1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
|
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
"""
Metadata
========
ONNX format contains metadata related to how the
model was produced. It is useful when the model
is deployed to production to keep track of which
instance was used at a specific time.
Let's see how to do that with a simple
logistic regression model trained with
*scikit-learn* and converted with *sklearn-onnx*.
"""
from onnxruntime.datasets import get_example
example = get_example("logreg_iris.onnx")
import onnx # noqa: E402
model = onnx.load(example)
print(f"doc_string={model.doc_string}")
print(f"domain={model.domain}")
print(f"ir_version={model.ir_version}")
print(f"metadata_props={model.metadata_props}")
print(f"model_version={model.model_version}")
print(f"producer_name={model.producer_name}")
print(f"producer_version={model.producer_version}")
#############################
# With *ONNX Runtime*:
import onnxruntime as rt # noqa: E402
sess = rt.InferenceSession(example, providers=rt.get_available_providers())
meta = sess.get_modelmeta()
print(f"custom_metadata_map={meta.custom_metadata_map}")
print(f"description={meta.description}")
print(f"domain={meta.domain}")
print(f"graph_name={meta.graph_name}")
print(f"producer_name={meta.producer_name}")
print(f"version={meta.version}")
|