File: training_api.rst

package info (click to toggle)
onnxruntime 1.21.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 333,732 kB
  • sloc: cpp: 3,153,079; python: 179,219; ansic: 109,131; asm: 37,791; cs: 34,424; perl: 13,070; java: 11,047; javascript: 6,330; pascal: 4,126; sh: 3,277; xml: 598; objc: 281; makefile: 59
file content (89 lines) | stat: -rw-r--r-- 2,406 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Train the Model on the Device
==============================

Once the training artifacts are generated, the model can be trained on the device using the onnxruntime training python API.

The expected training artifacts are:

1. The training onnx model
2. The checkpoint state
3. The optimizer onnx model
4. The eval onnx model (optional)

Sample usage:

.. code-block:: python

    from onnxruntime.training.api import CheckpointState, Module, Optimizer

    # Load the checkpoint state
    state = CheckpointState.load_checkpoint(path_to_the_checkpoint_artifact)

    # Create the module
    module = Module(path_to_the_training_model,
                    state,
                    path_to_the_eval_model,
                    device="cpu")

    optimizer = Optimizer(path_to_the_optimizer_model, module)

    # Training loop
    for ...:
        module.train()
        training_loss = module(...)
        optimizer.step()
        module.lazy_reset_grad()

    # Eval
    module.eval()
    eval_loss = module(...)

    # Save the checkpoint
    CheckpointState.save_checkpoint(state, path_to_the_checkpoint_artifact)


.. autoclass:: onnxruntime.training.api.checkpoint_state.Parameter
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:
    :special-members: __repr__

.. autoclass:: onnxruntime.training.api.checkpoint_state.Parameters
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:
    :special-members: __getitem__, __setitem__, __contains__, __iter__, __repr__, __len__

.. autoclass:: onnxruntime.training.api.checkpoint_state.Properties
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:
    :special-members: __getitem__, __setitem__, __contains__, __iter__, __repr__, __len__

.. autoclass:: onnxruntime.training.api.CheckpointState
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:

.. autoclass:: onnxruntime.training.api.Module
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:
    :special-members: __call__

.. autoclass:: onnxruntime.training.api.Optimizer
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members:

.. autoclass:: onnxruntime.training.api.LinearLRScheduler
    :members:
    :show-inheritance:
    :member-order: bysource
    :inherited-members: