1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
===
API
===
API Overview
============
*ONNX Runtime* loads and runs inference on a model in ONNX graph format, or ORT format (for memory and disk constrained environments).
The data consumed and produced by the model can be specified and accessed in the way that best matches your scenario.
Load and run a model
--------------------
InferenceSession is the main class of ONNX Runtime. It is used to load and run an ONNX model,
as well as specify environment and application configuration options.
.. code-block:: python
session = onnxruntime.InferenceSession('model.onnx')
outputs = session.run([output names], inputs)
ONNX and ORT format models consist of a graph of computations, modeled as operators,
and implemented as optimized operator kernels for different hardware targets.
ONNX Runtime orchestrates the execution of operator kernels via `execution providers`.
An execution provider contains the set of kernels for a specific execution target (CPU, GPU, IoT etc).
Execution provides are configured using the `providers` parameter. Kernels from different execution
providers are chosen in the priority order given in the list of providers. In the example below
if there is a kernel in the CUDA execution provider ONNX Runtime executes that on GPU. If not
the kernel is executed on CPU.
.. code-block:: python
session = onnxruntime.InferenceSession(
model, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
)
The list of available execution providers can be found here: `Execution Providers <https://onnxruntime.ai/docs/execution-providers>`_.
Since ONNX Runtime 1.10, you must explicitly specify the execution provider for your target.
Running on CPU is the only time the API allows no explicit setting of the `provider` parameter.
In the examples that follow, the `CUDAExecutionProvider` and `CPUExecutionProvider` are used, assuming the application is running on NVIDIA GPUs.
Replace these with the execution provider specific to your environment.
You can supply other session configurations via the `session options` parameter. For example, to enable
profiling on the session:
.. code-block:: python
options = onnxruntime.SessionOptions()
options.enable_profiling=True
session = onnxruntime.InferenceSession(
'model.onnx',
sess_options=options,
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
Data inputs and outputs
-----------------------
The ONNX Runtime Inference Session consumes and produces data using its OrtValue class.
Data on CPU
^^^^^^^^^^^
On CPU (the default), OrtValues can be mapped to and from native Python data structures: numpy arrays, dictionaries and lists of
numpy arrays.
.. code-block:: python
# X is numpy array on cpu
ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X)
ortvalue.device_name() # 'cpu'
ortvalue.shape() # shape of the numpy array X
ortvalue.data_type() # 'tensor(float)'
ortvalue.is_tensor() # 'True'
np.array_equal(ortvalue.numpy(), X) # 'True'
# ortvalue can be provided as part of the input feed to a model
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
results = session.run(["Y"], {"X": ortvalue})
By default, *ONNX Runtime* always places input(s) and output(s) on CPU. Having the data on CPU
may not optimal if the input or output is consumed and produced on a device
other than CPU because it introduces data copy between CPU and the device.
Data on device
^^^^^^^^^^^^^^
*ONNX Runtime* supports a custom data structure that supports all ONNX data formats that allows users
to place the data backing these on a device, for example, on a CUDA supported device. In ONNX Runtime,
this called `IOBinding`.
To use the `IOBinding` feature, replace `InferenceSession.run()` with `InferenceSession.run_with_iobinding()`.
A graph is executed on a device other than CPU, for instance CUDA. Users can
use IOBinding to copy the data onto the GPU.
.. code-block:: python
# X is numpy array on cpu
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
io_binding = session.io_binding()
# OnnxRuntime will copy the data over to the CUDA device if 'input' is consumed by nodes on the CUDA device
io_binding.bind_cpu_input('input', X)
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
The input data is on a device, users directly use the input. The output data is on CPU.
.. code-block:: python
# X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
io_binding = session.io_binding()
io_binding.bind_input(name='input', device_type=X_ortvalue.device_name(), device_id=0, element_type=np.float32, shape=X_ortvalue.shape(), buffer_ptr=X_ortvalue.data_ptr())
io_binding.bind_output('output')
session.run_with_iobinding(io_binding)
Y = io_binding.copy_outputs_to_cpu()[0]
The input data and output data are both on a device, users directly use the input and also place output on the device.
