruntime-extensions. Example content of **required_operators.config** are:
```json
# Generated from model/s
# domain;opset;op1,op2...
ai.onnx;12;Add,Cast,Concat,Squeeze
ai.onnx.contrib;1;GPT2Tokenizer,
```
In above operators config, `ai.onnx.contrib` is the domain name of operators in onnxruntime-extensions. We would parse this line to generate required operators in onnxruntime-extensions for build.
### Generate Operators Config
To generate the **required_operators.config** file from model, please follow the guidance [Converting ONNX models to ORT format](https://onnxruntime.ai/docs/reference/ort-format-models.html#convert-onnx-models-to-ort-format).
If your model contains operators from onnxruntime-extensions, please add argument `--custom_op_library` and pass the path to **ortcustomops** shared library built following guidance [share library](https://github.com/microsoft/onnxruntime-extensions#the-share-library-for-non-python).
You could even manually edit the **required_operators.config** if you know the custom operators required and don't want to build the shared library.
### Build and Disable Exceptions
You could add argument `--disable_exceptions` to disable exceptions in both onnxruntime and onnxruntime-extensions.
However, if the custom operators you used in onnxruntime-extensions (such as BlingFireTokenizer) use c++ exceptions, then you will also need to add argument `--enable_wasm_exception_throwing_override` to enable **Emscripten** to link in exception throwing support library. If this argument is not set, Emscripten will throw linking errors.
### Example Build Command
```console
D:\onnxruntime> build.bat --config Release --build_wasm --enable_wasm_threads --enable_wasm_simd --skip_tests --disable_exceptions --disable_wasm_exception_catching --enable_wasm_exception_throwing_override --disable_rtti --use_extensions --parallel --minimal_build custom_ops --include_ops_by_config D:\required_operators.config
```
## E2E Example using Custom Operators
A common NLP task would probably contain several steps, including pre-processing, DL model and post-processing. It would be very efficient and productive to convert the pre/post processing code snippets into ONNX model since ONNX graph is actually a computation graph, and it can represent the most programming code, theoretically.
Here is an E2E NLP example to show the usage of onnxruntime-extensions:
### Create E2E Model
You could use ONNX helper functions to create an ONNX model with custom operators.
```python
import onnx
from onnx import helper
# ...
e2e_nodes = []
# tokenizer node
tokenizer_node = helper.make_node(
'GPT2Tokenizer', # custom operator supported in onnxruntime-extensions
inputs=['input_str'],
outputs=['token_ids', 'attention_mask'],
vocab=get_file_content(vocab_file),
merges=get_file_content(merges_file),
name='gpt2_tokenizer',
domain='ai.onnx.contrib' # domain of custom operator
)
e2e_nodes.append(tokenizer_node)
# deep learning model
dl_model = onnx.load("dl_model.onnx")
dl_nodes = dl_model.graph.node
e2e_nodes.extend(dl_nodes)
# construct E2E ONNX graph and model
e2e_graph = helper.make_graph(
e2e_nodes,
'e2e_graph',
[input_tensors],
[output_tensors],
)
# ...
```
For more usage of ONNX helper, please visit the document [Python API Overview](https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md).
### Run E2E Model in Python
```python
import onnxruntime as _ort
from onnxruntime_extensions import get_library_path as _lib_path
so = _ort.SessionOptions()
# register onnxruntime-extensions library
so.register_custom_ops_library(_lib_path())
# run onnxruntime session
sess = _ort.InferenceSession(e2e_model, so)
sess.run(...)
```
### Run E2E Model in JavaScript
To run E2E ONNX model in JavaScript, you need to first [prepare ONNX Runtime WebAssembly artifacts](https://github.com/microsoft/onnxruntime/blob/main/js), include the generated `ort.min.js`, and then load and run the model in JS.
```js
// use an async context to call onnxruntime functions
async function main() {
try {
// create a new session and load the e2e model
const session = await ort.InferenceSession.create('./e2e_model.onnx');
// prepare inputs
const tensorA = new ort.Tensor(...);
const tensorB = new ort.Tensor(...);
// prepare feeds: use model input names as keys
const feeds = { a: tensorA, b: tensorB };
// feed inputs and run
const results = await session.run(feeds);
// read from results
const dataC = results.c.data;
document.write(`data of result tensor 'c': ${dataC}`);
} catch (e) {
document.write(`failed to inference ONNX model: ${e}.`);
}
}
```
|