.. code-block:: python
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
io_binding = session.io_binding()
io_binding.bind_input(
name='input',
device_type=X_ortvalue.device_name(),
device_id=0,
element_type=np.float32,
shape=X_ortvalue.shape(),
buffer_ptr=X_ortvalue.data_ptr()
)
io_binding.bind_output(
name='output',
device_type=Y_ortvalue.device_name(),
device_id=0,
element_type=np.float32,
shape=Y_ortvalue.shape(),
buffer_ptr=Y_ortvalue.data_ptr()
)
session.run_with_iobinding(io_binding)
Users can request *ONNX Runtime* to allocate an output on a device. This is particularly useful for dynamic shaped outputs.
Users can use the *get_outputs()* API to get access to the *OrtValue* (s) corresponding to the allocated output(s).
Users can thus consume the *ONNX Runtime* allocated memory for the output as an *OrtValue*.
.. code-block:: python
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
io_binding = session.io_binding()
io_binding.bind_input(
name='input',
device_type=X_ortvalue.device_name(),
device_id=0,
element_type=np.float32,
shape=X_ortvalue.shape(),
buffer_ptr=X_ortvalue.data_ptr()
)
#Request ONNX Runtime to bind and allocate memory on CUDA for 'output'
io_binding.bind_output('output', 'cuda')
session.run_with_iobinding(io_binding)
# The following call returns an OrtValue which has data allocated by ONNX Runtime on CUDA
ort_output = io_binding.get_outputs()[0]
In addition, *ONNX Runtime* supports directly working with *OrtValue* (s) while inferencing a model if provided as part of the input feed.
Users can bind *OrtValue* (s) directly.
.. code-block:: python
#X is numpy array on cpu
#X is numpy array on cpu
X_ortvalue = onnxruntime.OrtValue.ortvalue_from_numpy(X, 'cuda', 0)
Y_ortvalue = onnxruntime.OrtValue.ortvalue_from_shape_and_type([3, 2], np.float32, 'cuda', 0) # Change the shape to the actual shape of the output being bound
session = onnxruntime.InferenceSession(
'model.onnx',
providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
)
io_binding = session.io_binding()
io_binding.bind_ortvalue_input('input', X_ortvalue)
io_binding.bind_ortvalue_output('output', Y_ortvalue)
session.run_with_iobinding(io_binding)
You can also bind inputs and outputs directly to a PyTorch tensor.
.. code-block:: python
# X is a PyTorch tensor on device
session = onnxruntime.InferenceSession('model.onnx', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']))
binding = session.io_binding()
X_tensor = X.contiguous()
binding.bind_input(
name='X',
device_type='cuda',
device_id=0,
element_type=np.float32,
shape=tuple(x_tensor.shape),
buffer_ptr=x_tensor.data_ptr(),
)
## Allocate the PyTorch tensor for the model output
Y_shape = ... # You need to specify the output PyTorch tensor shape
Y_tensor = torch.empty(Y_shape, dtype=torch.float32, device='cuda:0').contiguous()
binding.bind_output(
name='Y',
device_type='cuda',
device_id=0,
element_type=np.float32,
shape=tuple(Y_tensor.shape),
buffer_ptr=Y_tensor.data_ptr(),
)
session.run_with_iobinding(binding)
You can also see code examples of this API in in the `ONNX Runtime inferences examples <https://github.com/microsoft/onnxruntime-inference-examples/blob/main/python/api/onnxruntime-python-api.py>`_.
Some onnx data type (like TensorProto.BFLOAT16, TensorProto.FLOAT8E4M3FN and TensorProto.FLOAT8E5M2) are not supported by Numpy. You can directly bind input or output with Torch tensor of corresponding data type
(like torch.bfloat16, torch.float8_e4m3fn and torch.float8_e5m2) in GPU memory.
.. code-block:: python
x = torch.ones([3], dtype=torch.float8_e5m2, device='cuda:0')
y = torch.empty([3], dtype=torch.bfloat16, device='cuda:0')
binding = session.io_binding()
binding.bind_input(
name='X',
device_type='cuda',
device_id=0,
element_type=TensorProto.FLOAT8E5M2,
shape=tuple(x.shape),
buffer_ptr=x.data_ptr(),
)
binding.bind_output(
name='Y',
device_type='cuda',
device_id=0,
element_type=TensorProto.BFLOAT16,
shape=tuple(y.shape),
buffer_ptr=y.data_ptr(),
)
session.run_with_iobinding(binding)
API Details
===========
InferenceSession
----------------
.. autoclass:: onnxruntime.InferenceSession
:members:
:inherited-members:
Options
-------
RunOptions
^^^^^^^^^^
.. autoclass:: onnxruntime.RunOptions
:members:
SessionOptions
^^^^^^^^^^^^^^
.. autoclass:: onnxruntime.SessionOptions
:members:
.. autoclass:: onnxruntime.ExecutionMode
:members:
.. autoclass:: onnxruntime.ExecutionOrder
:members:
.. autoclass:: onnxruntime.GraphOptimizationLevel
:members:
.. autoclass:: onnxruntime.OrtAllocatorType
:members:
.. autoclass:: onnxruntime.OrtArenaCfg
:members:
.. autoclass:: onnxruntime.OrtMemoryInfo
:members:
.. autoclass:: onnxruntime.OrtMemType
:members:
Functions
---------
Allocators
^^^^^^^^^^
.. autofunction:: onnxruntime.create_and_register_allocator
.. autofunction:: onnxruntime.create_and_register_allocator_v2
Telemetry events
^^^^^^^^^^^^^^^^
.. autofunction:: onnxruntime.disable_telemetry_events
.. autofunction:: onnxruntime.enable_telemetry_events
Providers
^^^^^^^^^
.. autofunction:: onnxruntime.get_all_providers
.. autofunction:: onnxruntime.get_available_providers
Build, Version
^^^^^^^^^^^^^^
.. autofunction:: onnxruntime.get_build_info
.. autofunction:: onnxruntime.get_version_string
.. autofunction:: onnxruntime.has_collective_ops
Device
^^^^^^
.. autofunction:: onnxruntime.get_device
Logging
^^^^^^^
.. autofunction:: onnxruntime.set_default_logger_severity
.. autofunction:: onnxruntime.set_default_logger_verbosity
Random
^^^^^^
.. autofunction:: onnxruntime.set_seed
Data
----
OrtValue
^^^^^^^^
.. autoclass:: onnxruntime.OrtValue
:members:
SparseTensor
^^^^^^^^^^^^
.. autoclass:: onnxruntime.SparseTensor
:members:
Devices
-------
IOBinding
^^^^^^^^^
.. autoclass:: onnxruntime.IOBinding
:members:
.. autoclass:: onnxruntime.SessionIOBinding
:members:
OrtDevice
^^^^^^^^^
.. autoclass:: onnxruntime.OrtDevice
:members:
Internal classes
----------------
These classes cannot be instantiated by users but they are returned
by methods or functions of this library.
ModelMetadata
^^^^^^^^^^^^^
.. autoclass:: onnxruntime.ModelMetadata
:members:
NodeArg
^^^^^^^
.. autoclass:: onnxruntime.NodeArg
:members:
Backend
=======
In addition to the regular API which is optimized for performance and usability,
*ONNX Runtime* also implements the
`ONNX backend API <https://github.com/onnx/onnx/blob/main/docs/ImplementingAnOnnxBackend.md>`_
for verification of *ONNX* specification conformance.
The following functions are supported:
.. autofunction:: onnxruntime.backend.is_compatible
.. autofunction:: onnxruntime.backend.prepare
.. autofunction:: onnxruntime.backend.run
.. autofunction:: onnxruntime.backend.supports_device
|